Up and Running
with DAX for
Power B

A Concise Guide for Non-Technical Users

Alison Box

Apress:

Up and Running with
DAX for Power BI

A Concise Guide for
Non-Technical Users

Alison Box

Apress’

Up and Running with DAX for Power BI: A Concise Guide for Non-Technical Users

Alison Box
Billingshurst, West Sussex, UK

ISBN-13 (pbk): 978-1-4842-8187-1 ISBN-13 (electronic): 978-1-4842-8188-8
https://doi.org/10.1007/978-1-4842-8188-8

Copyright © 2022 by Alison Box

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza,
Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8188-8

To Madeleine, John, and Alan

Table of Contents

About the AUThOKceeeeiieieiieiieee s aanaa s nnnnnnannnnnnnnnnns Xi
About the Technical REVIEWETcurrerrrresssssssssssssmssssssssssssssssssssssnnnsssssssssssssnnnnnnnnns Xiii
Acknowledgments........ccccuuiisssnsmsmmmmmemsssssssssssssmmesssssssssssssnsssesssssssssnnnnnnnsessssssnnnnnnns Xv
[0T LT (] | Xvii
Chapter 1: Show Me the Data.........ccccceemmmmrinnsssssssssnmmmmmssssssss s 1
SEArS QNG SNOWFIAKES ..euveereseerireerriseerseerssessssessssesssseessseesssesssessseesassesassessssesssnessansesansessnensnenss 4
T 1] 4

T LS 0] 5

THE STAI SCNEBIMAveevceieieee e e e e s s es e s s e srse e s e e se s e e s se s s se e s seesasseesaseesanee s neenannennanensn 5
Finding NonmMatChing VaIUES..........ccviiernenrrcsire e srs e s sessssnsnsnens 7
Chapter 2: DAX Objects, Syntax, and Formatting.........c.ccousemmmnsssnmmnmnssssnnnnnsssssnnnnns 15
D))11 - VOO 16
D72 0] 0= Vx]SR 19
Chapter 3: Calculated Columns and MeaSUres......c..cccurressssnnnssssssnnsssssssnssssssssnnnsssss 23
L0 10 T 0 1 T 23
Creating Simple Calculated COIUMNSccovivrinrrnienn e 24
Looking at the RELATED FUNCHION........cccviinrrenesn s sns s s ssssessesnens 26

DAX VIBASUIES ..c.vvereseerrresrssrsssseessssessssessssessaseesaseesassesssesssessassesassesansessssessasessaseesassensssensssesssnesss 32
IMPLICIE MBASUIESccuereeeereerereesee st s rerseessesese s e e sse s e saesssessesae s e e s essesaeeseessesaesaenssesesaessnnnes 32
EXPlICIE MEBASUIESceuereeeereerereeseeresesssesaesessesseessesaesesseessesaessessesaessessssnsesaesnessssnsesassnnnnen 34
Creating @ MeasureS TADIEccccevevcrvrrr e rerer e s se e s s sn e e ae e 35
Creating Simple DAX MEASUIES........cccrverreerrererrerseesserersesseessessessesssessessessssssessessesssssssssessennes 35
What EXaCtly IS @ MEASUIE?coereeeereriree e reree e re s s e s s s e e aesne e s nesne s enen 1

TABLE OF CONTENTS

Chapter 4: Evaluation Contextccccunsmmmmmnsssnnnmmsssssssmsssssnssssssssssssssssssssssssssssnsenss 47
L L (T 0001 (= PP 47
Evaluations Using a Single Filter ... 49
Calculation in the TOtal ROWcccccceererrnmnnnsscsesessssssse s sesssssssns 52
Evaluations Using MUHple Filtersc.ccverirvrrene e se s se s sse s 53

THe ROW CONEEXL ..o s e e e nrnnis 56
Chapter 5: eratorsccccuseemmmnsssssnmmmsssnnmmmsssssnmmssssnmesssssnmessssnne s 59
The SUMX Function (and Other “X” FUNCLIONS)cccvcervrerensmsesenmsesesesesesesessssesessesessesessssesenses 61
TOTAl ROW GHIET...ueivieeiseseseses s s p e e nr s 66
Chapter 6: The CALCULATE FUncCtion........ccccusmssssmsnnnnmmsmssssssssssssssssssssssssssssssssssssssnns 71
Why YOU NE€d CALCULATEcooiuernertresiresesesesese s ss s sssssssssssss s e ssssssanas 71
USING SINGIE FIITBISeiveerererteser s st se s sre e s sse s sa s e s saesae e s e saesaesa s naesaesaeseesesaesaesannenaesnes 77
USING MUIEIDIE FIIEEISeeecc et r s s e 78
AND aNd OR FIREIScuevivirrrieresrreresesesesesssesessssssssssssssssssssssssssssssssssesessssssssssssssssssssssssssssssssnas 79
COMPIEX FIIEIS ...t 81
Chapter 7: DAX Table FUNCHIONS......ccccuviissmnnsmssssnnnsmsssssnsssssssnsnsssssssnsssssssnnnsssssnnnnssnss 85
TYPES Of DAX FUNCLIONS.......ceeeecrerceereeee e 85
Table FUNCLIONSecceeeceeeser e s nr s 87
Examples of Table EXPrESSIONScccerverrrererierserseesserersessssssessessessssssesssssssssessessesssssssssessensens 88

Why Do We Need Table EXPreSSIONS?cuocverenereeseresesessesessssesessesessesesessesessssesssnssssssessenens 89

The FILTER FUNCLION........cciiiereserisesisesese s s se e s nenns 89
FILTER Used t0 RedUCE ROWScccoveoeecrereirerer e s 90
FILTER as the Filter Argument of CALCULATEooeoresrnrereresens s 91
Column Filters vs. Table FIREIScvccvvcerncsiiese e s sn s s se s 99
Table Filters Are Less EffiCIeNtcccvceeriirnnennesnnnse s sessesssnenens 100
Table Filters Return Different RESUILS..........ccoveernenenisernsesinesene e sessessssenens 104
Using the KEEPFILTERS FUNCHION.......cccoccoiiirnsennncsins s ses s sns e ssanes 108

TABLE OF CONTENTS

Chapter 8: The ALL Function and All Its Variationsccusemmmnssssnnnsnsssssnsssssssnnns 109
THE ALL FUNCHION.......eceeeeeeece e e se s s se e e nneens 110
Applied to the FACT TADIEccecrere e s 111
Using ALL on Dimension TADIES........ccccveviirienenesin s s s s sss e sne s 117
USING ALL 0N @ COIUMN......cectrereerrrereressesessesesseseesesessessessssessessesssssssessesassssssssessesssssssesaeses 120

The ALLEXCEPT FUNCHONcoveeerecerecrencre e se s ses e s s sennenens 127
The ALLSELECTED FUNCHIONccoeveerreesenesessesesseesesesesse e sesesessesessssessssesessessssssessssssesssssnsenens 129
ALL as a Modifier t0 CALCULATE..........cocooienrnesereserisse e e ses s ssssesessssessssessnnes 131
Chapter 9: Calculations on Dates: Using DAX Time Intelligence.........ccusursssansssnns 143
Power Bl Date HIierarchies ... sesssssssas 144
Creating @ Date TADIEccccveverire s nnn 146
Using Time Intelligence FUNCLIONS ..o snens 149
Previous Month/Year — PREVIOUSMONTH/YEAR.........ccooouemnnmnmnnsmsesesessssssesesessssssssesens 153
Same Period Last Year — SAMEPERIODLASTYEAR..........ccoommmmnmsesesessssssesesesssssesesessns 153
Values for Any Time Ago — DATEADDcocrvrrenieriererse s seses e se s e s s sessae e sae s 154

Year 10 Date — DATESYTD ..o se s se s sssssens 154

Total to Date or Cumulative TOtaIScccceeerererneererirese e 155
Rolling Annual Totals and AVEIageS........ccceerververrerrerierrenseesersessesssesessesssessessessesssssaessessenns 156
Calculating the Last Transaction Date and the Last Transaction Value...........cccceeevevrerieraene 158
Finding the Difference Between TWo Dates..........ccccvcvvrvinininsnse s sessessensenns 162
Chapter 10: Empty Values VS. Zer0.....c.cccussamsmsssnsmsssnsssssnsesssnsssssssssssnsssssnnssssanssssas 165
The BLANK() FUNCHION.........ccciierererereeresese e se s s se s sesne e sessssenssnens 165
The ISBLANK FUNCLIONcoveereccsereseriee s se s e se s s sesnssessssesessssenssnens 168
TESHING TOr ZEI0evieeereeerree s e ne e r e e nnenrnne e 168
Using Measures to Find BIanks and ZEro...........cccvrererenrnierenessensessessssessessessessssessessesssssssessens 169
Using the COALESCE FUNCTIONccocevueverierererieseresessssessessessesessessessessssessessesssssssessessesssssssennens 171
Chapter 11: Using Variables: Making Our Code More Readable...........cccrrussannnnss 173
IMProved PErfOrmManCe ... s e s s s s r s nnen 174
Improved Readabilily ..o 176

vii

TABLE OF CONTENTS

RedUCEU COMPIBXILY ..evveererrerrererserersesenseressessesesessessessssessessessssessessesssssssessesssssssessessesssssnsessens 177
Variables AS CONSTANTS.........ccccvrrninrrr s 178
Chapter 12: Returning Values in the Current Filter.........ccusmmrmnsnmnnnnsssssnsssssssnnns 183
The SELECTEDVALUE FUNCHON........cciuiirerererereresesesesesesse s ssssssssssssesssesesessssssssssseas 184
The CONCATENATEX FUNCHIONc.cviviiiiriririrereseseseseseseese s ssssssssssesssesesesessssss s 189
Using Parameter TADIESc.cucceveemrisernsesinese e s 195
The Values FUNCHION. ... 199
ATable or @ Scalar FUNCLON? ... 200
Replacing “LoSt FIHEIS” ... sessssssssssens 205
Converting Columns 10 TADIEScccvvvverernriniere s e sr s 207
Chapter 13: Controlling the Direction of Filter Propagationcccccuseenninsssnnnnns 209
Programming Bidirectional Filterscccvvvninininin i sses e s s e s s ssessessenns 210
Why You Should Never Use Bidirectional Relationships...........ccccvrerrinccrnicnnesensscrensesenenens 213
Chapter 14: Working with Multiple Relationships Between Tablesccoccureuies 217
Activating Inactive RelationShipsccocorerrnncrereneree e 219
Comparing Values in the Same COIUMN.........ccovcvienreserssesese e senns 221
Chapter 15: Understanding Context Transition..........ccccinnsemmnmnssssnmnmnssssnsnmssssnnnns 227
Overview of DAX Evaluations CONtEXIScccvvverrrenmnnnesnsesnse s sss e e ssssesenns 228
Row Context REVISITEA........c.ouceerrereriserine s s se s sr s 228
Filter Context REVISITEA.........cccevererinernessnesene e 229

How Row Context Becomes Filter CONEXt..........cccvrrmiiimnmninnnnnssse e 229
How Context Transition Can Return “Surprising RESUIS”cccvveriernrenverienesensensesessssensenaens 237
Filters USING AVERAGEccccoeirirnnseisese s e sessssssssss e 238
FItErs USING MAXoocerireririere s nesseresseses e ssessessesessessesasssssessesaesassessesaesssssssessesasssssensenaes 242
Filters USING MEASUIESevurvererererrerersessssessessessesessessesasssssessessessssessessesssssssessesssssssensesses 247
Aggregating Totals Using Context TranSitioncccvevverrerenesserseriessssessessesessssessesessessssesessens 251
Aggregating in DIMENSIONS ..o s e 252
Aggregating in Virtual TADIESccevverieriereriirrin e s 259

viil

TABLE OF CONTENTS

Chapter 16: Leveraging Context Transition.........ccccuuseennmnssssnnsmsssssssssssssssssssssssnnns 271
Ranking Data: Looking at RANKX ... s sss e snens 272
Binning Measures into NUMEriC RANQES..........cccvvrerniinnne s senes s s e ssssessesnens 275
Calculating TOPN PEICENT ..o e 279

Create the SHCEIS ... s 280
Create the Measure to Find the Top or Bottom Percent Selected in Slicers........c.cceeevennen. 281
Calculating “Like for Like” Yearly Sales Using SUMMARIZEccccomenrnnenensenenenesensenenns 285
Using Context Transition in Calculated COIUMNS........cccccvvvieniennsniene s sesaens 293
Calculating RUNNING TOLAIScccccerrvierrnenenrinerinse s s e s e s s ssases 293
Calculating the Difference from the Value in the Previous ROWccccoevvrvvcenenennenienaenns 294

Chapter 17: Virtual Relationships: The LOOKUPVALUE and TREATAS Functions... 297

LOOKUPVALUE FUNCHIONcuceiiissssssssssssssssssssssssssesesesesesesesssnsssnenenes 298
The TREATAS FUNCHONccoereriicccirinis s se s s sasnans 302
Chapter 18: Table EXPanSioNcuiceurrmssssnnmmssssssssssssssssssssssssnssssssssnssssssssnssssssnnnnss 311
REVISITING FIlEIScoeeeeeeeecreecere e 313
Column Filters REVISILEA.........ceeerereererererese s s 313

The ALL FUNCtion REVISITEMcoeeceererereercrercresese e e e 317
Expanded Tables EXPIAINEU..........ccociiiiininnnsnsne s se st snens 318
Leveraging EXpanded TabIES.........cccvveernnesenenesenssrnsesesesesesesss e sessese s sessesssssse s sessssenns 323
“Reaching” DIMENSIONS.........ccuvererenernsesrsese s s s s sr s sss e s s nsssenenss 324
Table Expansion vS. CROSSFILTER...........ccccverrrrererninresseesesesssessessessessssssessessessssssessessennes 333
Using SNOWTIaKe SCHEMAScccveeerrcrerese e 337
Chapter 19: The CALCULATETABLE Function........cccceeumurrsssssssssssssnssnssssssssssssnsssnnnas 343
CALCULATETABLE VS. FILTER.........cccotstessnsnsnsssssssssssssssssssesesesesessenes 344
CALCULATETABLE and Table EXPANSIONcovververererensersessessssessessessessssessessessssessessessessssessesses 349
Calculating “NeW” ENHILIESccccevvverrrierenirsersere s s ssese e s sessessessssesessesaesessessessesassessesnees 350
Calculating “Returning” ENtItIES.......ccveevievrrerierieresesserese s sessessessssessessesaesessessessessssessessees 356
INA@X iiiiiissnnnnnnnnnnnnssssssssnnnnnnnnmessssssssnnnnnnnnnsssssssssnnnnnnnnessssssssnnnnnnnnnssssssssnnnnnnnnnnssssssnn 361

ix

About the Author

Alison Box is a Director of Burningsuit Ltd
(www.burningsuit.co.uk) and an IT trainer and consultant
with over 30 years experience of delivering computer
applications training to all skill levels, from basic users

to advanced technical experts. Currently, she specializes

in delivering training in Microsoft Power BI Service and
Desktop, Data Modeling, DAX (Data Analysis Expressions),

and Excel. Alison also works with organizations as a DAX
and Data Analysis consultant. She was one of the first Excel
trainers to move into delivering courses in Power Pivot and DAX, from where Power BI
was born. Part of her job entails promoting Burningsuit as a knowledge base for Power BI
and includes writing regular blog posts on all aspects of Power BI that are published on
her website.

http://www.burningsuit.co.uk

About the Technical Reviewer

A native to Northern Indiana, Jake Halsey has over a decade
of experience working with various products, services,

and development tools in the IT industry. Working in the
Fort Wayne and Chicago areas as a senior-level software
developer and application administrator, he regularly
performs complex data analysis and prepares professional
reports. He’s particularly excited about his work on this book

as it has enabled him to add Power BI and

DAX to his own list of tools to prepare effective data
visualizations and has personally found the examples created by Alison Box to be
realistic, practical, and accessible to readers getting started in their journey with
Power BI.

xiii

Acknowledgments

Writing a book can often be a lonely experience, but a book can only come to fruition
with help from outside. I would like to acknowledge and thank those people around me,
both professional and personal, that have been instrumental in assisting me in writing
this book. Firstly, many thanks to Jake Halsey, my technical reviewer, for his invaluable
and encouraging comments and his thorough review of the many DAX examples and
listings. I would also like to thank Joan Murray, the Acquisitions Editor at Apress, who, on
receiving the original manuscript of the entire book, agreed on the benefit of publishing
a book on DAX that had a non-technical focus. I'm also grateful to my Coordinating
Editor, Jill Balzano, for her professional approach that makes working with Apress a
pleasurable experience. Last but not least, my heartfelt and enduring thanks to my
family for their consistent support and encouragement, without whom I would have
found it hard to see this book through.

Introduction

Up and Running with DAX for Power Bl is a condensed self-teaching resource for
learning DAX inside Power BI Desktop. DAX (Data Analysis Expressions) is the formula
language of Microsoft Power BI and was first introduced in 2009 as the programming
language of the Excel add-in, Power Pivot, from which Power BI was born. With the
ever-increasing adoption of Power BI as the preferred data analytics platform, the ability
to use DAX is fast becoming a necessary requirement to find and share the important
insights into your data. This book is a concise guide for non-technical users that focuses
on the core concepts that underpin this language, taking you from zero knowledge to
being able to use DAX to write the challenging calculations that are often necessary for
reporting on your data.

If you need to use DAX, there is quite a lot of help out there: books, videos, and
experts with a lot of opinions and copious examples of mind-boggling DAX code that, to
use, you can simply copy and paste without ever understanding how it works. Yet even
with the help of these resources, the DAX mantra continues: “DAX is difficult”! But this
is a misconception, and it’s the first barrier to learning DAX that you will encounter.
Although there is no doubt that DAX can often be challenging to understand, labelling
it “difficult” might appear as an excuse for those people who haven’t made the effort to
understand what goes on under the hood.

When you have shaken off the misconception that DAX is difficult and decided you
want to understand how DAX works, currently, there are two hurdles you will face, both
of which this book tackles. Firstly, many resources have been written specifically with
the DAX developer or other highly skilled technicians in mind. However, the intended
audience for this book is either Excel users or people with no technical or coding
background. In fact, it’s aimed at someone probably just like you who simply wants to get
on with their day job while still becoming a competent user of DAX. In this book, little
technical knowledge is assumed. Difficult concepts are explained with easy-to-follow
examples that everyone can understand, and the content is structured to gradually build
up confidence in working with DAX. The second obstacle you will encounter is that most
books on DAX can be considered as “reference works.” For example,

xvii

INTRODUCTION

The Definitive Guide to DAX' comprises over 700 pages covering every aspect of DAX in
meticulous detail. You may feel that using such works as “teach yourself” resources is a
daunting prospect because the abundance of information fast becomes overwhelming.
To get up and running with DAX, it’s not necessary to wade through copious pages on
rarefied DAX functions and the technical aspects of the language. There are just a few
mandatory concepts that must be fully understood before DAX can be mastered, and it’s
on these concepts that this book focuses. You will also probably want to learn DAX from
something more easily consumable and less of an investment in your time. This is why I
felt there was a need for a more concise approach to explaining the DAX language.

To get the most from the information contained in this book, being a competent user
of Power BI Desktop will be an advantage. This includes the ability to create data models
and generate reports using Power BI's data visualizations. However, where specific
knowledge of these areas is required, I have provided links to the relevant information
for you to self-explore. You will find that within each successive chapter, the book builds
on the knowledge gained and the skills learned, and by the final chapters, you will have
acquired the necessary understanding of DAX to author complex calculations.

In Chapters 1 to 3, we cover the precursor knowledge that’s required before you
can begin to author DAX expressions, such as understanding the structure of your data
model and using DAX syntax. You will then be able to create some basic calculated
columns and measures. You will find that up to this point, DAX is definitely easy! It’s
then in Chapter 4 that we broach the first major DAX concept, which is the evaluation
context. Here, we look at the distinct ways in which calculated columns and measures
are calculated. We then move you on in Chapter 5 to the second important concept,
understanding iterators, where calculations are performed on each row of a table, just as
you would copy down on Excel formulas.

You will take a big leap forward in your understanding of DAX in Chapter 6, where
you meet the most important of all DAX functions, CALCULATE. It’s at this juncture
that you will start to use DAX as a programming language, where the outcomes of your
expressions happen in memory. At this point too, DAX veers well away from Excel
conceptionally, and you will begin to author more powerful calculations than the simple
sums and averages of basic measures.

In Chapter 7, we explore the idea of table expressions that are used to generate
in-memory virtual tables. As you move into more advanced areas of DAX, you will start

'Marco Russo and Alberto Ferrari (2020), The Definitive Guide to DAX, 2nd ed, [Microsoft Press]

xviii

INTRODUCTION

to appreciate that most DAX expressions involve generating these virtual tables. These
are typically subsets of real tables and are used to programmatically filter the data in
preparation for aggregations via the DAX measure. At this point, you may feel that

DAX is definitely getting a little more challenging. This is because you can'’t see virtual
tables, you just have to imagine them, and the inner workings of expressions are mostly
hidden from us. Once you have completed Chapter 8 where we take a detailed look at
the ALL function that, along with CALCULATE, comprises most DAX expressions, you
are now ready to use DAX to solve a wide variety of data analysis scenarios. For example,
in Chapter 9, you will learn to compare data over time periods, and in Chapter 12, you
are taken through the creation of user-driven calculations using parameter tables. In
Chapter 14, you will discover how to make dynamic comparisons across categories of
data, such as finding which customers who bought product “X” also bought product “Y”.

Chapter 15 will bring you to the most challenging of all DAX concepts to understand.
This is the concept of context transition where you will learn to perform aggregations
at higher granularities. Once you have mastered the use of this concept, the list of data
insights you can now uncover greatly increases. You will be able to rank customers or
products by sales, bin totals into numeric ranges, dynamically find top or bottom percent
by value, and find the average total sales over years, quarters, and months. In fact, most
DAX calculations you author will use context transition in some way.

It may seem odd that it’s not until you are almost at the end of your journey through
DAX that we tell you at last how DAX really works and how it all fits together. The
reason for this is that it’s not until you reach Chapter 18 that you will have the skills
to understand the last DAX concept, that of table expansion. Although this concept is
mostly theoretical, once you know how the data model functions behind the scenes
when your expressions are evaluated, the knowledge you have gained throughout this
book will now all fall into place. In Chapter 18, finally, all the pieces of the DAX jigsaw fit
together, and you are now a fully fledged DAX expert.

Finally, on a personal note, I've written the book that I wish had been around when I
was first learning DAX, which was back in the days when Power Pivot was first launched.
There was very little to help me, and I've never forgotten the many hours of deciphering
DAX code that it took me to get to the position of thinking “yes, I can do this!” I'm hoping
that, with the help of this book, it will be an easier journey for you and that this book will
be a useful resource as DAX becomes as mainstream as Excel formulas.

Xix

INTRODUCTION

Let’s not lose sight either of the objective of learning DAX, which is not an end in

its own right. It’s not so you can impress your colleagues by showing off your skills in

writing copious lines of DAX code. No, the objective of learning DAX is as a means to an

end. It is to enable you to analyze your data in ways that give you those insights that up to

now you've been struggling to find.

“The goal is to turn data into information, and information into insight.”
If you want to follow along with the examples we’ve used in this book, these are the

files you will need:
Chapters 1to 9
Chapter 10
Chapters 11 to 13
Chapter 14
Chapters 15 and 16

Chapter 17

Chapters 18 and 19

1 DAX Sample Data.pbix

2 DAX Blanks & Zeros.pbix

1 DAX Sample Data.pbix

3 DAX USERELATIONSHIP.pbix
1 DAX Sample Data.pbix

4 DAX LOOKUPVALUE.pbix

5 DAX TREATAS.pbix

6 Expanded Tables.pbix

2Carly Fiorina, former president and chair of Hewlett-Packard Co, "Information: the currency of
the digital age,” Oracle OpenWorld, San Francisco, December 6, 2004

XX

CHAPTER 1

Show Me the Data

The key to understanding DAX is getting to grips with the challenging concepts that
underpin the expressions. Most DAX expressions you'll write will amount to only a few
lines of code, but it’s what goes on under the hood that is the secret to understanding
their evaluation. For example, take this DAX expression:

=MAXX (Customers, [Total Sales])

It comprises a function, a table name, and a measure name. It should be simple
to understand. However, to unravel the calculation behind this expression, you would
need to have a firm grasp of the following concepts: row context, filter context, iterators,
and context transition. With DAX, the devil is definitely in the detail. This is why you
can’t just copy and paste other people’s expressions, hack them around, and hope for
the best that they’ll work. You'll find it difficult to learn DAX using this approach. You
must concentrate on the core principles of the function language. You'll find that DAX
becomes less difficult to understand if you simply pay attention to the detail.

However, before we can start writing code, we must begin our journey into the

language of DAX with the mandatory preparatory work.

Note If you would like a detailed explanation of the DAX language and when it
first appeared, its history is here: https://en.wikipedia.org/wiki/Data_
analysis expressions.

It would, for instance, be impossible to create the correct DAX expressions without
understanding the structure and shape of the data that lies beneath. This is because the
construct of your expressions will depend directly on the arrangement of the tables in
your data model. This is why any DAX expert will say to you “show me the data” before
they attempt to write the relevant DAX code.

© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_1

https://doi.org/10.1007/978-1-4842-8188-8_1
https://en.wikipedia.org/wiki/Data_analysis_expressions
https://en.wikipedia.org/wiki/Data_analysis_expressions

CHAPTER 1 SHOW ME THE DATA

Therefore, in this chapter, you will familiarize yourself with the data we will be using
in our DAX examples throughout this book, and we will pay particular attention to the
structure of this data. You will learn the various terms that are used to describe the
constituent parts and the major precepts that underpin the structure. Only when you
understand these principles can you move on to author DAX code.

Our sample data' comprises a fictitious sales scenario and what better product
to sell than wine (perhaps a more attractive prospect than selling cycles or electrical
equipment).” In everything that follows in this book, you must imagine that you're
engaged in selling this product, and by using DAX to analyze your sales through
the metrics that matter to you, you'll gain insights into your data that can help drive
successful business results and profitability.

Note | appreciate that your data may not be sales related. However, our wine
sales data is generic data. It comprises the names of entities, numbers, and dates,
and your data will be no different from this.

We've imported six tables into Power BI Desktop as follows:
Winesales - Records our sales transactions.
Wines - Records the names and details of the wines we sell.
Customers - Who we sell our wines to.
SalesPeople - The people making the sales.
Regions - Our customers are grouped into these regions.

DateTable - Records every date, starting from the first day of the
month when sales start and ending with the last date in the current
financial year, categorizing these dates into year, quarter, and month.

Note As we’ll discover later, it’s simpler to have single-word table names, and
that’s why we’ve named the tables “Winesales”, “SalesPeople”, and “DateTable”.

'"To follow along with the examples, use the Power BI Desktop file “1 DAX Sample Data.pbix”.

2This is a reference to the ubiquitous sample data, “AdventureWorks” and “Contoso Corporation”
used by many books on DAX

2

CHAPTER 1

SHOW ME THE DATA

Our tables are related in many-to-one relationships as shown in Figure 1-1.

[B] wines
COST PRICE
PRICE PER CASE
SUPPLIER
TVPE
WINE
WINE CCUNTRY
WINE 1D

Callapss

9

SalesPeople

FIRSTNAME
SALESPERSON
SALESPERSON ID

Collapse <

Winesales

T CASESSOLD
CUSTOMER ID
SALE DATE

% SALESPERSOM ID

WINEID
I WINESALES NO

Collapse

DateTable

[T oarexey
MONTH

T MONTHNO.
R
YEAR

Collapse

9

9

9

1

[&] Regions

-

*
E Customers

CUSTOMER ID
CUSTOMER NAME

T NO.OF STORES
REGION 1D

Collapse

REGION
[A REGICN ID

Collapse ~

9

9

Figure 1-1. The data model that is used throughout this book

To view these relationships, click on the Model button on the top left of the report

canvas. This view shows the relationships between the tables, and this structure is

known as the data model.

You will observe that the DateTable, SalesPeople, Customers, and Wines tables are
all related to the Winesales table. Notice the “1” and “*” to denote the one side and the
many side, respectively. The columns used to create the relationships have the same

column names in both tables; for example, WINE ID in the Wines table is related to
WINE ID in the Winesales table. The Regions table is the odd one out in that it’s not
directly related to the Winesales table but indirectly via the Customers table.

CHAPTER 1 SHOW ME THE DATA

If you would like more information on creating relationships between tables in
Power BI Desktop, follow this link:

https://docs.microsoft.com/en-us/power-bi/desktop-create-and-manage-
relationships

Stars and Snowflakes

One thing you may notice about our data model is that its structure is simple. As has
already been mentioned, one of the key aspects of DAX, and what newbies to DAX
often overlook, is that the details of your DAX expressions will be inextricably tied
to the structure of the model. The simpler the model, the more straightforward the
calculations. There is nothing more worrying to a DAX expert than coming across an ill-
contrived data model because it probably means they will need to author more complex
DAX expressions. We look later at examples of using DAX to overcome anomalies in the
data model, but why make it difficult for yourself? Perhaps then, we should take a closer
look at the structure of our model and see why I've described it as “simple.”

Let’s start by considering the tables that comprise the model. In a Power BI data
model, a table should be either one of two types, either a fact table or a dimension as
described in the following sections.

Fact Tables

This type of table stores “events.” The term “event” is used loosely here to describe
activities such as sales, orders, or survey results. Fact tables answer the question what?
That is, what are you analyzing in your report? You can identify the fact table by asking
yourself these three questions:

1. Which table holds the data that you want to analyze in your report?

2. Ifyou delete this table, will the remaining tables still be related to
other tables in the data model?

3. Which table sits on the many side of all the other relationships?

Let’s answer these questions using our data. We want to report on our sales that
are recorded in the Winesales table. If we delete the Winesales table, we'll just have
unrelated tables floating around in Model view. The Winesales table sits on the many

https://docs.microsoft.com/en-us/power-bi/desktop-create-and-manage-relationships
https://docs.microsoft.com/en-us/power-bi/desktop-create-and-manage-relationships

CHAPTER 1 SHOW ME THE DATA

side of all the other relationships. Clearly, the Winesales table is our fact table. By
definition, fact tables sit on the many side of a many-to-one relationship. Another
attribute of the fact table is that its data will change frequently and it'll probably have

many more rows than a dimension.

Dimensions

These tables store the descriptions of the entities in your model. Dimensions answer the
question how? That is, how do you want to analyze your data? In our data model, we can
analyze our sales by wines, salespeople, customers, regions, and dates using the data in
the columns within these tables. The data in dimensions does not necessarily change
regularly, and dimensions tend to have fewer rows than fact tables.

There’s no table property that you set to configure the table type as a dimension or a
fact table. It's determined by which side of the relationship the table sits on. Tables that
sit on the “one” side are always dimension-type tables, while tables that are only related
on the “many” side are fact tables.

The reason it’s so important to distinguish between these two different types of
tables is that they support two different types of behavior in the data model, as follows:

e Dimension tables support grouping and filtering.
o Facttables support summarization.

As we’ll learn later, DAX measures are usually designed to summarize data from the
fact table that’s been grouped and filtered by a dimension table.

The Star Schema

You'll notice in Model view that we’ve placed the fact table in the middle of the view

and arranged our dimensions around the fact table. This arrangement can be described
as a star shape, giving a name to the structure, star schema. In a perfect star schema,

all dimensions are directly related to the fact table. There is an imperfection in our

data model because the Regions table is a dimension related to another dimension.
Dimensions that are not directly related to a fact table but are indirectly related via
dimension tables are described as snowflake dimensions. You can imagine that if we had
a number of dimensions related to other dimensions in chains outward from the fact
table, the schema would more resemble a snowflake.

CHAPTER 1 SHOW ME THE DATA

Because data is infinitely variable, the tables in your data model may not be arranged
obediently in a perfect star schema. Having multiple fact tables, for instance, isn’t
necessarily a problem. The thing to bear in mind, however, is that the more your model
diverges from a star schema, the more you will need DAX to manage it. We will be
resolving problems inherent in the structure of the data model later in this book when
we explore the CROSSFILTER and TREATAS functions where we will create “virtual”
relationships.

As we'll discover when we learn to control filters and more specifically calculate
distinct counts, it can be difficult to work with dimensions that are not related directly to
the fact table. Therefore, it sometimes makes sense to integrate a snowflake dimension
into its parent table and therefore tidy up the schema back to a star, a process known as
denormalization. You can find more information on this and star schemas generally here:
https://docs.microsoft.com/en-us/power-bi/guidance/star-schema.

One thing that Power BI prevents is ambiguity in the data model, where there are
multiple paths through which filters can propagate. Therefore, if you attempt to relate a
dimension to two or more other dimensions, this will result in an inactive relationship
being created, indicated by a dotted line. For example, in Figure 1-2, we've related the
SalesPeople dimension to both the Customers dimension and the Regions dimension,
and this results in an inactive relationship between SalesPeople and Regions.

https://docs.microsoft.com/en-us/power-bi/guidance/star-schema

> WINESALES NO

Collapse

%
I

CHAPTER1 SHOW ME THE DATA
] =
SalesPeople G S o
FIRSTNAME T . REGION
REGIONID ~ o
SALESPERSON ol
SALESPERSON ID
Collapse ~
Collapse ~ 1
| J
J 4
T ’,
|
* *
Winesales o Customers o
2. CASESSOLD CUSTOMER ID
CUSTOMER ID [_ 1 CUSTOMER NAME
SALE DATE - 2 NO. OF STORES
" SALESPERSON ID * I REGION ID
WINE ID Collapse ~

Figure 1-2. An inactive relationship is created to avoid ambiguity

We look at the concept of ambiguity and working with inactive relationships in later
chapters, but for the moment, let’s just be thankful that we aren’t allowed to do anything

that impedes the normal mechanism of the model.

Finding Nonmatching Values

A question that is often asked is what happens when there are missing values in the

linking columns used to create relationships. There are two different scenarios here,

taking the Wines dimension as our example:

CHAPTER 1 SHOW ME THE DATA

1. You have values in the WINE ID column in the Wines dimension
that don’t exist in the WINE ID column in the Winesales fact table.

2. You have values in the WINE ID column in the Winesales fact
table that don’t exist in the WINE ID column of the Wines
dimension.

Let’s take scenario #1 first. Understanding this situation allows us to answer the
following question: Which wines haven’t we sold? When you build a visual that takes a
column from a dimension and summarizes a column from the fact table, you will only
see items where there’s a match for values in the linking columns. By default, all visuals
remove items where there is no value to show.

Note For information on building Power Bl visuals, including the Table visual
shown in Figure 1-3, visit

https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-
report-add-visualizations-i

For example, in Figure 1-3, which uses the WINE column from the Wines dimension
and summarizes CASES SOLD from the Winesales table, we only see the wines where
there’s a match for the values in the WINE ID column in both tables. In other words,
we're only seeing the wines we’ve sold.

https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-report-add-visualizations-i
https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-report-add-visualizations-i

CHAPTER 1

WINE CASES SOLD
Bordeaux 54,070
Champagne 49,158
Chardonnay 41,883
Chenin Blanc 24,739
Chianti 27,323
Grenache 35,965
Malbec 34,290
Merlot 23,084
Piesporter 10,253
Pinot Grigio 23,449
Rioja 33.951
Sauvignon Blanc 47,415
Shiraz 17,644
Total 423,224

wine; see Figure 1-4.

SHOW ME THE DATA

Figure 1-3. By default, you only see items where there are matching values in the
linking columns

How can we see the wines we haven’t sold in this visual? To do this is straightforward
and requires no DAX. In the Visualisations pane, in the Values bucket, click on the drop-
down of the column from the dimension, for example, the WINE column, and select
Show items with no data. You'll now see a blank value beside items that have no match
in the fact table, in our case, “Lambrusco” wine. This tells us that we haven’t sold this

CHAPTER 1 SHOW ME THE DATA
Values
WINE CASES SOLD
WINE X -
Remove field VX AR iakiit
o Sauvignon Blanc 47,415
Rename for this visual o
Rioja 33,951
Move > Pinot Grigio 23,449
Conditional formatting b Piesporter 10,253
Remove conditional formatting Merlot 23,084
v Don't summarize Malbec 34.290
i Lambrusco
irst
- —Grermacthe 357965
as
o Chianti 27,323
Eosi b DIk Chenin Blanc 24,739
Count Chardonnay 41,883
ick measur Champagne 49,158
v Show items with no data Bordeaux 54,070
N Total 423,224
ew group

Figure 1-4. Finding the items for which there is no data

If we look at the Wines dimension in Data view (click the button above Model on the
left of the report canvas), we will see that “Lambrusco” has a WINE ID of 14. Examining
the values in the WINE ID column of the Winesales table using the filter shows there is
no WINE ID 14 in this column; see Figure 1-5.

10

CHAPTER 1 SHOW ME THE DATA

SALEDATE [~]| WINESALESNO [~] SALESPERSONID [~] cUSTOMERID [~] WINEID | ~| casessoip [~ price BanD [~]
21 November 2018 2043 3 4 Sort ascending
13 February 2020 3019 [45 Sort descending
02 February 2020 2972 [45 Clear sort
10 March 2020 3110] 45 -
04 March 2020 3088 6 a5 i
28 March 2020 3157 B 45 Hlceral whets
26 September 2017 1226 s 79 Number filters ’
16 February 2020 3027 & 36 Search
16 February 2020 3026 [36
10 January 2019 2155 s 36 ¥ (Select all)
18 February 2020 3034 [36 : ;
13 August 2015 2552 & 48 = 3
27 July 2018 2495 6 57 v 4
16 October 2016 554 6 a3 v 5
14 June 2018 1725 3 81 : ?
11 March 2020 3112 6 22 v 8
26 February 2020 3064 5 23 v 9
02 July 2018 1760 & 28 v 10
06 January 2018 14d0 5 3 ' : 112
26 August 2018 2590 & 41 = 13
02 July 2018 1761 & 28
18 April 2018 2293 6 51 oK Cancel

Figure 1-5. The fact table does not contain the value from the dimension in the
linking column

As the name of the “Show items with no data” option implies, it can be used
whenever you want to see items where there is no calculation to show, for example,
where a measure doesn’t return a value for an item. It doesn’t mean there is never a
value to show, as in the case of “Lambrusco” wine; rather, it means that the current filters
on the model result in there being no value to show.

Let’s now move on to scenario #2 where there are values in the WINE ID column of
the Winesales fact table that don’t exist in the WINE ID column of the Wines dimension.

Note The sample file does not contain the data described in scenario #2.
However, Figure 1-6 shows you what this data would look like.

You can see in Figure 1-6, we have just this scenario. The wine ID’s shown have no
match in the Wines dimension.

11

CHAPTER 1 SHOW ME THE DATA

ERSON ID [~ | CUSTOMER ID [~ | WINEID [~]| cASES sol
6 35 100
3 16 444
4 20 555
1 12 100
2 17 133
3 45 11
6 11 7
2 75 13

Figure 1-6. Values in the fact table that are not in the dimension

When such values occur in your data, you'll see the outcome in any visual as soon
as you take a column from the dimension and analyze a column from the fact table, as
shown in Figure 1-7, where we have put the data into a Table visual and also a slicer.
Here, we have a “blank” wine name that represents all the WINE ID values in the fact
table for which there are no matches in the dimension. You'll also see the same outcome
in a slicer even though it doesn’t use the relationship and only shows values from the

dimension.

12

CHAPTER 1 SHOW ME THE DATA

WINE CASES SOLD
WINFE
1,020] | || (Blank)
Bordeaux 54,070 Bordeaux
Champagne 49,158 || Champagne
Chardonnay 41,883 Chardonnay
Chenin Blanc 24,739 Chenin Blanc
Chianti 2| | Chiant
Grenache 35,895 Gren;che
Malbec Rl — -ambrusco
Malbec
Merlot 23,084
Pi t 10,253 WL
?espor far. ' Piesporter
Pl.nif;)t Grigio 23,449 Pinot Grigio
Rioja 33,951 Rioja
Sauvignon Blanc 46,938 Sauvignon Blanc
Shiraz 17,497 Shiraz
Total 423,224

Figure 1-7. The “Blank” entry shows there are values in the fact table that don’t
match to values in the dimension

The “Blank” entry is a result of what we sometimes refer to as “dirty data” Why are
there values in the fact table for which there is no match in the dimension? How are you
going to resolve this scenario? This is a question that only the data modeler can answer,
and ultimately the solution lies in correcting the data at its source.

We hope you appreciate how important it is to identify nonmatching values in your
data and to understand that you don’t need DAX to do this. Finding out where there’s no
data can be equally as valuable as knowing where there is, and the star schema allows us
to do this.

In this chapter, you have familiarized yourself with the data we will be using
henceforth. You also now understand concepts that underpin the data model and how
it comprises fact tables and dimensions related to many-to-one relationships. The
simplest structured data model is the star schema where dimensions are related directly
to the fact table. However, it is possible to have dimensions indirectly related to the fact

13

CHAPTER 1 SHOW ME THE DATA

table via other dimensions creating snowflake dimensions. This is mandatory precursor
knowledge to understanding DAX because what you will learn as we progress through
this book is that many DAX calculations will involve manipulating the tables in the data
model, and in doing so, the way the tables are structured is paramount.

14

CHAPTER 2

DAX Objects, Syntax,
and Formatting

Now that you understand the structure of the data we’ll be using throughout this book,
the next step is learning how to construct DAX expressions. In this chapter, we will
compare and contrast DAX expressions to Excel formulas as this will provide context
for your knowledge. You will learn to reference the objects used in DAX expressions, the
syntax of the expressions, and how you can format your DAX code, making it easier to
read and debug.

To follow along with the examples in this chapter, in the Data view of Power BI
desktop, select the Winesales table in the Fields list, and on the Table Tools tab, click the
New Column button. This will display the DAX “formula bar” as shown in Figure 2-1.

15
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_2

https://doi.org/10.1007/978-1-4842-8188-8_2

CHAPTER 2 DAX OBJECTS, SYNTAX, AND FORMATTING

al Tools Table tools
B =l %:
=] e sss
% E Ll L1 1]
as date Manage New Quick| New |Ne
le v relationships | measure measurg¢ column | tab
:ndars Relationships Calculations
o |Etilia i | P | | =
data type | Whole number v $ v% 9 =8 ¢ E
Structure Formatting
>< < |1 Column =|
SALE DATE WINESALES NO [~ || SALESPERSON ID [~ | CUSTOMERID [~]| W
01 January 2017 2 6 35
01 January 2017 1 3 16

Figure 2-1. To follow along with the examples, use the New Column button

The first similarity to Excel is the “formula bar” that pops up when you create new
columns or measures. We will start to type some expressions into the formula bar
presently. However, at this stage, you don’t need to know what the expressions are
calculating. You are just learning how to type the correct syntax.

DAX Syntax

Notice on the left, just like Excel, the formula bar has a Cancel button (the cross) and

an Enter button (the tick). However, the formula bar is in effect a code editor and can

extend to many lines if the SHIFT + ENTER key combination is pressed (see the section

below on Formatting). This is why, unlike the Excel formula bar, each line of the DAX

code editor is numbered. You will, for instance, notice that in Figure 2-1, we are on line 1.
The next parallel with Excel is that DAX expressions are constructed in the same

way as Excel formulas. For example, all DAX expressions begin with an equals sign, and

commas separate the arguments of functions. Also, just like Excel, DAX expressions are

case insensitive; it makes no difference in what case you type your DAX code.

16

CHAPTER 2 DAX OBJECTS, SYNTAX, AND FORMATTING

However, one of the major differences between DAX and Excel is that in DAX, you
can’t reference “cells” The only two objects that are referenced in DAX expressions are
tables and columns.

You reference a table by just naming it. For example, to count the rows in the
Winesales table, this would be this expression:

= COUNTROWS (Winesales)

Notice that when you start to type this expression into the DAX editor, just like Excel,
the DAX editor matches what you're typing in a list of suggestions. This list is referred to
as the DAX IntelliSense; see Figure 2-2. Just click on a suggestion in the IntelliSense list to
place it into your code. You can’t put anything into your expression that isn’t on the list.

>< < |1 Column = countl
fx COUNT
SALEDATE [-1] WINESALESNO [~ 2 counta
01 January 2017 { fx COUNTAX
01 January 2017 | fx COUNTBLANK
02 January 2017 | Jx COUNTROWS
03 January 2017 . Jx COUNTX
fX DISTINCTCOUNT
07 January 2017]
fX COLUMNSTATISTICS
e danuany 2007 | fc CLOSINGBALANCEQUARTER

Figure 2-2. The DAX IntelliSense list

Also notice in the COUNTROWS expression that spaces have been used before and
after the brackets. Typing spaces is arbitrary as they will be ignored by the DAX editor
and can be used wherever you feel they improve the clarity of the expression (see the
section below on Formatting).

If the table name contains a space, the table name must be surrounded with
single quotes:

= COUNTROWS ('Wine Sales')

To reference a column, you surround the column name with square brackets ([])
and always precede the column name with the table name. For example, to sum the
CASES SOLD column in the Winesales table, this would be the expression:

= SUM (Winesales[CASES SOLD])

17

CHAPTER 2 DAX OBJECTS, SYNTAX, AND FORMATTING

As mentioned before, in DAX, there is no such thing as a cell, only tables and
columns.

Table 2-1 shows a comparison of equivalent Excel formulas and DAX expressions,
and you can see how similar the syntax is between the two.

Table 2-1. Comparing Excel formulas and DAX expressions

Excel DAX

=IF (B2 > 50, “Yes”, “No”) =IF (Winesales[CASES SOLD] > 50, “Yes” , “No”)
When this formula is copied down, the “B2” Used in a calculated column, this expression is
will change relatively to “B3, B4, B5 etc.” automatically applied to the entire column.

= SUM (Winesales[CASES SOLD]) = SUM (Winesales[CASES SOLD])

This uses Excel Table syntax where the Used in a measure or in a calculated column to
table is named “Winesales” and the find total cases in the CASES SOLD column in the
column is named “CASES SOLD”. Winesales table.

Another contrast between Excel and DAX is the way you reference “AND” and
“OR” In Excel, you use the AND() and OR() functions. In DAX, you typically use these
operators instead; AND is && (double ampersand) and OR is || (double pipe).

Note You’'ll find the pipe symbol “I” on your keyboard at the bottom left, above
the backslash and to the right of SHIFT.

Table 2-2 shows a comparison of using “AND” and “OR” in Excel formulas and DAX

expressions.

18

CHAPTER 2 DAX OBJECTS, SYNTAX, AND FORMATTING

Table 2-2. Contrasting AND and OR in Excel and DAX

Excel DAX

AND AND

= IF (AND (Winesales[@CASES SOLD] > 50, = IF (Winesales[CASES SOLD] > 50
Winesales|@CASES SOLD] < 100), “Yes”, “No”) &&

Using Excel Table syntax where the table is named Winesales[CASES SOLD] < 100,
“Winesales” and the column is named “CASES SOLD” “Yes” , “No”)
Note the use of the “@” to denote “the current row.” Used in a calculated column.
Using the value in the current row is
implicit in calculated columns.

OR OR

= IF (OR (Winesales[@SALESPERSON ID] = 2, = IF (Winesales[SALESPERSON ID] = 2
Winesales[@SALESPERSON ID] = 6), I

“Yes” , “No”) Winesales[SALESPERSON ID] = 6 , “Yes” ,
Using Excel Table syntax where the table is “No”)

named “Winesales” and the column is named Used in a calculated column.
“SALESPERSON ID”

Note DAX does have an AND function and an OR function, but in DAX, these
functions only accept two arguments, so it’s usually better to use the operators.

A single ampersand (&) is used in DAX as the concatenation operator, just as it is
in Excel.

DAX Formatting

Before we start authoring DAX expressions in earnest, let’s get into some good habits
concerning the formatting of our DAX code. Consider the two expressions in Figure 2-3.
They are the same expression but with two different layouts.

19

CHAPTER 2 DAX OBJECTS, SYNTAX, AND FORMATTING

=2019,Customers[CUSTOMER NAME]="black 1ltd")
12

X «/ |[1 Average Cases for Black Ltd in 2019 = CALCULATE(AVERAGE(Winesales[CASES SOLD]),DateTable[Year]

X ~/ |1 Average Cases for Black Ltd in 2019 =
2 CALCULATE (

3 AVERAGE (Winesales[CASES sSOLD]),

4 DateTable[Year] = 2019,

5 Customers[CUSTOMER NAME] = "black 1td"
6)

7

Figure 2-3. Comparing unformatted and formatted expressions

Question: Which layout makes the DAX code easier to understand? I think you’ll
agree that it’s the second layout where we have separated the code onto different lines.

In the DAX editor, you can use the keyboard combination SHIFT + ENTER to move onto

anew line and use the TAB key to indent lines. Spaces can be used for clarity. It’s also
recommended that you start nested functions on a new line and close brackets at the
same indent of the function it closes.

To add comments to your code, use the following:

-- - Single line comment (double dash)

// - Single line comment (double forward slash)

/* - Start a multiline comment (forward slash and asterisk)
*/ - End a multiline comment (asterisk and forward slash)

However, there are no hard and fast rules about how to format your DAX code.
Whatever works for you.
If you want to quickly format your untidy DAX code, use the DAX formatter here:

https://www.daxformatter.com/
You can also find more information and guidelines on best practices here:

https://www.sqlbi.com/articles/rules-for-dax-code-formatting/

20

https://www.daxformatter.com/
https://www.sqlbi.com/articles/rules-for-dax-code-formatting/

CHAPTER 2 DAX OBJECTS, SYNTAX, AND FORMATTING

You should now be able to type your DAX code correctly. Use square brackets to
reference columns and always precede your column references with the table name
where the column resides. You understand that in DAX, we often use “AND” and “OR”
operators rather than the equivalent functions used in Excel. Using separate lines in
the code editor will greatly improve the clarity of the expression. However, DAX doesn'’t
care how your code is formatted. It will execute your code however dire the layout of the
expression looks!

This chapter concludes our preparatory work before we can move on to author DAX
expressions and generate calculations. The next step is to understand that in DAX, we
work with different types of expressions, and this will be the focus of the next chapter.

21

CHAPTER 3

Calculated Columns
and Measures

In the previous chapter, you learned the syntax used by the DAX language, and now you're
ready to write your first DAX expressions. In DAX, there are three types of expression:
calculated columns, measures, and calculated tables. However, in this chapter, we will
only be addressing the first two types (we look briefly at calculated tables in Chapter 15).

Note You already know that DAX is the acronym for “Data Analysis Expressions.”
However, we often refer to “DAX expressions” because it seems clearer to do so.

Firstly, you will learn how to write calculations using the calculated column. This
will be the part of DAX that will be intuitive to you, particularly if you are an Excel user.
Calculated columns will seem no different to you than using Excel formulas. When we
move forward to learn how and why we need DAX measures, however, things may become
a little more challenging. One of the biggest hurdles when learning DAX is understanding
the difference between the calculated column and the measure, and this is something
that we will also be exploring in this chapter. For instance, the same DAX expression that’s
used in a calculated column can’t typically be used in a DAX measure, but perversely,
most DAX expressions used in measures can be put into a calculated column.

Calculated Columns

When learning DAX, most people understand expressions that are entered into
calculated columns because they are very similar to creating Excel formulas,
particularly if you use formulas in Excel tables. In DAX, you will find many of your
favorite Excel functions, such as IF, TODAY, ROUNDUP, and SUM, that can be used in a
calculated column.

23
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_3

https://doi.org/10.1007/978-1-4842-8188-8_3

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

This is why newbies to DAX mistakenly think that DAX is just like Excel and create a
plethora of calculated columns when they really should be creating measures, which are
more efficient in every way. The thing to understand about the calculated column is that,
just like copying down on an Excel formula, the calculated column is evaluated for every
row in the table and therefore can be process heavy. We will see that this is very different
from how measures are evaluated.

Creating Simple Calculated Columns

To create our first DAX expression in a calculated column, let’s take a very simple
calculation and multiply the CASES SOLD values in the Winesales table by 10 percent. In
Chapter 2, you learned how to create a new column. Ensuring that the Winesales table

is selected in Data view, you click on the New Column button on the Table Tools tab. In
the DAX editor, enter the following expression:

10 PC of Cases = Winesales[CASES SOLD] * 0.1

When you've finished typing, you can press the enter key, or you can click on the tick
to the left of the DAX editor. Your calculated column called “10 PC of Cases” is created
and joins the Fields list; see Figure 3-1.

X v |1 10 PC of Cases = Winesales[CASES SOLD] * @.1

SALE DATE [~]| WINESALES NO [~] SALESPERSON ID [~ | CUSTOMERID [~] WINEID [~] cAsEssoLD [~] 10PCofCases |~ |
30/12/2021 2240 6 25 5 168
30/12/2021 BB Winesales 6 25 5 168 16.80
30/12/2021 I E: 10 PC of Cases | 6 25 5 168 16.80
27/12/2021 S CASES SOLD 6 36 7 123 12.30
24/12/2021 6 80 13 115 12.50
24/12/2021 CUSTOMERID 6 24 10 331 33.10
13/12/2021 SALE DATE 6 7 11 150 15.00
n4/12/2021 SALESPERSON ID I 11 175 17.50

WINE ID
2 WINESALES NO

Figure 3-1. The calculated column joins the Fields list

24

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

Let’s now see how we can use the IF function in DAX in a calculated column. We
could, for instance, add a column in the Winesales table that’s populated with either
“Team A” or “Team B.” This column will group our salespeople as follows: Salespeople
with IDs 1, 3, and 6 are in Team A, and other salespeople are in Team B. We'll call this
new column “Team”.

In the DAX editor, enter this code noting the use of the double pipe for “OR”:

Team =
IF (
Winesales[SALESPERSON ID] = 1
|| Winesales[SALESPERSON ID] = 3
|| Winesales[SALESPERSON ID] = 6,
"Team A",
"Team B"
)

Similarly, you could group the values in the CASES SOLD column into “High” and
“Low” volume where high volume is any sales where CASES SOLD is between 50 and 400
by using this DAX expression, noting the use of the double ampersand for “AND”:

Volume =
IF (
Winesales[CASES SOLD] >= 50
8& Winesales[CASES SOLD] <= 400,
"High",
"Low"

Creating these calculated columns has been an easy introduction to DAX because,
as we've seen, the expressions are very similar to formulas in Excel. The reason we've
included these calculated columns here is because they’re simple examples that teach
you DAX syntax and that every Excel user can do.

25

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

However, we wouldn’t recommend you do such calculations here.! There’s a more
efficient way to create these columns, and that’s to generate them in Power Query using
Power Query's conditional column.

Looking at the RELATED Function

So we’ve established that there are common functions to both Excel and DAX such as
the IF function. However, if using calculated columns isn’t always the most efficient way
to generate data, why would we need to use them? There are some functions that are
specific to DAX and give us reasons to author our DAX expressions in the context of a
calculated column. One of these functions is the RELATED function.

This function returns a value from a related table and is similar in purpose to the
VLOOKUP function in Excel. However, RELATED will only return values from the one
side of the relationship to the many side. For example, if you want to show the customer
names related to the CUSTOMER ID’s in the Winesales table, you could use this DAX
expression in a calculated column in the Winesales table:

Customer Name from Customers Table =
RELATED (Customers[CUSTOMER NAME])

You will now see the names associated with each CUSTOMER ID in the calculated
column; see Figure 3-2.

X v 1 Customer Name from Customers Table = RELATED (Customers[CUSTOMER NAME])}

SALEDATE [-1] WINESALES NO [~ SALESPERSON ID [~] cUSTOMERID [~ | WINEID [~] casessoLD [~]|Customer Name from Customers Table | ~ |
01 January 2017 2 & 35 10 213 Eilenburg Ltd

01 January 2017 1 3 16 4 326 Port Hammond Bros

02 Jonuary 2017 3 4 20 5 70 Clifton Ltd

03 January 2017 4 1 12 10 264 El Cajon & Sons

07 January 2017 L] s 17 3 147 Martinsville Bros

08 January 2017 6 E | 45 11 155 Kirkland Ltd

08 January 2017 7 6 11 7 173 Hawthorne Bros

10 January 2017 g8 2 75 13 106 Saint Germain en Laye & Co
12 January 2017 10 4 16 13 136 Port Hammond Bros

12 January 2017 9 4 14 13 148 Parkville Ltd

Figure 3-2. The RELATED function returns values from related tables

! The reason for this is that calculated columns have to be recalculated whenever the data is
refreshed. This can have a big impact on the efficiency and performance of the report. You can
find more information on this topic here: https://docs.microsoft.com/en-us/power-bi/
guidance/import-modeling-data-reduction

26

https://docs.microsoft.com/en-us/power-bi/guidance/import-modeling-data-reduction
https://docs.microsoft.com/en-us/power-bi/guidance/import-modeling-data-reduction

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

Often, the generation of the calculated column using RELATED where you populate
values from related tables is used solely for ad hoc reasons. Once you have the customer
names alongside their transactions, you'll find it’s often easier to cross-check your data
analysis. Once the column has served its purpose, it can be removed.

Note If these were Excel tables and we wanted to populate the Winesales Excel
table with the customer names in the Customers Excel table, we would use the
VLOOKUP function in the Winesales Excel table like this:

=VLOOKUP ([@CUSTOMER ID] , Customers, 2, 0)

The “@” symbol means “use the value in the current row of the Excel table.” Using
the value from the current row is implicit in DAX calculated columns.

You can also use RELATED to pull through values from indirectly related tables into
the fact table. For example, the Regions table is related to the Customers table that is in
turn related to the Winesales table as shown in Figure 3-3.

*

Winesales I N
Customers ol =) I
2 CASESSOLD Regions 5
CUSTOMER ID
a CUSTOMER NAME 1 1 REGION
SALE DATE —1 USTOMER NAMI S piin
* SALESPERSON 1D i 2 NO.OF STORES *
E *—J

WINE ID REGION ID

2 WINESALES NO Collapse ~

Coltapse

Collapse «~

*

Figure 3-3. The Regions table has an indirect relationship to the Winesales table

Therefore, we could populate each REGION name alongside each sales transaction
in the Winesales table by using this code (see Figure 3-4):

REGION NAME = RELATED (Regions[REGION])

27

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

Y |[L REGION NAME = RELATED (| Regions[REGION])|

SALEDATE [~| WINESALESNO [~ | SALESPERSONID [~| cUSTOMERID [~| WINEID [~] cAsEssoLD [~| REGIONNAME |~ |
30 December 2021 2219 6 25 5 168 India

30 December 2021 2219 6 25 5 168 India

30 December 2021 2219 6 25 5 168 India

27 December 2021 2216 6 36 7 123 Wales

24 December 2021 2209 6 80 13 115 Argentina
24 December 2021 2208 6 24 10 331 United States
13 December 2021 2182 6 7 11 150 United States
27 November 2021 2153 6 5 10 313 Wales

26 November 2021 2151 6 11 13 98 Wales

26 November 2021 2150 6 29 4 236 China

25 November 2021 2148 6 51 12 109 Germany

Figure 3-4. Using RELATED to return the Region names

Notice that we've named this column REGION NAME to distinguish it from the
REGION column in the Regions table.

Let’s look more closely at the RELATED function. You should understand that you
can only use this function in the following two circumstances:

1. The tables must be related.

2. Only values from tables on the one side of a relationship can be
returned to tables on the many side.

The act of populating values from tables that sit on the one side of a relationship into
tables that sit on the many is called denormalization. For instance, in the example in
Figure 3-4, we've denormalized the Regions table by extracting the values in the REGION
column into the Winesales table using RELATED. There are at least three advantages in
doing this:

1. Younow know in which Region each sales transaction was made.

2. Ifyouneed to use the region names in a visual, you can use
the calculated column in the Winesales table. Therefore, you
no longer need to see the Regions table in Report view. If this
is the case, you can hide the Regions table. To hide a table in
Report view, right-click the table name in the Fields list in either
Data view or Model view, and select Hide in report view; see
Figure 3-5.

28

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

3. You can perform a distinct count on the REGION NAME
column in the Winesales table to calculate how many different
Regions we've sold our wines in. We’ll do this calculation later,
but because the sales transactions must be directly associated
with the regions in which they were made, this would be a difficult
expression if we left the REGION values in the Regions table.

New measure

New column

New quick measure

Refresh data
Regions w® Edit query
o - i - Manage relationships
REGION ID)
Incremental refresh

-

‘ Collapse ™ Manage aggregations
*

Copy Table
Rename

Delete from model

v Hide in report view

Unhide all

Collapse all

Expand all

Figure 3-5. Hiding tables in Report view

Understanding the RELATED function allows us to do another mandatory
calculation in our data model. Perhaps you've noticed that although we have a Winesales
table, we have no sales values. However, we can now calculate them. We can multiply the
CASES SOLD column in the Winesales table with the PRICE PER CASE column in the
Wines table, and because the Winesales table is related to the Wines table in a many-to-
one relationship, we can use RELATED to do this.

29

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

We're going to look at two different methods of using RELATED to calculate the Sales
revenue values.

For method #1, we could create two calculated columns. The first column, called
“PRICE’, uses RELATED to populate the PRICE PER CASE values into the Winesales
table. The second column multiplies the “PRICE” column by the CASES SOLD column
and is called “Sales”:

PRICE =
RELATED (Wines[PRICE PER CASE])

SALES =
Winesales[CASES SOLD] * Winesales|[PRICE]

Method #2 requires just one calculated column. You can use RELATED to find the
PRICE PER CASE values from the Wines table for each row in the Winesales table in
memory and then multiply by CASES SOLD. In other words, you don’t need to see the
price of each wine before you multiply it by the CASES SOLD values:

SALES =
Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

What many people who are new to DAX would now think is that the SALES
calculated column has solved the problem of calculating total sales values in a visual on
the report canvas. For instance, we can now use this column in the Values bucket of a
visual to find the total sales for each wine; see Figure 3-6.

30

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

ul = £ == 5 & 2 v B Winesales

WINE SALES T: ?-_: @\ O 5 CASES SOLD
Bordeaux $4,055,250 o O CUSTOMER ID
Champagne $7,373,700 ; ; i [l SAILE DATE
Chardonnay $4,203,000 Lwine Y | & mesas
Chenin Blanc $1,236,950 |SALES [0 SALESPERSON ID
Chianti $1,092,920 Drillthrough O WINEID
Grenache $1,078,950 O Z WINESALES NO
| Malbec $2,914,650 | Cross-report

Merlot $900,276 off O—

Piesporter $1,384,155

Pinot Grigio $703,470 Keep:oll iters

Rioja $1,527,795 on—@

Sauvignon Blanc $1,896,600 i i thoug ks hre

Shiraz $1,364,766 : - '

Total $29,732,482

Figure 3-6. Using the SALES calculated column in the Values bucket to sum
the sales

However, this is probably not such a great idea. Think about it; firstly, the calculated
column will be evaluated for every row in the Winesales fact table and recalculated
whenever the data is refreshed. That'’s a lot of processing if you have millions of rows in
your fact table.

Secondly, when you put this column into a visual containing items from dimensions,
it performs another calculation to sum these values for each item from the dimensions.
Does this sound a very efficient way of doing this calculation? Probably not. The upshot
of inefficient data models is that reports built on the top of them become slow to refresh
and render (refer to Footnote 1 where there is a link for more information on this topic).

Therefore, the question now is the following: If you shouldn’t use a calculated
column for the sales calculation, what should you use?

This is where measures can help us. We will revisit our sales calculation in Chapter 5,
and rather than using a calculated column to perform the evaluation, we will be using a
measure. But for now, we're going to leave calculated columns behind us (we will revisit
the calculated column later in this book when we explore some complex expressions
that require their use). If you're an Excel user, you'll feel quite at home creating
calculated columns using the DAX functions that have a replica in Excel. Nevertheless,

31

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

you probably won'’t have the same comfortable feeling when you come to writing DAX
measures. This is where DAX becomes a little more challenging, so let’s move forward
and learn how to author DAX measures.

DAX Measures

We're now ready to look at the second type of DAX expression, the measure. There

are two types of measures that you can use in visuals: implicit measures and explicit
measures (however, we don’t normally call them “explicit measures,” just “measures” but
implicit measures are always named accordingly). What's the difference between
implicit and explicit measures? Well, let’s start with the implicit measure first.

Implicit Measures

If you've created any Power BI visual, you've created an implicit measure. Have you
ever wondered what the sigma symbol ()’) beside a numeric column in the Fields list
means? It has a more precise purpose than signaling a column containing numbers.
The sigma indicates that when you put this column into the Values bucket of a visual,
the data in this column will automatically be aggregated. This is what we mean by an
implicit measure.

The sigma normally indicates that the column will be summed, but you can
perform other aggregations such as averages or find the maximum or minimum value
by changing the function on an ad hoc basis. To do this, use the drop-down beside the
column name in the Values bucket and, for example, change this to “Average” as shown
in Figure 3-7 where the steps to generate an implicit measure have been numbered.

32

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

F = o QPRI E 3
WINE @A\rerage of CASES SOLD \ B, Winesales 1
B RiEP.
EEE = | @ 5 casessoip
Bordeaux 302.07 off [=] @ ﬁl E &
Champagne 375.25 20 O CUSTOMERID
Chardonnay 225.97 D [B: REGION NAME
Chenin Blanc 124.94 Values O SALE DATE
Chianti 184.61 e O @ saiss
Grenache 197.61
Average of CASES 50..| ~
I Malbec , - . O SALESPERSON ID
Don't summarize
Merlot lough 0 WINEID
i Sum
Piesporter [(J > WINESALES NO
Pinot Grigio o [
Rioja Minimum [
Sauvignon Blanc Maximum s
Shiraz . L
Total Count (Distinct)
Count
Standard deviation
Variance
Median

Figure 3-7. Creating an implicit measure

1. The column CASES SOLD has a sigma beside it - ..

2. When this column is put into the Values bucket, it defaults to
SUM, but you can change the function to AVERAGE by using the

drop-down.

3. The implicit measure has calculated the average CASES SOLD

for the items displayed in the visual, in this case, each wine.

However, there are several drawbacks to using implicit measures. Consider these

scenarios:

¢ You may want to rename the implicit measure “Average of CASES

SOLD” to something more concise. You can do this by double-

clicking on the entry in the Values bucket, but you would have to

repeat this every time you use an implicit measure and then want to

rename it.

o Ifyourename the implicit measure, the name of a measure in the

visual won’t match the column name in the Fields list.

33

CHAPTER 3

CALCULATED COLUMNS AND MEASURES

Although you normally want to use the SUM function, you often
want to use AVERAGE as well. You would have to keep changing the
function to AVERAGE.

In some visuals, you might like to format an implicit measure with
two decimal places and sometimes with no decimal places. You
would not be able to have different numeric formatting for the
implicit measure in different visuals.

What if you want to calculate 10 percent of the sum of the CASES
SOLD values for each wine, or indeed, any calculation on the total
values? You can't do this using an implicit measure.

This is the trouble with implicit measures; they just don’t make the grade. So let’s

move the focus of this chapter to what we're really here for, and that’s to learn how to

create our own explicit measures using DAX.

Explicit Measures

If you create your own measures rather than relying on implicit measures, these are

some of the benefits:

You'll have more control over the aggregation performed by the
measure and be able to name it accordingly.

You'll be able to use different numeric formatting for different

measures.

Explicit measures will become a constituent part of the data model.
Your measures will join the Fields list, and you, or people using your
data, can use and reuse the measures whenever you need to visualize
a particular calculation.

By using DAX, you can go far beyond just simple aggregations of your
data. You can perform complex calculations to get to the insights you
really need.

So let’s bite the bullet and create our first DAX measures. Once we've done this, we

can then answer the pressing question that has yet to be answered, and that is what

exactly is a measure?

34

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

Before we start, however, we need to find a place to store our measures. Explicit
measures are table agnostic and can be stored in any table. However, it makes sense to
create a table that will hold only measures.

Creating a Measures Table

To do this, on the Home tab, click on the Enter Data button. In the Create Table pane,
give your table a name, for example, “Measures Table” (you can’t name the table
“Measures” because this is a reserved word), and load the table.

When you put a measure into this table and delete the column that’s there, a
“measures” icon will display beside the table in the Fields list, and the table will move to
the top of the list; see Figure 3-8.

Fields »

L Search

V Measures Table
O [E Measure

> BB Customers

> EH DateTable

> EH Regions

Figure 3-8. The Measures table will sit at the top of the Fields list

However, it’s not mandatory to store your measures in a separate table. Some data
modelers prefer to store measures in the fact table or in the table from where the data is
being used by the measure.

Creating Simple DAX Measures

The first measure we're going to construct will replace the implicit measure that
calculates the sum of the CASES SOLD. To create this measure, in Report view, right-
click on your Measures table in the Fields list and select New measure from the shortcut
menu. You could instead click on the New Measure button on the Home tab. However, if
you use this method, ensure that the table you have selected in the Fields list is the table
where you want to put your measure.

35

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

Tip If your measure is accidentally stored in the wrong table (or you just want to
move it), use the Fields list in Model view where you can drag and drop measures
between tables.

Once you have selected New measure, the DAX editor will appear at the top of the
screen as it did when we created calculated columns. In the DAX editor, in front of the
equals sign (=), name your measure, for example, “Total Cases’, and type the following
DAX expression:

Total Cases =
SUM (Winesales[CASES SOLD])

You can see this expression in the DAX editor in Figure 3-9.

X L Total cases = sunﬂ(fwinesales[CASES SoLD])

Figure 3-9. Your first DAX measure in the DAX editor

Press the Enter key and your measure will display in the Measures table. You can
now delete “Columnl” from this table.

Note DAX measure names are not case sensitive and can contain any
characters. However, we would recommend restricting your measure names to
containing just letters and/or numbers and spaces. We would also recommend that
you keep the names of tables, columns, and measures simple and straightforward.
| particularly like Chris Webb’s blog on this topic: https://blog.crossjoin.
co.uk/2020/06/28/naming-tables-columns-and-measures-in-
power-bi/

DAX measures are only calculated when they are used, so you must put the measure
into the Values bucket of a visual before you can see the calculation. For example, in
Figure 3-10, in a Table visual, we’ve used the WINE column from the Wines dimension
and then dragged the “Total Cases” measure into the Values bucket of the visual.

36

https://blog.crossjoin.co.uk/2020/06/28/naming-tables-columns-and-measures-in-power-bi/
https://blog.crossjoin.co.uk/2020/06/28/naming-tables-columns-and-measures-in-power-bi/
https://blog.crossjoin.co.uk/2020/06/28/naming-tables-columns-and-measures-in-power-bi/

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

r - 9]
WINE Total Cases
Bordeaux 54,0
Champagne 49,158
Chardonnay 42,030
Chenin Blanc 24,739
Chianti 27 343
Grenache 35,965

| Malbec 34,290 |
Merlot 23,084
Piesporter 10,253
Pinot Grigio 23,449
Rioja 33,951
Sauvignon Blanc 47,415
Shiraz 17,497
Total 423,224

Bonciciscamiminvisivn b =

Q@ W & 1 5 Y
EEERPYE
£ ES
2l

Values

WINE A

Total Cases N
Drill through

Cross-report

off O—

Keep all filters
on —@

AddA Arill-thraninh fiald< hara

Figure 3-10. Measures are calculated when they are used

One of the great advantages of using explicit measures is that the numeric formatting

is stored with the measure. To format a measure, select the measure by clicking on it
in the Fields list, and the measure expression shows in the DAX editor. Then, on the

Measures tools tab, in the Formatting group of commands, you can select the numeric

formatting you require, for example, a thousands separator; see Figure 3-11.

59} Format | Whole number

v]

$-H 248 |0

Formatting

~

bish |

Figure 3-11. Use the Formatting group of commands on the Measures tools tab to

format your measure

37

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

Let’s create our second measure, this time to calculate the average cases sold as
follows:

Avg Cases =
AVERAGE (Winesales[CASES SOLD])

Another analysis you may need to perform on your data is calculating “how many,”’
for example, the number of sales for each different wine. In other words, we need to
count the number of rows in the Winesales table for each wine shown in the visual.

The implicit measure that we could use here uses the DAX COUNT function that counts
the number of values in the column you reference (for more information on the COUNT
function, visit https://docs.microsoft.com/en-us/dax/count-function-dax).
However, we want to count the number of rows, and therefore, only an explicit measure
will do the job we want. The DAX function we need is the COUNTROWS function whose
name describes its purpose. This function accepts a table as its only argument which is
the table whose rows you want to count, so this would be the expression:

No. of Sales =
COUNTROWS (Winesales)

One of the benefits of creating these simple measures is that you can use them
to analyze any items from any dimension. As you generate visuals, taking items from
different dimensions, the measures will consistently recalculate accordingly. For
example, in Figure 3-12, we're using our measures in three Table visuals showing data

from the following dimensions:
e WINE from the Wines dimension
e SALESPERSON from the SalesPeople dimension

o REGION from the Regions dimension

38

https://docs.microsoft.com/en-us/dax/count-function-dax

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

REGION Total Cases Avg Cases No. of Sales WINE Total Cases Avg Cases No. of Sales ~
Argentina 18,377 211.23 87 Bordeaux 54,070 300.39 180
Australia 15,794 183.65 86 Champagne 49,158 37241 1132
Canada 6,317 180.49 35 Chardonnay 42,030 224.76 187
China 27,389 195.64 140 Chenin Blanc 24,739 123.70 200
Czech Republic 33,958 196.29 173 Chianti 27,323 184.61 148
England 23,080 198.97 116 Grenache 35,965 197.61 182
France 12,213 187.89 65 Malbec 34,290 201.71 170
Germany 19,158 193.52 99 Merlot 23,084 147.03 157
India 34,292 174.07 197 Piesporter 10,253 89.16 115
Ireland 1,160 290.00 4 Pinot Grigio 23,449 139.58 168
Italy 35,374 194.36 182 Rioja 33,951 172.34 197
Japan 22,153 203.24 109 Total 423,224 191.76 2,207 i
New Zealand 23,813 17771 134

Nerraririarg 3,489 183.63 19 SALESPERSON Total Cases Avg Cases No. of Sales
Russia 1,043 260.75 4 Abel 69,871 185.83 376
Scotland 25,839 198.76 130 Blanchet 65,581 191.20 343
South Africa 26,002 192.61 135 Charron 68,137 196.36 347
United Arab Emirates 27,102 193.59 140 Denis 84,018 193.14 435
United States 14,210 205.94 69 Leblanc 69,304 195.22 355
Wales 52,461 185.37 283 Reyer 66,313 188.93 351
Total 423,224 191.76 2,207 Total 423,224 191.76 2,207

Figure 3-12. Measures are calculated according to the data comprising the visual

Our final example of a simple DAX measure will accomplish an insightful calculation
that would be difficult to repeat in Excel, that of the distinct count. In DAX, we have
an aggregate function for this job. Its name is DISTINCTCOUNT, and we can simply
reference the column required for the analysis. Let’s discover how many different
customers we sold our wines to by authoring this measure:

Distinct Customers =
DISTINCTCOUNT (Winesales[CUSTOMER ID])

While we're focusing on the DISTINCTCOUNT function, remember that we created
this calculated column in the Winesales table:

REGION NAME =
RELATED (Regions[REGION NAME])

39

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

We can use this calculated column to create a measure to calculate in how many
different regions we’ve sold our wines:

Distinct Regions =
DISTINCTCOUNT (Winesales[REGION NAME])

WINE Distinct Customers Distinct Regions
Bordeaux o 18
Champagne 53 19
Chardonnay 58 18
Chenin Blanc 59 19
Chianti 50 18
Grenache 51 17
Malbec g8 20
Merlot 54 18
Piesporter 44 19
Pinot Grigio 51 17
Rioja 59 17
Sauvignon Blanc 58 20
Shiraz 50 18
Total 84 20

Figure 3-13. Using the DISTINCTCOUNT function

You will observe in Figure 3-13 that we've sold “Bordeaux” to 57 different customers
and “Champagne” to 53 different customers. We've sold “Rioja” in 17 different regions.

40

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

What Exactly Is a Measure?

We've created a few simple explicit measures, but we still haven’t answered the
following question: What is a measure? The answer, like measures themselves, is not
a straightforward one. A measure is a DAX expression that is used in a Power Bl visual
to return a scalar value and is evaluated in a specific filter context. In other words, DAX
measures filter the rows of tables and typically perform an aggregation on the filtered
data to return a scalar value (which is a single value) that is visualized in the report.

Note Not all DAX measures perform aggregations. As we will see later, some DAX
measures can return text values. Nevertheless, they will be scalar in nature in that
they will return a single value.

For example, a typical DAX measure might sum the values in a column containing
quantities (e.g., the “Total Cases” measure) where the rows in the fact table are filtered
for each year, and this analysis is visualized in a column chart where each year's totals
(e.g., 2021) can be seen; see Figure 3-14.

Motal Cases by YEAR . T Asde
YEAR NN
Legend
100K
0 Add data fields here
o e e
8 - Values
= |
E 50K Total Cases VX
Small multiples
Add data fields here
0K Tooltips
2017 2018 2019 2020 2021 b
L. YEAR g Add data fields here

Figure 3-14. Measures typically aggregate filtered data

41

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

Let’s take a closer look at these three aspects of the measure:
1. Allvisuals on the report canvas use measures.
2. Measures return scalar (single) values.

3. Measures are calculated where a filter has been placed on the
data model. This is known as the filter context and is the subject of
the next chapter.

All Report Visuals Use Measures

When we authored our calculated columns, these are seen in Data view and

they returned a value for every row in the table. A measure, on the other hand, is used
in Report view and is placed in the Values bucket of a visual. All visuals use measures in
the Values bucket even if they are implicit measures (which, as already described, is a
numeric column that you've dragged into the Values bucket).

Note There is an exception to this rule. The Key Influencers visual is best used
with a non-aggregated column, rather than a measure. For more information

on the Key Influencers visual, visit my blog: www.burningsuit.co.uk/
blog/2020/01/the-key-influencers-visual-versus-strictly-
come-dancing/

Another way to think of measures is that they are report-level calculations as opposed
to the row-level calculations that you create in calculated columns.

Measures Return Scalar Values

All Power Bl visuals are reporting tools that group and aggregate your data, just like an
Excel pivot table or pivot chart. Therefore, to understand this aspect of the measure, let’s
put our Excel hats on and remind ourselves that in Power BI, Table and Matrix visuals are
the equivalents of Excel pivot tables. For instance, consider the values in the Table visual
in Figure 3-15.

42

http://www.burningsuit.co.uk/blog/2020/01/the-key-influencers-visual-versus-strictly-come-dancing/
http://www.burningsuit.co.uk/blog/2020/01/the-key-influencers-visual-versus-strictly-come-dancing/
http://www.burningsuit.co.uk/blog/2020/01/the-key-influencers-visual-versus-strictly-come-dancing/

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

WINE Total Cases
Bordeaux | 54,070|
Champagne 49,158
Chardonnay 42,030
Chenin Blanc 24,739
Chianti 27,323
Grenache 35,965
Malbec 34,290
Merlot 23,084
Piesporter 10,253
Pinot Grigio 23,449
Rioja 33,951
Sauvignon Blanc 47,415
Shiraz 17,497
Total 423,224

Figure 3-15. The value identified sits in the equivalent of the “Values” area of an
Excel pivot table and would be in a “cell”

If this were an Excel pivot table, the “Total Cases” values would be sitting in the
“Values” area of the pivot table, and every value returned by the calculation would be
sitting in a “cell.” We've identified the “cell” for “Bordeaux” wine that holds the value of
54,070 being returned by this measure:

Total Cases =
SUM (Winesales[Cases Sold])

What does this value represent? It represents the sum of the values in the CASES
SOLD column for all the rows in the Winesales table that equate to “Bordeaux” wines.
If the same data were sitting in an Excel pivot table, we could double-click on
this value and drill through to display these rows on a separate sheet, as shown in

Figure 3-16.

43

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

Row Labels |~ | Sum of CASESSOLD
Bordeaux I 54070
Champagne 49158
Chardonnay 42030
Chenin Blanc 24739
Chianti 27323
Grenache 35965
Malbec 34290
Merlot 23084
Piesporter 10253
Pinot Grigio 23449
Rioja 33951
Sauvignon Blanc 47415
Shiraz 17497
Grand Total 423224

SALEDATER WiNESALESNOEE sALEsPERsoNIDED cUsTomERIDEI WiNEID Bl cAsEssoLDB ToTALSALESE wiNE S

23/12/2021 2207 3 12 1 290 21750 Bordeaux
14/12/2021 2184 1 34 1 190 14250 Bordeaux
13/12/2021 2181 4 3 1 330 24750 Bordeaux
06/12/2021 2169 5 11 1 188 14100 Bordeaux
20/11/2021 2145 4 44 1 149 11175 Bordeaux
14/11/2021 2134 3 37 1 329 24675 Bordeaux
15/10/2021 2083 3 16 1 197 14775 Bordeaux
07/10/2021 2065 5 39 1 451 33825 Bordeaux
05/10/2021 2060 3 18 1 304 22800 Bordeaux
21/09/2021 2037 3 25 1 240 18000 Bordeaux
1a/na 01 M2 a7] YOEEN Rardont

Figure 3-16. In an Excel pivot table, you can drill through

We can’t drill through on the value in the Power BI Table visual, but nevertheless,
the measure in memory does the same. It filters a set of specific rows from a table. In our
example, it filters the rows in the Winesales table for “Bordeaux” wines. However, the
result of the measure must sit in the “cell” of the Table visual just as it sits in the cell of
the pivot table. Therefore, the measure must return a scalar value. Typically, this would
mean that the measure must aggregate the data; for example, sum the cases sold for
“Bordeaux” wines.

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

Note Normally, a scalar value would be a single numeric value, but measures
can return single text values as well, so here, the term “scalar” is used in a more
general sense to mean a single value of any data type.

We've established that measures must return scalar or single values, a concept that
we're sure you think is straightforward and easy to understand, but at some point, you'll
attempt to create measures that return errors that look like that shown in Figure 3-17.

1 Total Cases 2 = Winesales[CASES SOLD] * Wines|[[PRICE PER CASE|]

1. Asingle value for column 'CASES SOLD' in table "Winesales' cannot be determined. This ¢

Figure 3-17. This error message displays when there is no aggregation

The error message in Figure 3-17 reads:

“A single value for column ‘CASES SOLD’ in table ‘Winesales’ cannot be determined.
This can happen when a measure formula refers to a column that contains many values
without specifying an aggregation such as min, max, count, or sum to get a single result.”

What is the reason for this error message? There is no aggregation in the measure; it’s
just multiplying two values.

Another example of where a measure does not return a scalar value is shown in
Figure 3-18. Here, the VALUES function is being used in a Table visual (we look at the
VALUES function in a later chapter). The measure should return a scalar value, which it
does when evaluating individual rows in the Table visual, but when calculating the Total
row of the visual, it returns multiple values, and so an error message is displayed when
the measure is put into a Table visual that has the Total row turned on.

45

CHAPTER 3 CALCULATED COLUMNS AND MEASURES

X [t Show Price { VALUES|(Wines[PRICE PER CASE])

Can't display the visual. See details

Couldn't load the data for this visual

MdxScript(Model) (4, 28) Calculation error in measure "Wines'[Show
Price]: A table of multiple values was supplied where a single value
was expected.

Figure 3-18. Some measures return a table of values

The error message reads:
“A table of multiple values was supplied where a single value was expected.”

Even the most hardened DAX experts can be caught out by creating measures that
don’t return scalars!

In this chapter we have explored the difference between calculated columns and
measures. You understand that calculated columns are row level calculations while
measures are used in all visuals and are calculations that are performed at report
level. However, we're still missing an explanation of the third and most important
ingredient of the DAX measure, that all measures are evaluated in a specific filter context.
To understand what is meant by this, you will need to move forward to the next chapter
where we will focus on the context in which our expressions are evaluated and why this
is so important in understanding DAX measures.

46

CHAPTER 4

Evaluation Context

You have learned to author simple calculated columns and measures, but one of the
most fundamental questions for DAX users is how these two types of expression differ.
At this stage, you understand that calculated columns are row-level calculations and
that measures are calculations that are performed at the report level. However, we need
to be more specific regarding this differentiation, and you need to understand that

the definitive difference lies in the context in which the expressions are evaluated. In
calculated columns, expressions are evaluated in the row context; in measures, they are
evaluated in the filter context. It is the latter of these that will be the main focus in this
chapter. Once you understand the implications of the filter context, the implications of
the row context are more readily understood.

The Filter Context

In the last chapter, you learned that measures are report-level calculations and that they
must return a scalar value. This brings us to the third and most important aspect of the
measure, and that is that all DAX measures are evaluated in a specific filter context. To
understand what is meant by a “specific filter context,” let’s compare these two different
measures:

Total Cases =
SUM (Winesales[CASES SOLD])

Total Stores =
SUM (Customers[NO. OF STORES])

You can see the evaluation of these measures in Figure 4-1, but why does the first
measure return different values for each wine but the second measure return the
same value? The reason is the filter context that’s active when both these measures are
evaluated.

47
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_4

https://doi.org/10.1007/978-1-4842-8188-8_4

CHAPTER 4 EVALUATION CONTEXT

WINE Total Cases Total Stores
Bordeaux 54,070 1,181
Champagne 49,158 1,181
Chardonnay 42,030 1,181
Chenin Blanc 24,739 1,181
Chianti 27.323 1,181
Grenache 35,965 1,181
Lambrusco 1,181
Malbec 34,290 1,181
Merlot 23,084 1,181
Piesporter 10,253 1,181
Pinot Grigio 23,449 1,181
Rioja 33,951 1,181
Sauvignon Blanc 47,415 1,181
Shiraz 17,497 1,181
Total 423,224 1,181

Figure 4-1. Measures will return different values or the same value because of the
filter context that is active

When a measure is placed into any visual, before the measure is evaluated, the DAX
engine in memory places filters on tables in the data model depending on three factors:

1. The column or columns placed in the visual that group and
categorize the data

2. The columns in slicers that are filtering the data in the visual

3. Any columns placed in the Filters pane that are filtering the data in
the visual

These three factors come together to generate the filter context for the evaluation of
the measure. We can’t see these filters on the data model. We just have to imagine them.

48

CHAPTER 4 EVALUATION CONTEXT

Note The filtering of the data model happens in memory and is hidden from us.
Therefore, in the Figures below and throughout this book, where we’re simulating
what happens in memory, the in-memory tables have a dashed border to
distinguish them from the tables you can see in Data view.

In our Table visual in Figure 4-1, only factor #1 is relevant (there are no slicers or
other filters).

Evaluations Using a Single Filter

The column in the visual that’s grouping the data is the WINE column from the
Wines dimension. The first value in this column to be calculated is the total cases for
“Bordeaux” wine.

Before the “Total Cases” measure calculates the value for “Bordeaux,” a filter is
placed in memory on the Wines dimension to filter “Bordeaux” wines. If we could see
the filter on this table, it might look something like Figure 4-2.

e e ———
WINEID [~] WINE [-¥| SUPPLIER [~]| TYPE [~| WINE COUNTRY [~ | PRICE PER CASE |~ | cosTPRICE [~ |/
1 Bordeaux Laithwaites Red France $75.00 s25.00 1

Figure 4-2. The in-memory Wines dimension that has been filtered to one row

If we examine the data model (Figure 4-3), we can see that the Wines dimension
is related to the Winesales fact table in a many-to-one relationship. The arrow tells us
that if the Wines dimension is filtered, this filter is propagated onward to the Winesales
fact table.

49

CHAPTER 4 EVALUATION CONTEXT
*
Winesales o)
Wines R Y CASESSOLD
CUSTOMER ID
COST PRICE (B REGION NAME
PRICE PER CASE SALE DATE
SUPPLIER 1 * ® sass *—]
TYPE 1 —] SALESPERSON ID
WINE WINE ID
WINE COUNTRY Y WINESALES NO
WINE ID
Collapse ~ Collapse ™~
%k
]

Figure 4-3. Filters propagate from the Wines dimension to the Winesales fact table

Therefore, the Winesales fact table is now cross-filtered to only contain sales for

“Bordeaux” wine that has the WINE ID that equals 1; see Figure 4-4. Notice there is no

filter in the WINE ID column in the Winesales table because the filter on the Winesales

table is a cross-filter that is generated only through filter propagation.

CASES SOLD

:'SAEDEE =] WINESALES NO [~ | SALESPERSON ID [~] CUSTOMERID [~] WINE 1D
: 03/07/2021 1903 6 30
I 24/04/2021 1769 6 55
I 21/03/2021 1703 6 8
| 29/01/2021 1618 6 34
I 07/01/2021 1571 6 1
I 26/12/2020 1557 6 3
| 19/11/2020 1482 6 35
I 08/11/2020 1455 6 35
| 06/10/2020 1411 6 21
05/07/2020 1245 6 21
I 01/06/2020 1182 6 23
I
I

< ka kR Rk kR R k| R HEI

323 1
208 |
421 |
236 I
234 |
322 |
249 |
485 |
365 |
491 I
358 I

2]

— ke e R e e v e Tl T o o v o o o o s o e e o owm e wd%

Figure 4-4. The fact table is cross-filtered via the dimension

50

CHAPTER 4 EVALUATION CONTEXT

This is the only filter affecting this visual, so the measure now sums the CASES SOLD
column for “Bordeaux” wines and returns 54,070.

The evaluation of the measure then moves on to “Champagne” and repeats
the process of filtering the Wines dimension and cross-filtering the Winesales fact
table using a different filter context each time. In the next evaluation, for instance,
the WINE column from the Wines dimension now equals “Champagne” and so now
returns 49,158.

Note Experienced DAX users will know that this explanation of the filter context
in action is a close approximation of what happens in memory and not exactly
what happens. However, this explanation is easily understood at this stage of your
knowledge and will serve you well for the time being. We will reveal what really
happens under the hood later in this book.

And so on for all the wines in the WINE column of the Table visual. Every evaluation
of the “Total Cases” measure is evaluated in a different filter context.

There is a way that we can prove that our Wines dimension, in memory, is filtered
to one row on the evaluation of a measure that analyzes each wine. We can create this
measure that counts the rows of the Wines dimension:

No. of Wines = COUNTROWS (Wines)

If we put this measure into a Table visual containing the WINE column from
the Wines dimension, the measure will return 1 for the evaluation of each wine; see
Figure 4-5.

51

CHAPTER 4

Figure 4-5. The “No. of Wines” measure returns 1 because the Wines dimension

EVALUATION CONTEXT

WINE

No. of Wines

Bordeaux
Champagne
Chardonnay
Chenin Blanc
Chianti
Grenache
Lambrusco
Malbec
Merlot
Piesporter
Pinot Grigio
Rioja

Sauvignon Blanc

Shiraz
Total

=il i O o [o P i Pl ok e i il

14

has been filtered down to one row for each evaluation

Notice too how “Lambrusco” wine returns a value because this measure filters only

the Wines dimension and no other tables are involved.

Calculation in the Total Row

This now brings us to the calculation for the Total row of the visual, which returns

423,224; see Figure 4-6.

Figure 4-6. The Total row is evaluated in a different filter context

52

FINOT &rgro 23,9493
Rioja 33,951
Sauvignon Blanc 47,415
Shiraz 17,497
Total 423,224

CHAPTER 4 EVALUATION CONTEXT

This value is not the sum of the total values for each wine shown in the visual. When
the measure is evaluated for the Total row, the filter is removed from the WINE column
of the Wines dimension, so the expression is evaluated for all wines. In other words, it’s
our expression “= SUM (Winesales| CASES SOLD])” calculated in yet another different
filter context.

Evaluations Using Multiple Filters

Let’s create some more filters that affect the Table visual. For instance, we could include
a slicer using the SALESPERSON column from the SalesPeople dimension' and also have
the REGION column from the Regions dimension in a page-level filter? see Figure 4-7.

—— | Fi]ters On th'ls page

WINE Total Cases Total Stores SALESPERSON

Abel REGION
Bordeaux 265 79 M Abe : 2

Blanchet is Argentina
Champagne 79

Charron :
Chardonnay 209 79 BEnle Filter type ©
Chenin Blanc 79 Lablstie Basic filtering W
Grenache 79 R search
Lambrusco 79 @] Selectall
Malbec 256 79 Argentina 1
Merlot 449 79 (] Australia 1
Piesporter 254 79 [0 Canad |
Pinot Grigio 112 79 snace
Rioja 386 79 [China 1
Sauvignon Blanc 261 79 [Czech Republic 1
Shiraz 131 79 "1 Fnaland 1
Total 2,565 79 [=] Require single selection

Figure 4-7. Filters are now placed on the Table visual from the slicer and the page-
level filter

!'For information on working with slicers, visit https://docs.microsoft.com/en-us/power-bi/
visuals/power-bi-visualization-slicers

2For information on working with the Filters pane, visit https://docs.microsoft.com/en-us/
power-bi/create-reports/power-bi-report-filter?tabs=powerbi-desktop

53

https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-slicers
https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-slicers
https://docs.microsoft.com/en-us/power-bi/create-reports/power-bi-report-filter?tabs=powerbi-desktop
https://docs.microsoft.com/en-us/power-bi/create-reports/power-bi-report-filter?tabs=powerbi-desktop

CHAPTER 4 EVALUATION CONTEXT

We've filtered salesperson “Abel” and region “Argentina” You can see that the Total
Cases value for “Bordeaux” is now 265 because the filter context has changed; WINE
equals “Bordeaux’; SALESPERSON equals “Abel’, and REGION equals “Argentina’” Again,
we can imagine how these tables might look in memory; see Figure 4-8.

NN N S N S S S S S - S - - - -_— I- Lo
| SALESPERSON ID [~ SALESPERSON [-T| FIRSTNAME [~| y = REGION ID [~] Resion |7
| 1 Abel Claude I : 100 Argentina I

Figure 4-8. The in-memory tables filtering the Table visual

You will notice, however, that the Total Stores measure is still returning the same
value for every wine (i.e., 79). We will explain why presently.

Again, we can examine the data model (Figure 4-9) and can see how these filters
propagate through the model and always arrive at the Winesales fact table, which is then
cross-filtered accordingly.

SalesPeople o)
Regions ol
FIRSTMAME
SALESPERSON REGION
SALESPERSON ID REGHON D)
Cellapse ™~ Collapse
1 1
_— g 1
Wines o ‘
COST PRICE |(=) W
PRICE PER CASE | |
SUPPLIER *
1= p— e
TVPE Winesales 5 [B] customers o)
WINE
WINE COUNTRY Z CASESSOLD CUSTOMER ID
-
WINE ID CUSTOMER 1D . CUSTOMER NAME
[E. REGION NAME l 3 NO.OF STORES
Collapse =
* SALE DATE ol L) REGION ID
i:
SALESPERSON ID Collapes
WANE 1D
Z WANESALES NO
Collapse
*
|

Figure 4-9. Filters propagate through the data model and always arrive on the
fact table

54

CHAPTER 4 EVALUATION CONTEXT

Notice how the Regions table creates a “snowflake” in the schema because it’s
indirectly related to the fact table via the Customers dimension. You can see how this
arrangement of tables works; if the Regions table is filtered, for example, for “Argentina’,
this filter is propagated through to the Customers dimension, so customers in Argentina
are now filtered in memory. This filter is then propagated onward to the fact table.

Depending on how the visual is constructed and what filters affect the visual will
determine the outcome of the measure. This now brings us to the “Total Stores” measure
shown in Figure 4-1. Notice it returns the same value of 1,181 for every wine and also in
the Total row. This measure is summing the NO. OF STORES column in the Customers
dimension. The Customers dimension has no filter on it when this measure is evaluated. The
only filter is on the Wines dimension. Therefore, for the evaluation of every wine, the measure
sums the values in the NO. OF STORES column in the Customers table for all the customers.

Looking again at the data model (Figure 4-10), we can see that if the Wines
dimension is filtered, this filter is propagated to the fact table (shown by the tick), but the
filter is not propagated onward to the Customers dimension (shown by the cross), as the
arrow always points from the one side of the relationship into the many.

Wines o *
e Winesales g L
PRICE PER CASE T CASESSOLD Customers ot
SUPPLIER
. - / CUSTOMER ID CUSTOMER ID
TYPE | NAME
r [E% REGION NAME 1 CUSTOMER NAME
WINE
v [* SALE DATE = 2 ¥ NO.OF STORES
WINE COUNTRY B saLes REGIOM ID
WINE ID SALESPERSON ID
Collapse WINE ID Collapse
T WINESALES NO
Collapse ~~
*

Figure 4-10. Filters do not flow from the fact table to dimensions

Note Well, how do you correctly calculate the number of stores in which

each wine has been sold? One thing not to do, tempting though it is, is to edit
the relationship to a “bidirectional” filter. Instead, you can use the DAX function
CROSSFILTER to programmatically reverse the direction of the filter propagation.
We look at the CROSSFILTER function later in this book.

55

CHAPTER 4 EVALUATION CONTEXT

The filter context underpins all DAX measures and is the reason why it’s so
important to distinguish between the two different types of table, dimension tables and
fact tables, because they play two different roles in the evaluation of the measure:

e Therole of dimension tables is to group the data and to propagate
filters through the data model into the fact table.

o Therole of fact tables is to summarize subsets of data that have been

cross-filtered from dimensions.

DAX measures typically summarize data in the fact table that’s been cross-filtered by
dimension tables.

So next time you're wondering “why is my measure returning incorrect values,”’
it’s probably not the expression that'’s at fault; it’s more likely because you haven'’t
understood the current filter context in which the measure has been evaluated.

The Row Context

The filter context is not the only evaluation context that DAX uses. There is another
evaluation context called the row context. Row context is applicable in any DAX
expression that iterates the rows of a table where the expression is bound to the values in
the current row. All calculated columns are evaluated in the row context and this is how
they differ from measures, which are always evaluated in the filter context. However, just
to make life difficult, some measures will use both the filter context and the row context
in their evaluation. Also, there are some calculated columns whose row context can

be turned into a filter context. We will be exploring these ideas as we move forward in
this book.

To understand the row context, let’s again refer to what we know about Excel
formulas. In an Excel table, the formula is “copied down” where it is calculated for every
row in the column. An “@” character is used in the formula to denote using the values in
the current row. This is essentially what the row context is in DAX. When using the row
context, the DAX expression iterates over every row in the table, and the values used in
the expression are the values sitting in the current row; see Figure 4-11.

56

CHAPTER 4 EVALUATION CONTEXT

G2 b X« fJx | =[@CASESSOLD]*VLOOKUP([@WINEID),wines,6,0)
A A B € D E F G
1 |SALEDATE |~ |WINESALESNO - T|SALESPERSONID | ~ |CUSTOMERID | ~ |WINEID | - |cASESSOLD | ~||sALEs |~
2 | 01/01/2016 1 3 52 6 < £10395
3 | 01/01/2016 7 5 41 7 <84 £3,280
4 02/01/2016 3 2 52 10 <89 £3,560
5 02/01/2016 4 2 79 13 €0q| £8346
6 02/01/2016 5 6 49 4 <3| f11135
7 02/01/2016 6 6 49 4 <3| f11135
8 03/01/2016 7 4 71 3 <7 £17,100
DAX
X «/ [l sales = winesales[CASES SOLD] * RELATED || Wines[PRICE PER CASE] [)
SALEDATE [~] winEsALeEs NO [-7] sALESPERSONID [~] cusTomERID [~] wiNEID [~] casessoLD [~ sales |~
01 January 2016 1 3 52 6 <4A8| £10,125
01 Jonuary 2016 2 5 a1 7 62| £7,280
02 January 2016 3 2 52 10 9| £3560
02 January 2016 4 2 79 13 07| £8,346
02 January 2016 5 [49 34| £11,135
02 Jonuary 2016 6 6 49 31| £11,135
03 January 2016 7 4 71 $Ad| £17,100

Figure 4-11. Both Excel table formulas and DAX calculated columns use values
from the current row, known as the “row context” in DAX

We can understand that calculated columns would normally use the row context,
but measures can also use the row context in their evaluation. But surely the nature of all
DAX measures is to group and summarize data, not to perform row-level calculations.
Well, measures can perform row-level calculations too, and this is where the behavior of
iterators comes in, a concept we will explore in the next chapter.

However, let’s now summarize what you have learned in this chapter, and that is that all
measures use the filter context in their evaluation. The filter context refers to filters that will
be placed on the data model by the evaluation of the measure and depends on the construct
of the visual in which the measure will be calculated and on any filters that impact on the
visual. You now know also that there is a second evaluation context, the row context, where
the DAX expression scans a table and performs row-level calculations as in the case of the
calculated column. Understanding the two evaluation contexts that differentiate measures
from calculated columns is the first major DAX concept that you have learned. Some people
who have been using DAX, perhaps for some length of time, are often not able to explain

this fundamental difference between measures and calculated columns.
57

CHAPTER 5

Iterators

There is a group of functions in DAX that are referred to as iterators, and from their
name, we can infer that these functions iterate tables in the evaluation of a DAX
expression. Any DAX function that ends in an “X” is an iterator, such as the “X”
aggregators: SUMX, AVERAGEX, MAXX, MINX, COUNTAX. There are also “X” iterating
functions that aren’t aggregators such as CONCATENATEX and RANKX. Just to make life
even more confusing, there are iterating functions that don’t end in “X” such as FILTER
and ADDCOLUMNS.

We will explore the FILTER, CONCATENATEX, and RANKX functions later. The
ADDCOLUMNS function is beyond the remit of the book, but hopefully it will be
something you self-explore as your knowledge of DAX increases. The focus of this
chapter will be the aggregating iterators: SUMX, AVERAGEX, MAXX, MINX, and
COUNTAX.

Aggregating iterators have two arguments: the table to be iterated and the expression
that is to be evaluated for each row of the table, the result of which will then be
aggregated. These functions create a row context inside the measure by iterating the
table referenced by the function, and each row in the table is “visited” in memory by the
measure. Remember that the measure will have generated a filter context first, so the
table being iterated may have a filter or cross-filter on it.

59
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_5

https://doi.org/10.1007/978-1-4842-8188-8_5

CHAPTER 5 ITERATORS

DAX Measure ili-; 10 PC Increase Total =

2 | | SUMX r(Winesales,Winesales[CASES SOLD]* 1.1 __
lTEs NO [~] SALESPERSONID [~]| CBSTOMERID [~ | WINEID [~]| CASESSOLD [~] 10 Percent Increase [|-] |
| 1903 6 1 323 d—— —%s |
| 1769 6 1 208t 229
| 1703 6 1 421 G 463
I 1618 WINE Total Cases 10 PC Increase Total 23 Sf— 260
| 1571 Bordeaux 54,070 234t 257 |

1557 Champagne 49,158 54,073.80 354 |
I 1482 Chardonnay 42,030 46,233.00 243 S 274 |
I 1455 Chenin Blanc 24,739 27,212.90 485 534 |
| 1411 Chianti 27,323 30,055.30 365 g 402 I
I 1245 Grenache 35,965 39,561.50 49] s 540
Malbec 34,290 37,719.00 |
I Merlot 23,084 25,392.40 3 |
| _ .. _| Piesporter 10,253 1127830 || o o o o . mced
Pinot Grigio 23,449 25,793.90
Rioja 33,951 37,346.10
Sauvignon Blanc 47,415 52,156.50
Shiraz 17,497 19,246.70
Total 423,224 465,546.40

Figure 5-1. The SUMX function iterates the cross-filtered fact table and performs a
row-level calculation that is then summed by the measure

For example, consider the measure “10 PC Increase Total” being evaluated in
Figure 5-1. Here, we are using the aggregating iterator SUMX in the measure to multiply
in memory the CASES SOLD value in each row of the fact table by 1.1. The results of
these row-level calculations are then aggregated to return a scalar value returned by the
measure, for example, 59,477.00 for “Bordeaux” wine. In a similar way, we could have
used AVERAGEX or MAXX or any of the iterating aggregators.

Measures that include iterating functions use the row context in their iteration and
then use the filter context to generate the scalar value.

Let’s move forward now and explore these aggregating iterators in more detail,
starting with SUMX.

60

CHAPTER 5 ITERATORS

The SUMX Function (and Other “X” Functions)

Now that you understand the purpose of DAX iterating aggregators, let’s get to know
one of the major iterating functions in DAX, and that’s the SUMX function. We can then
move on to explore other “X” aggregators.

SUMX returns the sum of an expression evaluated for each row in a table and has the

following syntax:
= SUMX (table, expression)

where:

table is the table where you want to perform the calculation.

expression is the calculation you want to be performed for each row in that table.
Here’s an example of the SUMX syntax:

= SUMX (Winesales, Winesales| CASES SOLD] *0.1)

To illustrate the use of SUMX, let’s start with this rather unrealistic but easy-to-
understand scenario. We have been asked to find any CASES SOLD value that is greater
than 100 and increase this value by 20%; otherwise, we only increase the value by 10%.
Perhaps this is some strange way of predicting next year’s volume of cases sold, so
we'll call this calculation “Next Yr Cases”. We then want to see what the “Next Yr Cases”
value would be for each of our wines.

If we didn’t know how to use SUMX, we would probably do this calculation in a
clumsy way using both a calculated column and an implicit measure. We might create
this calculated column using the IF function as shown in the following and then use an
implicit measure by dragging the calculated column into the Values bucket of a Table

visual; see Figure 5-2.

61

CHAPTER 5 ITERATORS

1 Next Yr Cases =

2: IF fwinesales[CASES SOLD] » 1ee,
3 Winesales[CASES SOLD] * 1.2,
4 Winesales[CASES SOLD] * 1.1)

5 R
DAX Calculated Column

SALE DATE [-1] WINESALES NO [~] SALESPERSON ID [~| CUSTOMERID [~| WINEID [~] CASESSOLD [~] NextYrCases |~ |

01/01/2017 2 6 35 10 213 255.6
01/01/2017 1 3 16 4 326 391.2
02/01/2017 3 4 20 5 70 77
03/01/2017 4 1 12 10 264 316.8
07/01/2017 5 2 17 3 147 176.4
08/01/2017 6 3 45 11 155 186
r_, — = = i - =
i_WII\IE Total Cases Next Yr Cases i =8 1 a Iﬁ] 01—2 &
Bordeaux 54070 64,884.0 >l -
Champagne 49,158 58,989.60 WINE N
Chardonnay 42,030 50,436.00 T V7
Chenin Blanc 24,739 29,656.80
Next Yr Cases X
Chianti 27,323 32,600.20
Grenache 35,965 42,950.10 Drill through
I Malbec 34,290 41,138.00 |
Merlot 23,084 27,575.90 Cross-report
Piesporter 10,253 11,407.50 off O—
Pinot Grigio 23,449 27,906.20
T Keep all filters
Rioja 33,951 40,741.20
Sauvignon Blanc 47,415 56,898.00 o=@
Shiraz 17497 20,218.70 Add drill-through fields here
Total 423,224 505,402.20
| - |

Figure 5-2. Creating a calculated column to be used as in implicit measure isn’t
efficient

But let’s think this through. We don’t need to first create a calculated column to see
the increased value for each row and then in another step sum this value for each wine,
using an implicit measure. We can do it all in one go using SUMX. If we do this, the
requirement for the calculated column is redundant; we can just use the measure. This is
the real benefit because measures are always more efficient than calculated columns.

This is the explicit measure using SUMX that we can use instead of the calculated
column/implicit measure combination:

Next Yr Cases Measure =

62

CHAPTER 5 ITERATORS

SUMX (
Winesales,
IF (Winesales[CASES SOLD] » 100,
Winesales[CASES SOLD] * 1.2,
Winesales[CASES SOLD] * 1.1

How does the SUMX measure work?

We know that SUMX sums the expression evaluated for each row in the table. The
first argument in SUMX references the table where the calculation will be performed,
in our case, Winesales. The second argument is the calculation you want to be done in
memory for each row in this table. This is our expression using IF that SUMX calculates
in memory by iterating every row. It then sums the results of this calculation, in this case,
for each wine (because that’s the current filter context for the evaluation of the measure).

Now that we have discovered the SUMX function, we can revisit a calculation we
learned to author in Chapter 3, and that’s the “Sales” calculation that’s currently sitting in
a calculated column; see Figure 3-6. Do you remember we created this column using the
RELATED function?

Sales =
Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

We then used this column in an implicit measure to find the total sales, but this
wasn’t the most efficient way of accomplishing this task. Well, now we can write a
measure that will be our definitive “Total Sales” calculation using SUMX, as follows:

Total Sales =
SUMX (
Winesales,
Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

This is a much cleaner way to calculate our Total Sales. The SUMX function iterates
the Winesales table, and for every row in the current filter context, it multiplies the value
in the CASES SOLD column with value in the PRICE PER CASE column of the Wines
table (using RELATED to find the price of the wine in the current row context). It then
sums the results of these row-level calculations for each wine.

63

CHAPTER 5 ITERATORS

Tip Select a measure and use the Measure Tools tab and the Formatting group to
format your measures in the currency of your choice.

In a similar way;, if you want to find the maximum sales or the average sales, the DAX
measures would be these respectively:

Max Sales =
MAXX (
Winesales,
Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

)

Avg Sales =
AVERAGEX (
Winesales,
Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

You can see the results of these measures in Figure 5-3.

64

CHAPTER 5

WINE Total Sales Avg Sales Max Sales
Bordeaux $4,055,250 $22,529 $37,500
Champagne $7,373,700 $55,861 $75,000
Chardonnay $4,203,000 $22,476 $25,000
Chenin Blanc $1,236,950 $6,185 $7,500
Chianti $1,092,920 $7,385 $11,960
Grenache $1,078950 $5928 $10,500
Malbec $2,914,650 $17,145 $27,710
Merlot $900,276 $5,734 $7,800
Piesporter $1,384,155 $12,036 $21,870
Pinot Grigio $703,470 $4,187 $6,000
Rioja $1,527,795 $7,755 $9,000
Sauvignon Blanc $1,896,600 $11,289 $14,000
Shiraz $1,364,766 $6,723 $11,700
Total $29,732,482 $13,472 $75,000

Figure 5-3.

Measures using SUMX, AVERAGEX, and MAXX

ITERATORS

Let’s explore another example of using AVERAGEX by calculating the average price

that our customers have paid for their wines. We need to first find the price of every

transaction (in the current filter context) in the Winesales table and then calculate the

average of these prices, so the measure would look like this:

Average Price =

AVERAGEX (

Winesales,
RELATED (Wines[PRICE PER CASE])

The “Average Price” measure uses the RELATED function to calculate the price of

each transaction in memory, and AVERAGEX then averages these prices. You can see the

results of this measure in Figure 5-4.

65

CHAPTER 5 ITERATORS

CUSTOMER NAME Average Price
Back River & Co $66.20
Ballard & Sons $95.00
Barstow Ltd $46.71
Beaverton & Co $82.14
Black Ltd $61.83
Bluffton Bros $59.73
Branch Ltd $63.40
Brooklyn & Co $45.64
Brooklyn Ltd $73.00
Brown & Co $45.75
Burlington Ltd $62.80
Dyitrmimermyis | 4] dcon Nn

Figure 5-4. Calculating the average price that customers paid for their wines

This may seem a simple measure, but even some experienced DAX users struggle
to get it right, so let’s explain its evaluation. We can see in Figure 5-4 that the filter
context is on the CUSTOMER NAME column of the Customers dimension and “Black
River & Co” is the first instance. The Winesales fact table is cross-filtered to contain only
this customer’s sales. The RELATED function, nested inside AVERAGEX, in memory
calculates the PRICE PER CASE value from the Wines dimension for each row in the
Winesales table for “Black River & Co.” The AVERAGEX function then finds the average of
these prices (it sums the prices and divides by the number of rows in the Winesales table
for this customer).

Total Row Grief

This brings us to another common problem for people who are new to DAX:
understanding the calculation on the Total row of a Table or Matrix visual. People often
complain that it’s not correct. This is probably because they’ve used the SUM function
when they should have used SUMX.

66

CHAPTER 5 ITERATORS

Consider the measures in Figure 5-5 that compare the “Total Sales” measure to
the “Total Sales Wrong” measure. You can see that for each wine, the “Total Sales” and
the “Total Sales Wrong” measures both return correct results. But when the measures
evaluate the Total row, the “Total Sales Wrong” measure shows an incorrect result.

WINE Sum Price Total Sales Total Sales Wrong
Bordeaux $75 $4,055,250 $4,055,250
Champagne $150 $7,373,700 $7,373,700
Chardonnay $100 $4,203,000 $4,203,000
Chenin Blanc $50 $1,236,950 $1,236,950
Chianti $40 $1,092,920 $1,092,920
Grenache $30 $1,078,950 $1,078,950
Lambrusco $20

Malbec $85 $2,914,650 $2,914,650
Merlot $39 $900,276 $900,276
Piesporter $135 $1,384,155 $1,384,155
Pinot Grigio $30 $703,470 $703,470
Rioja $45 $1,527,795 $1,527,795
Sauvignon Blanc $40 $1,896,600 $1,896,600
Shiraz $78 $1,364,766 $1,364,766
Total $917 $29,732,482 $388,096,408

Figure 5-5. The Total row calculation is incorrect for the “Total Sales
Wrong” measure

67

CHAPTER 5 ITERATORS

So what is the problem with “Total Sales Wrong” when it evaluates the Total row?
The problem, as is often the case, will be found within the filter context. Remember what
we learned earlier; the Total row calculation is not the sum of the total values you see in
the visual. In the Total row, the measure is evaluated in a different filter context where
the filter has been removed from the WINE column. So let’s look at how things can easily
go awry. This is the measure for “Total Sales Wrong”:

Total Sales Wrong =
SUM (Winesales[CASES SOLD]) * SUM (Wines[PRICE PER CASE])

Let’s also extract the two constituent expressions into their own separate measures:

Total Cases =
SUM (Winesales[CASES SOLD])

Sum Price =
SUM (Wines[PRICE PER CASE])

Our “Total Sales Wrong” measure is multiplying the results of these two expressions;
refer to Figure 5-5.

You can see that the problem lies in using SUM, particularly in trying to sum the
PRICE PER CASE values. What is the sum of these values? It’s the sum of the price in the
current filter context. So for the evaluation of each wine, it’s simply the price of the wine,
for example, $75 for “Bordeaux”; see Figure 5-6.

L .| L L - - - - L - - -
INEID [~] WINE E SUPPLIER B TYPE E WINE COUNTRY B PRICE PER CASE E COST PRICE E]

1 Bordeaux Laithwaites Red France | 575,00| $25.00 |

Figure 5-6. The sum of the price on the evaluation of each wine is the price of
the wine

Multiplying this value by the sum of the cases sold for each wine gives the correct total
sales value when evaluating each wine. But for the evaluation of the Total row, the filter
has been released from the WINE column, so the “SUM (Wines[PRICE PER CASE])"
expression sums the prices for all the wines and returns $917, see Figure 5-7. It is this
value that is multiplied by the sum of the cases sold.

68

CHAPTER 5 ITERATORS

[WINEID [~] WINE [~] SUPPLIER [~ | TVPE |~] WINE COUNTRY || PRICE PER CASE [| COST PRICE] |
l 1 Bordeaux Laithwaites Red France $75.00 $25.00 |
| 2 Champagne Laithwaites White France $150.00 s100.00 |
| 3 Chardonnay Alliance White France $100.00 $75.00 |
| 4 Malbec Laithwaites Red Germany 585.00 s40.00 |
| 5 Grenache Redsky Red France $30.00 s10.00 |
| 6 Piesporter Redsky White Germany $135.00 $s0.00 |
| 7 Chianti Redsky Red Germany $40.00 s10.00 |
| 8 Pinot Grigio Majestic White Italy $30.00 s5.00 |
| 9 Merlot Majestic Red France $39.00 s15.00 |
| 10 Sauvignon Blanc Majestic White Italy $40.00 $20.00 |
| 11 Rioja Majestic Red Italy $45.00 $15.00 |
| 12 Chenin Blanc Alliance White France 5$50.00 s10.00 |
| 13 Shiraz Alliance Red France $78.00 $30.00 |
| 14 Lambrusco Alliance White Iltaly $20.00 $15.00 |

Figure 5-7. The sum of the prices on the evaluation of each Total row

So in the “Total Sales Wrong” measure, the Total row calculation is the sum of the
prices for all the wines multiplied by the sum of cases for all the wines: 917 x 423,224 =
388,096,408.

The incorrect expression using SUM sums and then multiplies. The correct
expression using SUMX multiplies and then sums.

The SUM function should only be used in the simplest of measures to sum the values
in a single column and never when you want to sum the results of multiplications or
other calculations. In fact, even when you use the SUM function in a DAX expression,
this is converted internally by the DAX engine into SUMX.

So for instance, this expression

=SUM (Winesales[CASES SOLD])

is converted internally to this:

=SUMX (Winesales, Winesales[CASES SOLD])

In learning about iterators and how to use SUMX and the other “X” iterating
functions, we're progressing well into more difficult areas of DAX. We've also shed light
on other challenging areas of DAX, such as the filter context and the nature of measures.
You've learned some other important concepts too, understanding the role of fact
tables and dimensions within the data model, but we're still only starting out.

The real power behind DAX is still waiting in the wings for us to discover, and that’s

the use of the function called CALCULATE.
69

CHAPTER 6

The CALCULATE Function

CALCULATE is the most important function in DAX. Quite a sweeping statement you
might think but as soon as you get to grips with CALCULATE, you'll quickly realize

that there won’t be many expressions you author in DAX where this function won'’t be
required, even though you might think we’'ve done pretty well up to now. In this chapter,
you will learn how to construct expressions using CALCULATE which you will find
relatively straightforward. It's understanding when and why you must use CALCULATE,
and its purpose inside the measure, that will be more challenging to grasp, and so this
will be the true focus of this chapter.

Why You Need CALCULATE

Let’s look at solving a scenario that will explain how CALCULATE can help us. In our
data model, we have our DateTable dimension that is related to the Winesales fact table
by the DateTable[DATEKEY }column and the Winesales[SALE DATE| column as shown in
Figure 6-1.

71
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_6

https://doi.org/10.1007/978-1-4842-8188-8_6

CHAPTER 6 THE CALCULATE FUNCTION

E3
DateKey Year El Qtr E] MonthNo IZI Month El [B] Winesales e
01 January 2017 2017 Qtr1l 1 Jan I casessow
CUSTOMER 1D
02 January 2017 2017 Qtr1l 1 Jan & ;j;’; \:’
AT
03 January 2017 2017 | Qe 1 Jan B saes *
SALESPERSCN ID
04 January 2017 2017 | Qtr 1 1 Jan o
T WINESALES NO
05 January 2017 2017 Qtr1l 1 Jan Collapse
£ b
06 January 2017 2017 |Qiri 1 Jan S -
07 January 2017 2017 Qtrl 1 Jan !
08 January 2017 2017 | Qtri 1 Jan .
09 January 2017 2017 Qtr1l 1 Jan it i
5 patexey
10 January 2017 2017 Qtrl 1 Jan MONTH
T MONTHNO.
11 January 2017 2017 |Qtri 1 Jan am
YEAR
12 January 2017 2017 Qirl 1 Jan
13 January 2017 2017 Qtr1l 1 Jan e

Figure 6-1. The DateTable dimension is related to the fact table

If we filter on the YEAR column in the DateTable, the filter will propagate to the
Winesales table to filter the sales for that year. We've been asked to carry out a specific
analysis of our data. For each of our wines, we would like to calculate what percentage
the total cases sold for 2021 is of the total cases sold for all years as shown in Figure 6-2.

72

CHAPTER 6 THE CALCULATE FUNCTION

WINE Total Cases 2021 Cases 2021 PC
Bordeaux 54,070 14,940 27.63%
Champagne 49,158 11,461 23.31%
Chardonnay 42,030 11,302 26.89%
Chenin Blanc 24,739 6,952 28.10%
Chianti 27,323 8,535 31.24%
Grenache 35,965 9,702 26.98%
Malbec 34,290 10,543 30.75%
Merlot 23,084 8,158 35.34%
Piesporter 10,253 4,080 39.79%
Pinot Grigio 23,449 6,040 25.76%
Rioja 33,951 10,161 29.93%
Sauvignon Blanc 47,415 14,689 30.98%
Shiraz 17,497 4137 23.64%
Total 423,224 120,700 28.52%

Figure 6-2. A Table visual showing what percentage the cases sold for 2021 are of
the total for all years

In other words, in the same visual, we need to have both the “Total Cases” measure
for all years and the “Total Cases” measure filtered for the year 2021. We can then divide
“Total Cases” for all years into “2021 Cases” and express this as a percentage.

If you look at the example in Figure 6-3, you can see that we have copied and pasted
the “Total Cases” measure and named it “2021 Cases”.

73

CHAPTER 6 THE CALCULATE FUNCTION

WINE Total Cases 2021 Cases
Bordeaux 54,070 54,070
Champagne 49,158 49,158
Chardonnay 42,030 42,030
Chenin Blanc 24,739 24,739
Chianti 27,323 27,323
Grenache 35,965 35,965
Malbec 34,290 34,290
Merlot 23,084 23,084
Piesporter 10,253 10,253
Pinot Grigio 23,449 23,449
Rioja 33,951 33,951
Sauvignon Blanc 47,415 47,415
Shiraz 17,497 17,497
Total 423,224 423,224

Figure 6-3. We can copy a measure and attempt to apply filters to the
copied measure

We want to see if we can filter the “2021 Cases” measure to show values for 2021,
while at the same time the “Total Cases” measure shows values for all years. However, we
have a problem. If we use a slicer to filter the YEAR column from the DateTable, it filters
both measures; see Figure 6-4.

74

CHAPTER 6 THE CALCULATE FUNCTION

WINE Total Cases 2021 Cases TEAR
2017

Bordeaux 14,940 14,940 2018

Champagne 11,461 11,461 2019

Chardonnay 11,302 11,302 2020

Chenin Blanc 6,952 6952 [l 2021

Chianti 8,535 8,535

Grenache 9,702 9,702

Malbec 10,543 10,543

Merlot 8,158 8,158

Piesporter 4,080 4,080

Pinot Grigio 6,040 6,040

Rioja 10,161 10,161

Sauvignon Blanc 14,689 14,689

Shiraz 4,137 4,137

Total 120,700 120,700

Figure 6-4. Filters are applied to all measures in the visual

It seems that we must find a way to apply different filter contexts for different
measures in the same visual. However, as yet, any filters being used by a visual, be they
from the visual itself, from slicers, or from filters in the filters pane, apply the same filter
to all the measures in the visual. We can’t yet pick and choose which filters affect which
measures. At the moment it’s all or nothing. This is where the CALCULATE function can
help us.

Note At this juncture, the slicer filtering the YEAR column can be removed from
the canvas as it does not impact the data as required and is now redundant.

CALCULATE evaluates an expression in a modified filter context and has the
following syntax:

= CALCULATE (expression, filter1 , filter2 etc.)

75

CHAPTER 6 THE CALCULATE FUNCTION

where:

expression is what you want calculated. This can be a DAX expression or a measure
that defines an expression.

filterl, filter2, etc. is how you want to filter the expression or measure. You can
have multiple filters, and these are combined in an “AND” logical statement.

Here are two examples of the CALCULATE syntax:

= CALCULATE (SUM (Winesales[CASES SOLD]), Wines[WINE] = "Bordeaux")
= CALCULATE ([Total Cases], Wines|[WINE] = "Bordeaux")

The first example uses an expression in the expression argument, and the second
uses a measure in the expression argument (highlighted in gray).

This is the first time that we have nested a measure inside a “parent” measure. Note
that when you type your expression in the DAX editor, if you type a square bracket “ [
IntelliSense will list only measures; see Figure 6-5.

X W |[I = CALCULATE ([

[Average Cases]
[Measure]

[No of Sales]
[No of Wines]
[No of Winws]
[Total Cases]
[Total Sales]

D B0 ED B9 ED B9 E

Figure 6-5. Typing a square bracket “ [” into the DAX editor, lists all your
measures

CALCULATE takes an expression or a measure and evaluates it in a different filter
context from the active filters coming through from the visual, slicers, or the filters
pane. The end result of this new filter context generated by CALCULATE depends on
the current state of the active filters. This is what is meant by the filter context being
“modified” in the description of CALCULATE. However, rather than trying to explain
what CALCULATE does, perhaps it’s easier to work through some examples.

76

CHAPTER 6 THE CALCULATE FUNCTION

Using Single Filters

Back to our scenario. In the Table visual in Figure 6-4, how do we generate a measure to
calculate the Total Cases for 2021 while retaining the measure that calculates Total Cases
for all years? This is the measure, using CALCULATE that will do the job:

2021 Cases =
CALCULATE ([Total Cases], DateTable[Year] = 2021)

Now we can create the final measure that will calculate the percentage that each
wine’s total cases for 2021 are of the total for all years and format it as percent:

2021 Percentage =
[2021 Cases] / [Total Cases]

Or better still:

2021 Percentage =
DIVIDE ([2021 Cases], [Total Cases])

Note The DIVIDE function returns a blank value by default if there is a divide by
zero error, so using DIVIDE is the preferred method of performing divisions.

When we put either of these measures into a Table visual, we can see that the total
cases for “Bordeaux” wine in 2021 comprised 27.63% of the total cases for “Bordeaux”
wine for all years (2017 to 2021).

Let’s look more closely at the evaluation of the “2021 Cases” measure in Figure 6-2.
We can see that coming through from the Table visual, we have a filter on the WINE
column in the Wines dimension. However, using the “2021 Cases” measure, CALCULATE
in memory also filters the DateTable dimension so that YEAR equals 2021. This filter is
then applied to the Winesales fact table alongside the filter coming through from the
Wines dimension; see Figure 6-6.

77

CHAPTER 6 THE CALCULATE FUNCTION

[
*
Winesales o
[B] Wines 5 DateTable [
T CASESSOLD
COST PRICE CUSTOMER 1D DATEKEY
PRICE PER CASE [REGION NAME MONTH
* ' 1T MONTHNO
SUPPLIER I SALE DATE - g
- * J QiR
TYPE 7 Dy [B} SALES
WINE SALESPERSON 1D YEAR,
WINE COUNTRY WINE ID
WINEID T WINESALES NO Collapse ~
Collapse Collapse ~~
*
I

Figure 6-6. Houw filters propagate for the “2021 Cases” measure:

1. The current filter context filters each WINE in the Wines
dimension. This filter is propagated to the Winesales table and
cross-filters each wine.

2. The filter provided by CALCULATE programmatically filters the
DateTable for the year “2021” This filter is also propagated to the
Winesales table and so applies a second cross-filter on Winesales.

The thing to note here is that the 2021 filter on the DateTable dimension only affects
the evaluation of this measure and no other measures in the visual. You can think of
CALCULATE as being a way to programmatically generate a filter context in memory that
interacts with active filters coming through from the visual, slicers, and the filters pane.

Let’s now explore some more examples of using CALCULATE. For example, let’s
calculate the total sales where the CASES SOLD value is greater than 350.

Total Sales for Cases Sold Greater than 350 =
CALCULATE (

[Total Sales],

Winesales[CASES SOLD] > 350

Using Multiple Filters

CALCULATE accepts multiple filter arguments that are combined in an AND logical
statement. If you require an OR statement, you can use the OR operator or the OR

78

CHAPTER 6 THE CALCULATE FUNCTION

function within a single filter argument inside CALCULATE, and we will be exploring
both of these scenarios. You can also use more complex filters that require aggregate
expressions inside the filter arguments of CALCULATE, and we will be moving forward
to understand these expressions too.

AND and OR Filters

The following are three more examples of measures that use CALCULATE to modify
the filter context. Notice how all the filter arguments to CALCULATE are combined in
an “AND”.

Total Cases in May 2021 =
CALCULATE (
[Total Cases],
DateTable[YEAR] = 2021,
DateTable[MONTH] = "may"

)

Total Cases for Abel in Argentina =
CALCULATE (
[Total Cases],
SalesPeople[SALESPERSON] = "abel",
Regions[REGION] = "argentina”

)

Average Cases for Black Ltd in 2021 =
CALCULATE (
AVERAGE (Winesales[CASES SOLD]),
DateTable[Year] = 2021,
Customers[CUSTOMER NAME] = "black 1td"

You can see the results of these expressions using the WINE column from the Wines
dimension in Figure 6-7.

79

CHAPTER 6 THE CALCULATE FUNCTION

WINE Total Cases Total Cases Total Cases for Average Cases
in May Abel in for Black Ltd in
2021 Argentina 2021

Rioja 33,951 657 386 164

Piesporter 10,253 447 254 87

Bordeaux 54,070 1,031 265

Champagne 49,158 313

Chardonnay 42,030 1,390 209

Chenin Blanc 24,739 128

Chianti 27,323 1,032 242

Grenache 35,965 645

Malbec 34,290 1,296 256

Merlot 23,084 1,027 449

Pinot Grigio 23,449 413 12

Sauvignon Blanc 47,415 603 261

Shiraz 17,497 252 131

Total 423,224 9,234 2,565 126

Figure 6-7. Measures using multiple filters generated by CALCULATE

In the preceding examples, filter arguments in CALCULATE are combined in an
“AND” statement, for example, cases sold for 2021 AND May. However, what if you
require a filter that uses “OR’, for example, 2021 OR 2020. Using CALCULATE, filtering
using “OR” on the same column is straightforward. Filtering using “OR” on different
columns is a little more challenging, and this is where our calculations will get a little
trickier. Let’s take the simpler calculations first.

To use “OR” on the same column, you can use the double pipe (||) operator within

the same filter argument, as in these examples:

Total Cases 2020 or 2021 =
CALCULATE ([Total Cases],
DateTable[YEAR] = 2021

|| DateTable[YEAR] = 2020

80

CHAPTER 6 THE CALCULATE FUNCTION

Average Cases Argentina or Australia =
CALCULATE (
AVERAGE (Winesales[CASES SOLD]),
Regions[REGION] = "argentina"
|| Regions[REGION] = "australia"

You can also use the OR function, but unlike Excel, you can only put two parameters
into the DAX OR function as in this example:

Average Cases Argentina or Australia =
CALCULATE (
AVERAGE (Winesales[CASES SOLD]),
OR (Regions[REGION] = "argentina",
Regions[REGION] = "australia")

Complex Filters

Let’s take another example of an “OR” filter. For example, we may want to find Total Sales
for red wines OR French wines using the TYPE and WINECOUNTRY columns in the
Wines table, respectively, and use this to analyze our salespeople’s performance of these
wines. This would be the expression:

Sales for Red or French #1=
CALCULATE (
[Total Sales],
Wines[TYPE] = "red"
|| Wines[WINE COUNTRY] = "France"

This measure appears to work just fine as you can see in Figure 6-8.

81

CHAPTER 6 THE CALCULATE FUNCTION

SALESPERSON Total Sales Sales for Red or
French #1
Abel $5,265,266 $4,647,576
Blanchet $4,860,044 $4,193,329
Charron $5,147,366 $4,583,416
Denis $5,431,390 $4,518,335
Leblanc $4,792,407 $4,220,947
Reyer $4,236,009 $3,584,654
Total $29,732,482 $25,748,257

Figure 6-8. The “Sales for Red or French #1” measure evaluated for each
salesperson

However, experienced DAX users would be surprised that this expression was valid
and would expect an error message as shown in Figure 6-9 that states

“The expression contains multiple columns, but only a single column can
be used in a True/False expression that is used as a table filter expression.”

1 Sales for Red or French = CALCULATE ([Total Sales], Wines[TYPE]= "red" || Wines[WINE COUNTRY] = “"france")

1. The expression contains multiple columns, but only a single column can be used in a True/False expression that is used as a table filter expression.

Figure 6-9. This error message was removed in the March 2021 update of
Power BI

This message tells us that referencing two columns from the same table in a single
filter is not allowed. In fact, the expression using “OR” on different columns has only
become legitimate since the March 2021 update of Power BI.

However, although it appears to now be valid, there is still an inherent problem with
it. This expression doesn’t respond correctly to specific filter selections. To show this, we
have written an alternative measure, “Sales for Red or French #2’, and can now compare
the two versions of this expression in a Table visual where we are filtering “Red” wines
via the slicer; see Figure 6-10.

82

CHAPTER 6 THE CALCULATE FUNCTION

SALESPERSON Total Sales Sales for Red Sales for Red TYPE
or French #1 or French #2 B Red
v

Abel $2,050276 $4647576 $2,050276 - White

Charron $2,029,616 $4,583,416 $2,029,616

Denis $2,711,085 $4,518,335 $2,711,085

Leblanc $2,232,097 $4,220,947 $2,232,097

Blanchet $1,734,279 $4,193,329 $1,734,279

Reyer $2,177,254 $3,584,654 $2,177,254

Total $12,934,607 $25,748,257 $12,934,607

Figure 6-10. Using “OR” on different columns from the same table doesn’t respond
correctly to specific filters

You will see that the measure “Sales for Red or French #1” doesn’t respond to filters
from the slicer that uses the TYPE column from the Wines dimension. It continues to
calculate sales for both red or French wines disregarding the slicer. The second measure,
“Sales for Red or French #2’) however, does show just sales for red wines. We will look at
the details of this measure in the chapter on the FILTER function, but for the moment,
we have to ask this question: Why has an expression that filters two different columns
from the same table been invalid until recently, and now that we are allowed to do it,
why doesn'’t it calculate correctly with a filter on the TYPE column?

Let’s look more closely at the problem. When you have a filter on just one column,
the rows of the table are filtered in memory where the filter criterion on the column
equates to true. But when you place filters on multiple columns, you can only further
reduce the rows. For example, once you've filtered out the red wines, you can only then
filter the red wines that are French.

How can we solve this predicament? One way is to ensure that there are no filters on
either the Wines[TYPE] column or the Wines[WINE COUNTRY] column so that in every
evaluation, values in both columns are considered. This is the route that DAX takes in
the expression “Sales for Red or French #1”.

83

CHAPTER 6 THE CALCULATE FUNCTION

Note It’s beyond the scope of this chapter to elaborate on the details of the
“Sales for Red or French #1” expression or why it returns errors in the presence of
certain filters. However, we do uncover the problem in Chapter 18. All we need to
note at this stage is that the expression doesn’t always return the correct result.

Is there an alternative approach? Perhaps we could try this; rather than applying
filters directly to columns, we could filter out the rows that we want to evaluate instead.
For example, we could iterate the rows in the Wines dimension, and if we find a red
wine, filter the row out, or if we find a French wine, filter that row out too. We could then,
in memory, build a new virtual table comprising just the rows for wines that are red or
French. This in-memory virtual Wines table that has been filtered to just the rows we
need could then propagate that filter to the Winesales fact table, just like the “real” Wines
dimension filtering the Winesales table. Would that work?

Well yes, it would because in DAX, there is a group of functions called “table”
functions that generate in-memory virtual tables that, when used inside CALCULATE,
will propagate filters just like “real” tables. Now that we know this, all that remains
for us to discover is the name of the table function that will generate our virtual table
containing just the rows for red or French wines.

Before we find this function, however, there’s a little more learning to be done. We
need to look more closely at the different types of DAX functions and particularly to
understand what we mean by “table functions.” Then we can solve our “red or French”
conundrum.

84

CHAPTER 7

DAX Table Functions

A skill that will serve you well when working with DAX is a good imagination. You've
already learned to construct a picture in your mind of the current filters that are
propagating through the data model. The scanning of tables by iterators can only be
envisaged, and designing the correct CALCULATE expression is done through inferring
what filters must be changed. There is yet another aspect of DAX that is hidden from us,
and that therefore must be imagined. That is the generation of virtual tables. Much of
your DAX code will involve building in-memory tables that are used in the evaluation
of the measure. In this chapter, we are going to explore this concept, how we create
table expressions through the use of table functions, and their purpose in manipulating
the data model. In doing so, we will be focusing on the most ubiquitous of the table
functions, and that is the FILTER function.

Types of DAX Functions

In DAX, we can divide functions into three categories depending on the type of value the
functions return; see Table 7-1.

85
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_7

https://doi.org/10.1007/978-1-4842-8188-8_7

CHAPTER 7 DAX TABLE FUNCTIONS

Table 7-1. Types of DAX functions

Function = Example Description
Type
Scalar Return scalar values. These functions return a scalar or single value and are used

Functions e.g., SUM, COUNTROWS, in all measures.
SUMX, CALCULATE

Table Return virtual tables. Table functions are used to generate “virtual” tables that
Functions e.g., FILTER, VALUES, propagate filters through the data model in the same way as
PREVIOUSMONTH, ALL “real” tables. The virtual tables are typically subsets of rows
or subsets of columns of the original table, but they can
expand the number of rows in the case of the ALL function.
Because measures must always return scalar values and
not tables, table functions are always nested inside scalar

functions.
CALCULATE Modify the filter We’ll meet this type of function later. These functions
Modifiers arguments of change the behavior of any filters generated by CALCULATE
CALCULATE. and so are always nested inside CALCULATE. These
e.g., CROSSFILTER, functions don’t return any value.

USERELATIONSHIP,
KEEPFILTERS, ALL

Note The ALL function is both a Table function and a CALCULATE modifier. We’'ll
look more closely at this later.

How do you know what type of function you are using? The best way is to consult the
DAX Function Library here: https://docs.microsoft.com/en-us/dax/dax-function-
reference, and it will tell you what a DAX function returns; for example, the FILTER
function returns “a table containing only the filtered rows,” see Figure 7-1.

86

https://docs.microsoft.com/en-us/dax/dax-function-reference
https://docs.microsoft.com/en-us/dax/dax-function-reference

CHAPTER 7 DAX TABLE FUNCTIONS

FILTER

Articie + O425/2021 « 2minutes torsad = A U B

Returns a table that represents a subset of anothed

Syntax

FILTER(<tabler, «filters)

Parameters

™ 1 Return value

fiser AR

" Atable containing only the filtered rows.

Return value

A table containing only the Gitered rows.

Figure 7-1. Use the DAX Function Library to check the function type

We've already explored some scalar functions, and we’ll meet some more in later
chapters such as the SELECTEDVALUE function. We will also delve into CALCULATE
modifiers like CROSSFILTER, USERELATIONSHIP and ALL later on. In this chapter, we
will focus only on table functions.

Table Functions

Table functions create table expressions and can be used for two purposes:

1. To generate additional tables in your data model using the New
Table button. These are referred to as calculated tables. If this is
your requirement, the recommendation is that new tables are
generated using Power Query, not DAX.

2. To generate in-memory virtual tables as part of the evaluation of
measures.

In this chapter, we will only be considering the latter of these, the generation of
virtual tables using table expressions inside DAX measures.

Table expressions can be used in measures wherever a function accepts a “table”
as one of its arguments or as the filter argument inside CALCULATE. Up to now, we've
always referenced an actual table inside functions like COUNTROWS or SUMX, but
we can use a table expression instead. Inside CALCULATE, we've created Boolean

87

CHAPTER 7 DAX TABLE FUNCTIONS

expressions as column filters, but we could also use table expressions. When creating

measures, table expressions are always nested inside functions that return scalar values

and are never used on their own.

Examples of Table Expressions

Consider the expressions in Figure 7-2 where, in place of referencing a table, we're using

a table expression instead.

COUNTROWS|([Table])
Structure iing

X < | Counts the number of rows in a table.
73

COUNTROWS (VALUES (Wines [WINE J

==

Ul EEio g NoghTas

SUMX (Table,| Expression)

Structure
>< < | Returns the sum of an expression evaluated

Jl ¢ .o/ a 0 3]

for each row in a table.

"[2 SUMX(VALUES (Wines)|, Wines[PRICE PER CASE])|

CALCULATE (Expression,| [Filter1l])},

Structure

Jl ¢ .oz e 00 5
o)

' % | Evaluates an expression in a context modified by filters.

|2 CALCULATE([[Total Cases|]||VALUES(Wines)

...

Figure 7-2. Examples of table expressions

These examples use a table function called VALUES. You don’t need to know at this
stage what the VALUES function is doing (we’ll meet VALUES in a later chapter). You just
need to understand that it’s a table expression being used as the “table” argument or as

the “filter” argument inside CALCULATE.

88

CHAPTER 7 DAX TABLE FUNCTIONS

Why Do We Need Table Expressions?

There are two very different reasons why we use table expressions inside DAX measures.

Nested inside any other function other than CALCULATE, table expressions supply
the “table” argument and often create subsets of the original table, either subsets of rows
or subsets of columns. For example, FILTER nested inside SUMX will normally generate
a table with fewer rows for SUMX to iterate. As we will discover in later chapters, some
table functions are also used to generate “hybrid” tables that comprise combinations of
columns from different tables.

On the other hand, as filter arguments inside CALCULATE, table expressions
generate virtual tables that are used as filters. Understanding the use of table expressions
as filter arguments inside CALCULATE is a challenging concept to new DAX users, and
we'll be exploring this concept in detail as we move through this chapter.

However, we will begin our journey through table functions by understanding the
use of the most common table function in DAX, and that is FILTER.

The FILTER Function

The FILTER function returns a table that is a subset of another table and has the
following syntax:

= FILTER (table, filter)

where:

table is the table that you want to filter. The table can also be supplied by another
table function.

filter is the filter you want to apply to the table as a Boolean expression, for example,
“Wines[TYPE]="red’.

Here is an example of the FILTER function syntax:

= COUNTROWS (FILTER (Wines, Wines[TYPE]="red"))

FILTER as a table function can be used to generate table expressions as explained in
“Why Do We Need Table Expressions?” section. We've learned that these functions have
different behaviors depending on whether they are used to change the shape of the data,
such as reducing the rows considered by an expression, or whether they are used inside
CALCULATE. The FILTER function is no exception, so let’s now consider these two
behaviors.

89

CHAPTER 7 DAX TABLE FUNCTIONS

FILTER Used to Reduce Rows

For instance, we could calculate the number of high-volume sales where high volume is
any transaction where the CASES SOLD value is greater than 300. To do this, we can use
FILTER nested inside COUNTROWS to count the rows of the filtered Winesales table as
in the following expression:

No. of High Volume Sales =
COUNTROWS (FILTER (Winesales, Winesales[CASES SOLD] > 300))

You can see the result of this measure in Figure 7-3. FILTER can also be nested inside
SUMX, whereby the number of rows in the table iterated by SUMX will be reduced by
FILTER. For example, the “Total Sales” measure that we authored in Chapter 5
could be extended to filter the sales where the volume of cases is greater than 300
(shown in Figure 7-4):

Cases GT 300 =

SUMX (
FILTER (Winesales, Winesales[CASES SOLD] > 300),
Winesales[CASES SOLD] * RELATED (Wines [PRICE PER CASE]))

WINE No. of High
Volume Sales

Bordeaux 89
Champagne 100
Grenache 32
Malbec 1
Sauvignon Blanc 64
Total 286

Figure 7-3. Using FILTER nested inside COUNTROWS to calculate the number of
high-volume sales

90

CHAPTER 7 DAX TABLE FUNCTIONS

WINE Cases GT 300
Bordeaux $2,658,150
Champagne $6,075,150
Grenache $310,530
Malbec $27,710
Sauvignon Blanc $835,280
Total $9,906,820

Figure 7-4. Using FILTER nested inside SUMX to calculate the sales value where
cases sold is greater than 300

However, if you want to use this calculation, this is not the best expression for doing
the job. We will be discovering that FILTER is an iterator, and in this respect, it will scan
the Winesales fact table that may contain many millions of rows. We will be exploring
later in this chapter more efficient ways of performing this task.

FILTER as the Filter Argument of CALCULATE

If FILTER is used in a filter argument of CALCULATE, FILTER generates an in-memory
table that is used to filter the data model, just as dimensions filter the data model.

Before March 2021, it was a requirement to use the FILTER function inside
CALCULATE in the following two situations:

1. When the filter includes more than one column from the
same table

2. When the filter includes an expression

However, it is now possible to omit the FILTER function when filtering two or more
columns in the same table, but depending on slicer selections, the measure can still fail.
It is also now possible to omit FILTER if the expression is a simple Boolean test using
an aggregate function, such as AVERAGE, but using any other expression in the filter
argument still requires the use of FILTER.

For people new to DAX, it is very important to understand that the new syntax, where
FILTER is no longer required in the situations outlined before, is a recent development

91

CHAPTER 7 DAX TABLE FUNCTIONS

(DAX was first introduced in 2009). Any DAX resources you browse or any code you copy
and paste will most probably be using the old syntax using FILTER.

With this in mind, let’s return to our “Sales for Red or French #1” measure we
authored when exploring the CALCULATE function in the previous chapter. This was the
measure:

Sales for Red or French #1 =
CALCULATE (
[Total Sales],
Wines[TYPE] = "red"
|| Wines[WINE COUNTRY] = "France")

This expression returns incorrect results if there is a filter on the TYPE column or the
WINE COUNTRY column, assuming that if you are slicing, you now want to calculate
sales only for red wines and French wines, not red or French wines, which is the current
calculation. If so, the correct values are shown in the “Total Sales” measure on the left in
Figure 7-5 as this measure is responding to the filters in the slicers.

SALESPERSON Total Sales Sales for Red Sales for Red "¢
or French #1 or French #2 Bl Red
White
Abel $2,050,276 $4,647,576 £2,050,276
Blanchet $1,734,279 $4,193,329 £1,734,279
Charron $2,029,616 $4,583,416 £2,029,616
Denis $2,711,085 $4,518,335 £2,711,085
Leblanc $2,232,097 $4,220,947 £2,232,097
Reyer $2,177,254 $3,584,654 £2,177,254
Total $12,934,607 $25,748,257 £12,934,607

Figure 7-5. Omitting FILTER can return incorrect results

92

CHAPTER 7 DAX TABLE FUNCTIONS

Note You will learn later in this book the precise details as to why the “#1”
measure returns incorrect results when there is a filter on either TYPE or
WINECOUNTRY.

We established that the root of the problem lies in the fact that we're using two
different columns in our filter and indeed in earlier days, we were prevented from
authoring such code. To resolve this problem, we need to use the table function FILTER
inside CALCULATE. So let’s now get to grips with how we can use FILTER in this context
and use it to author the correct version of the measure, “Sales for Red or French #2”:

Sales for Red or French #2=
CALCULATE (
[Total Sales],
FILTER (Wines, Wines[TYPE] = "red"
|| Wines[WINE COUNTRY] = "France")

In Figure 7-6, you can see the measure evaluated when put into a Table visual. We've
also included the “Total Sales” measure to provide context and clarity on the evaluation.

SALESPERSON Total Sales Sales for Red or Sales forRed ¢ v

French #1 or French #2 M Red
White

Abel $1,244,481 $4,647,576 $1,244,481

Blanchet $967,929 $4,193,329 $967,929 WINE COUNTRY

Charron $1,116,846 $4,5583,416 $1,116,846 M France

Denis $1,573,080 $4,518,335 $1,573,080 Germany

Leblanc $1,224,252 $4,220,947 $1,224,252 Italy

Reyer $1,272,654 $3,584,654 $1,272,654

Total $7.399,242 $25,748,257 $7,399,242

Figure 7-6. The calculation of the “Sales for Red or French #2” measure

See Figure 7-7 for a step-by-step guide through the evaluation of this measure.
In the “Sales for Red or French #2” measure, FILTER is nested inside CALCULATE to

93

CHAPTER 7 DAX TABLE FUNCTIONS

provide the filter argument. The FILTER function is an iterator. We met iterators when
we looked at the SUMX function in Chapter 5. These are functions that scan a table

on a row-by-row basis and in the case of FILTER perform a test on each row. If the test
applied by FILTER is true for a row, that row is extracted to a virtual table of its own. This
virtual table, used as the filter argument to CALCULATE, is then used to propagate filters
through the model just like a “real” table.

94

CHAPTER 7 DAX TABLE FUNCTIONS

wineid [-] wine [~] suepuer [-] Tvpe [~] wine counTry [~] price pER case [-] costrrice [+]
1 Bordeaux Laithwaites Red France £75.00 £25
2 Champagne Laithwaites White France £150.00 £100
3 cChardonnay Alliance White France £100.00 £75
4 Malbec Laithwaites Red Germany £85.00 £40
5 Grenache Redsky Red France E30.00 £10
- 6 Piesporter Redsky White Germany £135.00 £50
Wlnes 7 Chianti Redsky Red Gearmany £40.00 £10
dimenSion & Pinot Grigio Majestic White Italy £30.00 £5
9 Merlot Majestic Red France £39.00 £15
10 Sauvignon Blane Majestic White haly £40.00 £20
11 Ricja Majestic Red Italy £45.00 £15
12 Chenin Blanc Alliance ‘White France ES0.00 £10
13 Shiraz Alliance fed France £73.00 £30 FILTER
14 Lambrusco Alliance ‘White Italy £20.00 £15]
function filters
— — — — R S S S S S — — — —
szm E]—wm: [=] suppuer [=]|Tvpe [~ wiNE counTRY [~ | PRICE PERCASE || COSTPRICE [~ fh W
l 1 Bordeaux Laithwaites Red France £75 £25 l e mes
Red or French 2 Champagne l..aI-th\wil.es thle France £150 HW' dlmension
< l 3 Chardonnay Alliance White France £100 £75
1mn memory l 4 Malbec Laithwaites Red Germany £85 i‘ol
5 Grenache Redsky Red France £30 .:’10'
table I 7 Chianti Redsiy Red Germany Edo £10
9 Merlot Majestic Red France £38 £15 I
l 11 Ricja Majestic Red Italy E£dS £15
| 12 Chenin Blanc Alliance White France £50 £10
L 13 Shiraz Alliance Red France £78 £30
= o
I Red or French 5 |
| COSTPRICE | @ v
| PRICEPERCASE I |
| SUPPLIER | *
e In memory
| table I Winesales o
| WINE |
I WINE COUNTRY | - CUSTOMER ID
WINE ID I [EX REGION NAME
| SALE DATE
| Collapse ~ | *
* SALESPERSON ID
Wines 1B WINE ID
Y WINESALES NO
COST PRICE P =
Measure
PRICE PER CASE et
SUPPLIER Collapse ~
TYPE 1 *
WINE
WINE COUNTRY
WINE ID
Collapse ~

Figure 7-7. Stepping through the “Sales for Red or French #2” measure

95

CHAPTER 7 DAX TABLE FUNCTIONS

1. The FILTER function iterates the Wines table in memory and
filters any rows where TYPE = “red” or WINECOUNTRY =
“France”.

2. FILTER generates an in-memory virtual table containing only
those rows where the test is true.

3. The virtual table generated by FILTER is used as the filter
argument to CALCULATE to filter the Winesales table.

We've been examining the use of the FILTER function to perform an “OR” test on two
different columns of the same table. Let’s look at another example with the same issue.

Consider the scenario where you want to find the number of sales (i.e., the number
of rows in the Winesales table) for high profit wines. High profit wines are where wines
have a price that is three times the cost price. This test involves two columns in the
Wines dimension, PRICE PER CASE and COST PRICE, and therefore, it's recommended
that you use FILTER. These are the measures you can use:

No. of Sales =
COUNTROWS (Winesales)

No. of Sales of High profit Wines =
CALCULATE (
[No. of Sales],
FILTER (Wines, Wines[PRICE PER CASE] >= Wines[COST PRICE] * 3)

We've included the expression for “No. of Sales” that we will nest inside the “No. of
Sales of High profit Wines” measure. You can see this measure calculated in Figure 7-8.

96

CHAPTER 7

DAX TABLE FUNCTIONS

SALESPERSON No of

No of Sales of

WINE No of No of Sales of
Sales High-profit Wines

Bordeaux 180 180
Champagne 132

Chardonnay 187

Chenin Blanc 200 200
Chianti 148 148
Grenache 182 182
Malbec 170

Merlot 157

Piesporter 115

Pinot Grigio 168 168
Rioja 197 197
Sauvignon Blanc 168

Shiraz 203

Total 2,207 1,075

Sales High-profit Wines
Abel 376 173
Blanchet 343 160
Charron 347 168
Denis 435 228
Leblanc 355 166
Reyer 351 180
Total 2,207 1,075

Figure 7-8. Finding high profit wines

You will notice again that FILTER can be omitted here because expressions using

different columns from the same table are now valid. However, take note that if you had
a filter on either the PRICE PER CASE column or the COST PRICE column, you would
not see correct values being returned. Therefore, it is recommended that you use FILTER

nested inside CALCULATE whenever more than one column is being referenced.

However, we also need FILTER whenever we need to use an expression in the filter

argument in CALCULATE. We've set out two examples of this requirement where we are

calculating the following:

1. The number of sales where the total sales values are greater than

20,000. We are using the “Total Sales” measure in the filter test.

2. The number of sales that are greater than the average sales value.

To calculate the average sales, we are using the AVERAGEX

expression that you learned in Chapter 5.

First, we have authored the “wrong” version of the measures that omits the FILTER

function. These expressions will return error messages. We have then authored the

correct expressions using FILTER. Therefore, it’s important that you understand that

97

CHAPTER 7 DAX TABLE FUNCTIONS

FILTER is required when you use any expression in the filter test of CALCULATE. We have
highlighted in gray the FILTER expressions to help clarify the code used:

Sales Greater than 20K Wrong =
CALCULATE ([No. of Sales], [Total Sales] > 20000)

Sales Greater than 20K =
CALCULATE ([No. of Sales],
FILTER (Winesales, [Total Sales] » 20000))

Sales Greater than Avg Wrong =
CALCULATE (
[No. of Sales],
[Total Sales]
> AVERAGEX (
Winesales,
Winesales[CASES SOLD] *
RELATED (Wines[PRICE PER CASE])

)

Sales Greater than Avg =
CALCULATE (
[No. of Sales],
FILTER (
Winesales,
[Total Sales]
> AVERAGEX (
Winesales,
Winesales[CASES SOLD] *
RELATED (Wines[PRICE PER CASE])

However, if the requirement is to calculate the number of sales that are greater than
the average cases sold, this expression does not require FILTER because it’s using the
simple aggregate function AVERAGE. Since September 2021, we are now allowed to

98

CHAPTER 7 DAX TABLE FUNCTIONS

author code that uses the simple aggregate functions, such as AVERAGE or MAX in the
predicate as follows:

Cases GT Avg =
CALCULATE (
[No. of Sales],
Winesales[CASES SOLD] > AVERAGE (Winesales[CASES SOLD])

However, experienced DAX users would probably prefer to see this measure
expressed using FILTER:

Cases GT Avg =
CALCULATE (
[No. of Sales],
FILTER (Winesales, Winesales[CASES SOLD]
> AVERAGE (Winesales[CASES SOLD]))

In this section on the FILTER function, you have learned that FILTER generates a
virtual table that can be used in the filter argument of CALCULATE. This virtual table is
used to filter the data model just like “real” tables do.

This leads us to another aspect of the FILTER function (and indeed table functions
generally) that we need to explore in more detail, and that’s the difference between using
a table expression as a filter inside CALCULATE and using a simple column filter instead.

Column Filters vs. Table Filters

What you have learned is that in the “filter” argument to CALCULATE, you can supply
two types of filter: a filter using a column and/or a filter using a table. In short, within
CALCULATE, there are two ways to modify the filter context: using columns or using
tables. What you need to understand now is that there will be a considerable difference
in the evaluation of a measure depending on which type of filter you choose.

So far in this book, the only table function we’ve met is the FILTER function, so we’ll
use FILTER to illustrate the difference between column filters and table filters but to
appreciate that it’s relevant to all table expressions used as filters inside CALCULATE.

99

CHAPTER 7 DAX TABLE FUNCTIONS

Note We’ll be exploring a number of other table functions as we move through
this book such as ALL, VALUES, and the functions known as “time intelligence.”

Why do we need to distinguish between table filters and column filters? There are
essentially two reasons why this difference is important:

1. Because the DAX engine has to generate the virtual tables, table
filters take longer to process.

2. Your measure may return a different result depending on the
filter type.

We will now explore these two scenarios. In the first example, we look at how table
filters increase the processing weight of the measure. In the second example, we will see
that table filters can produce different results from column filters.

Table Filters Are Less Efficient

In this example, let’s take two similar expressions using CALCULATE. The first uses

a column filter and the second, a table expression as the filter argument. In both
expressions, we are filtering the rows in the Winesales fact table that contain cases sold
greater than 300.

Cases GT 300 #1 =
CALCULATE ([Total Sales], Winesales[CASES SOLD] > 300)

Cases GT 300 #2 =
CALCULATE (
[Total Sales],
FILTER (Winesales, Winesales[CASES SOLD] > 300)

You can see in Figure 7-9 that both these measures return the same result, so how
does the table filter differ from the column filter? To answer this question, we must look
more carefully at the evaluation of each of these measures, taking the evaluation of
“Grenache” wine that returns $310,530 as our example.

100

CHAPTER 7 DAX TABLE FUNCTIONS

WINE Cases GT 300 #1 Cases GT 300 #2
Bordeaux $2,658,150 $2,658,150
Champagne $6,075,150 $6,075,150
Grenache $310,530 $310,530
Malbec $27,710 $27,710
Sauvignon Blanc $835,280 $835,280
Total $9,906,820 $9,906,820

Figure 7-9. The measures return the same result

When measure “Cases GT 300 #1” is evaluated, a filter is placed on the CASES SOLD
column to filter values greater than 300. The Total Sales values are then calculated for the
filtered rows of the Winesales table; see Figure 7-10.

101

CHAPTER 7 DAX TABLE FUNCTIONS

Wines s Winesales o
COST PRICE 3 CASESSOLD C
PRICE PER CASE CUSTOMER ID E—
SUPPLIER r * SALE DATE *
D 1 SALESPERSON ID
WINE COUNTRY E WINESALES NO
WRNEID Collapse ~
Collapse {: 3 :

—
| sALEDATE [~] WINESALESNO [~ SALESPERSONID [~] CUSTOMERID [~] WINEID sessot [7] |

| 08/05/2019 698 2 3 5 310 1
| 08/09/2020 1360 2 18 5 304 |
| 27/10/2021 2113 2 36 5 318 |
I 25/07/2017 178 4 39 5 349 |
: 21/04/2018 415 4 11 5 336 |
26/06/2018 460 4 31 5 313
| 05/08/2020 1302 4 49 5 314
I 1571002020 1424 4 28 5 314 |
| 190472018 413 5 18 5 306 |
I_oshsoral .. __ 3500l . .58l . . sl _;5____312_'

Figure 7-10. Stepping through the “Cases GT 300 #1” measure

1. The wine “Grenache” is filtered in the WINE column of the Wines
table and is cross-filtered to the Winesales table that only now
contains rows for “Grenache”.

2. The CASES SOLD column in the Winesales table is further filtered in
memory to contain only the rows for this wine that are greater than
300. The “Total Sales” measure is then calculated for just these rows.

3. Note the filter on the CASES SOLD column.

When the measure “Cases GT 300 #2” is evaluated, the FILTER function iterates the
Winesales table to extract rows where the CASES SOLD is greater than 300 into a virtual
table (remembering that Winesales is filtered to just contain “Grenache” wines). The
total sales for the virtual table generated by FILTER are then calculated; see Figure 7-11.

102

CHAPTER 7 DAX TABLE FUNCTIONS

Ol l@ In Memory Winesales Table o :

|
| casessow @l

| 3 CUSTOMERID
—* saepare SALE DATE |
1_? SALESPERSON ID I [T SALESPERSON ID |
|
|

9

Wines

COST PRICE

WINE ID Z WINEID
T WINESALES NO I T WINESALES NO

WINE ID

Collapse I Collapse ~~
Collapse <~ ®| % -_— e s . —

SALE DATE [~ | WINESALESNO [~| SALESPERSONID [~]| cusTomMERID [~] wiNEID [~] casessolp [~]]

| 0s/08/2021 1966 6 37 5 (0N |
| 05/03/2021 1678 6 7 5 307 I
I 30/04/2020 1123 6 36 5 327
I 02/04/2020 1069 6 12 5 314 I
| 06/12/2018 617 6 29 5 338
. 21/11/2018 601 6 4 ") 341
I 03/10/2017 234 6 40 3 347
14/09/2017 208 6 18 = 302 I
I 20/06/2020 1221 1 14 . 334 I
| omowporo w3l

Figure 7-11. Stepping through the “Cases GT 300 #2” measure

1. The wine “Grenache” is filtered in the WINE column of the Wines
table and is cross-filtered to the Winesales table that now only

contains rows for “Grenache”.

2. The FILTER function iterates the Winesales table to filter CASES
SOLD greater than 300 and generates a virtual table.

3. The “Total Sales” measure is calculated for the rows in the virtual
Winesales table in memory.

4. Note there is no filter on the CASES SOLD column because it’s the
virtual table that has generated the filtered rows.

103

CHAPTER 7 DAX TABLE FUNCTIONS

Question: Which of these evaluations do you think is more efficient?

If your fact table contains many millions of rows, the FILTER function must iterate
these rows to build the virtual table. We're sure you can appreciate that you pay a heavy
processing price if you use table filters rather than column filters. Marco Russo and
Alberto Ferrari explain this in more technical terms:

“A side effect of a table filter is that it requires a large materialization to the storage
engine to enable the formula engine to compute the result.”

This is why using the table function FILTER to filter the cases sold is not good
practice because you should be using the column filter.

To further make the point, in this video, Marco Russo takes you through why using

the FILTER function unnecessarily is not a good idea:
My Power Bl report is slow: what should I do? by Marco Russo

Before we leave the subject of the problematic table filters, there is a third version of
the “Cases GT 300” measure that “newbies” might consider authoring. The expression
“Cases GT 300 #3” uses SUMX and returns the same values as the previous two versions
of the measure discussed before:

Cases GT 300 #3 =
SUMX (FILTER (Winesales, Winesales[CASES SOLD] > 300),
[Total Sales])

What is the problem with this expression? You of course now know. The answer
is it’s inefficient. First, FILTER iterates the fact table to generate a table containing the
rows to be considered. Then SUMX iterates the table generated by FILTER. That’s a lot of
iterations!

The recommended expression is always to use a simple filter on the CASES SOLD
column in the filter argument of CALCULATE.

Table Filters Return Different Results

To understand this aspect of the table filters, let’s consider these two measures, the first
using a column filter and the second using a table filter:

'Marco Russo and Alberto Ferrari (2020), The Definitive Guide to DAX, 2nd ed, p. 699
[Microsoft Press]

104

https://www.youtube.com/watch?v=B-h3Pohtn1Y

Bordeaux Wines #1 =

CALCULATE (
SUM (Winesales[CASES SOLD]),
Wines[WINE] = "Bordeaux")

Bordeaux Wines #2 =
CALCULATE (
SUM (Winesales[CASES SOLD]),

CHAPTER 7

FILTER (Wines, Wines[WINE] = "Bordeaux")

DAX TABLE FUNCTIONS

You might think that these two measures should return the same result. However,

if we put these measures into a Table visual that contains the WINE column from the

Wines dimension (Figure 7-12), we get different results. The measure #1 gives the value

for “Bordeaux” for every wine, but in #2, we get blanks for any wine other than Bordeaux.

WINE Bordeaux Bordeaux
Wines #1 Wines #2

Bordeaux 54,070 54,070

Champagne 54,070

Chardonnay 54,070

Chenin Blanc 54,070

Chianti 54,070

Grenache 54,070

Lambrusco 54,070

Malbec 54,070

Merlot 54,070

Piesporter 54,070

Pinot Grigio 54,070

Rioja 54,070

Sauvignon Blanc 54,070

Shiraz 54,070

Total 54,070 54,070

Figure 7-12. “Bordeaux Wines #1” and “Bordeaux Wines #2” in a Table visual
with the WINE column from the Wines dimension

105

CHAPTER 7 DAX TABLE FUNCTIONS

So why the difference? Let’s look more closely at the “Bordeaux Wines #1” measure.
In the first evaluation of this measure, the active filter context is on the WINE column of
the Wines dimension and is filtering “Bordeaux” in the first instance. This filter is now
cross-filtered to the Winesales table to sum the CASES SOLD for “Bordeaux”. On the
next evaluation, “Champagne” is in the filter context. But CALCULATE modifies the filter
context and replaces the filter on the WINE column from “Champagne” to “Bordeaux”.
It’s this filter that is now cross-filtered to the Winesales table to sum the CASES SOLD
for “Bordeaux” And so on for every evaluation of each wine and also the Total row
evaluation; see Figure 7-13.

[~ == = . . o = s . ..

| WINEID (=] wiNE suppLid
1 1 Laithwa‘
- - - - e . . - -I
| wineo [~] wine fueud
I 2 Champagn Laithwal
L L} L — '
F - - —

| WINE ID [~] wine ppvich
I <
- e - - - . - -I
Lwiveo [~] wine ppLif
| 3 Chardonnay Jiancel
l - O O O - . - - l
F — M - O —— —— — —

pWINEID [~] wine sybeud
| 1 |Bordeaux thwa’

Figure 7-13. CALCULATE replaces the filter on the WINE column so it always
filters “Bordeaux”

Note As mentioned earlier, at this stage in your knowledge of DAX, this
explanation of how the filters work is not yet complete, but it will stand you in
good stead for the time being. We will get to a more accurate explanation later in
Chapter 18.

This is why the total cases for “Bordeaux” are always returned because CALCULATE
replaces the filter on the WINE column to “Bordeaux” for the evaluation of each wine.

106

CHAPTER 7 DAX TABLE FUNCTIONS

Let’s now look at the second measure using FILTER where we get a value returned
for “Bordeaux” but not for the other wines. This measure uses a table filter:

Bordeaux Wines #2 =
CALCULATE (
SUM (Winesales[CASES SOLD]),
FILTER (Wines, Wines[WINE] = "Bordeaux")

The current filter context is on the WINE column of the Wines dimension, filtering
“Bordeaux” in memory in the first instance. The FILTER function inside CALCULATE
scans this table looking for the value “Bordeaux” and generates a virtual table containing
just the “Bordeaux” row. It’s this table filter that is now cross-filtered to the Winesales
table to sum the CASES SOLD for “Bordeaux”. On the evaluation for “Champagne’, the
WINE column in the Wines dimension is filtered accordingly. However, the FILTER
function does not modify the filter context, so the FILTER function inside CALCULATE
scans this one-row table containing “Champagne” looking for the value “Bordeaux”. It
won't find it, and so there is nothing to filter. There is now an empty filter generated by
FILTER, and an empty filter returns no value; see Figure 7-14. This is why there are no
values returned by the measure other than for “Bordeaux”.

In Memory Wines Dimension Virtual Wines table generated by FILTER
e ————— | e e e
[WINEID [~] _wiNE suppLid | WINE ID [~] wine] suppuel

althwa~ 1| Bordeaux Laithwa’

l 1 |Bordeaux I

| wineo [~] wine
| 2 | Champagne Laithwal |

e —— - — =

Lwinen [<] wine [T 's puj~ Fwineo [£] wine [suppud
| 3 |Chardonnay lianc I |
L

—————-———J

L———_———_—l

Figure 7-14. FILTER can’t replace the filter on the WINE column to equal
“Bordeaux’) so there are no rows filtered other than for “Bordeaux”

The important thing to remember about the FILTER function is that it’s a weak
function. Unless you use the ALL function that we explore in the next chapter, FILTER
will only filter the rows that are in the current filter context and will therefore typically

107

CHAPTER 7 DAX TABLE FUNCTIONS

return a subset of the original filter. Using column filters inside CALCULATE, on the other
hand, will replace filters where required.

Using the KEEPFILTERS Function

This behavior of CALCULATE whereby a column filter is always replaced is, by all accounts,
rather odd and unintuitive, giving you the same value for every evaluation. The filter
generated by FILTER, even though it’s a table filter, looks more “normal.” As we're learning,
it's always best to use column filters if possible, so to make the column expression behave
more intuitively, we can use a function called KEEPFILTERS as in this example:

Bordeaux Wines #1 =

CALCULATE (
SUM (Winesales[CASES SOLD]),
KEEPFILTERS (Wines[WINE] = "Bordeaux")

This function modifies the behavior of CALCULATE and prevents it from replacing
filters. In Figure 7-15, you can see that we now only get a value return for “Bordeaux” for
the “Bordeaux Wines #1” measure and no value is returned for the other wines.

WINE Bordeaux Wines #1 Bordeaux Wines #2

Bordeaux 54,070 54,070
Total 54,070 54,070

Figure 7-15. The KEEPFILTERS function prevents CALCULATE replacing filters

In this chapter, you've learned to generate virtual tables as part of your DAX
expressions. These tables are used by measures to manipulate the data model, either
by returning subsets of “real” tables or to act as in-memory dimensions that propagate
filters through the data model. You've also been warned of the different behaviors of
table filters and column filters, particularly with respect to using the FILTER function. As
we move forward and tackle more challenging calculations, this difference will become
more important. For the moment, however, let’s just remember this:

Always use column filters where you can. Only use table filters where necessary.

108

CHAPTER 8

The ALL Function and All
Its Variations

In previous chapters, we have explored the filter context and how the construct of the
visual, slicers, and filters all come together to filter the data model on the evaluation of

a measure. You have learned that with the CALCULATE function, you can modify these
filters programmatically. What you don’t yet know is how to remove filters so you can
calculate your own totals and subtotals. But better still, knowing how to remove filters
means you can programmatically reapply totally different filters than those that are
currently defining the filter context. Let me introduce you to the ALL function that allows
you to take control of this aspect of the evaluation of your measures.

On the face of it, the ALL function appears to be an easy function to understand.
The ALL function returns all the rows of a table, or all the distinct values in a column,
ignoring any filters that might have been applied. However, what you will be discovering
in this chapter is that the simplicity of the ALL function belies the fact that it's one of the
most challenging DAX functions with which to come to terms. In this chapter, we will be
delving into this “wolf in sheep’s clothing” function; the objective is to teach you every
aspect of ALL and all the variations on the ALL function. This will enable you to move
forward and author more complex measures.

There are at least two reasons why the ALL function is challenging to understand.
Firstly, there are a number of variations of the ALL function:

e ALLSELECTED

e ALLEXCEPT

o ALLCROSSFILTERED
e ALLNOBLANKROW

You need to know which of these to use and when.

109
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_8

https://doi.org/10.1007/978-1-4842-8188-8_8

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Note The ALLCROSSFILTERED and ALLNOBLANKROW functions are outside the
remit of this book.

Secondly, ALL (and its variations) has a dual face; it can be used either as a table
function or as a modifier to CALCULATE, as described in the following:

e ALL as a table function - When used as a table function, ALL
behaves as described before; that is, it returns all the rows of a table
or all the distinct values in a column or columns.

e ALL as a modifier - When ALL is used as a top-level filter argument
in CALCULATE, it acts as a modifier to CALCULATE and removes the
filters from tables or columns. In other words, it doesn’t generate a
virtual table.

In fact, ALL is two completely different functions. This is something that many
inexperienced users of DAX don’t appreciate. This is because mostly, the ALL function
behaves the way you would expect, whether you use it as a top-level filter argument
in CALCULATE or nested inside other functions such as FILTER or COUNTROWS. It
removes filters whether by generating virtual tables containing all the rows or
by removing filters from tables and columns. However, we will explore later how
understanding this difference is crucial in understanding the ALL function.

Although I've been referring solely to the ALL function here, we will also be exploring
the ALLSELECTED and ALLEXCEPT functions.

The ALL Function

The ALL function has the following syntaxes:

= ALL (table)

where:

table is the table from where you want to clear the filters.

Here is an example of the ALL function syntax, referencing a table:

= ALL (Winesales)

Unlike other functions that use tables as arguments, you can’t nest another table
function inside the ALL function; you can only use base tables.

Or you can reference a column.

110

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

= ALL (column 1, column 2, etc.)

where:

column(s) is the column or columns from where you want to clear the filters.

Here is an example of the ALL function syntax referencing a column:

= ALL (Wines[TYPE])

The ALL function will have a different impact on the filtering of the data model
depending on the syntax you use, whether ALL is removing filters from tables or
removing filters from columns. It will have a different impact yet again if you use ALL to
remove filters from fact tables or dimensions. Therefore, to make it easier to understand
the behavior of ALL, we'll take these three different objects from where ALL can remove
filters and explore them separately, as follows:

1. Fact tables
2. Dimensions

3. A column or columns

Applied to the Fact Table

Let’s again consider a scenario. In the visual in Figure 8-1, we're using this measure to
calculate the number of sales:

No. of Sales =
COUNTROWS (Winesales)

We have then calculated the “Grand Total No. of Sales” to act as a denominator
to calculate the percentage shown in “No. of Sales as Percent of Grand Total”; see
Figure 8-1.

111

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

WINE No. of Sales Grand Total No. of Sales as
No. of Sales Percent of Grand
Total

Bordeaux 180 2,207 8.16%
Champagne 132 2,207 5.98%
Chardonnay 187 2,207 8.47%
Chenin Blanc 200 2.207 9.06%
Chianti 148 2,207 6.71%
Grenache 182 2,207 8.25%
Lambrusco 2,207

Malbec 170 2,207 7.70%
Merlot 197 2:207 7.11%
Piesporter 115 22.017 5.21%
Pinot Grigio 168 2,207 7.61%
Rioja 197 2,207 8.93%
Sauvignon Blanc 168 2:207 7.61%
Shiraz 203 22007 9.20%
Total 2,207 2,207 100.00%

Figure 8-1. Using ALL to calculate the percentage of the Grand Total

To arrive at these calculations, first, we need to author a measure that ignores the
filters coming through from the Wines dimension so we can calculate the number
of sales for all the wines, 2,207. To do this, we can use ALL as a table function to
generate a virtual table containing all the rows of the Winesales fact table and then use
COUNTROWS to count the rows in this table. This is the expression:

Grand Total No. of Sales =
COUNTROWS (ALL (Winesales))

112

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Finally, we can then divide the Grand Total into each wine’s total to find the
percentage, as in the following measure:

No. of Sales as Percent of Grand Total =
DIVIDE ([No. of Sales] , [Grand Total No. of Sales])

Let’s explore the impact of adding more filters to the report. In Figure 8-2, we have
placed a filter on the SalesPeople dimension using a slicer, but you can see that the
measure using the ALL function always returns the Grand Total regardless of the filter.

WINE No. of Sales Grand Total No. of Sales as SALESPERSOH
No. of Sales Percent of Grand M Abel
Torta| Blanchet
Charron

Bordeaux 30 2,207 1.36% Denis

Champagne 29 2,207 1.31% Leblanc

Chardonnay 36 2,207 1.63% Reyer

Chenin Blanc 25 2,207 1.13%

Chianti 24 2,207 1.09%

Grenache 30 2,207 1.36%

Lambrusco 2207

Malbec 25 2,207 1.13%

Merlot 31 2,207 1.40%

Piesporter 25 2,207 1.13%

Pinot Grigio 30 2,207 1.36%

Rioja 34 2,207 1.54%

Sauvignon Blanc 19 2,207 0.86%

Shiraz 38 2,207 1.72%

Total 376 2,207 17.04%

Figure 8-2. The ALL function ignores filters from dimensions

To understand the behavior of ALL in this example, we must again consider the filter
context. On the evaluation for “Bordeaux” wine, there are two active filters: one on the
Wines dimension filtering “Bordeaux” and one on the SalesPeople dimension filtering

113

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

“Abel” However, the ALL function always counts the rows of the virtual table containing
all the rows of the Winesales fact table ignoring any filters propagating from dimensions;
see Figure 8-3.

SalesPeople ol
Regions [
FIRSTHAME
SALESPERSON hEeon
SALESPERSON ID REGINIID
Callapse ~ Collapse -~
1 1
’ X
*
* Customers o
[&] wines a) Winesales O
Area
COST PRICE T CASES SOLD Country
PRICE PER CASE CUSTOMER ID 1 County
SUPPLIER ¥ saepate g | CUSTOMERID
TYPE 1 _x_ SALESPERSON ID * CUSTOMER NAME
WINE WINE ID % NO.OF STORES
WINE COUNTRY T WINESALES NO REGION 1D
WINEID —C-Oﬂdmt’ e Collapse ~
Collapse ~ *
r — — — — — —
J In Memory Winesales Table & : I
} 2 CASESSOLD I
I 7 CUSTOMERID I
[[T saLe pare
1 T SALESPERSOI I
DateTable Bl I S WINEID I
Z WINESALES NO
[T oaTexer l I
MONTH Collapse
¥ MONTH NO. I — = = -l
amr
YEAR
Collapse ~

Figure 8-3. The ALL function passed to the fact table generates a virtual fact table
that is used for all evaluations, and any filters from dimensions are ignored

Let’s look at another example of using the ALL function on the fact table, but this
time nesting ALL inside CALCULATE. For example, you may want to find the grand total
of cases sold, again so you could use this value as a denominator to find percentages; see
Figure 8-4. This would be the measure:

114

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Total Cases All Winesales =
CALCULATE ([Total Cases], ALL(Winesales))

WINE Total Cases Total Cases
All Winesales
Bordeaux 54,070 423,224
Champagne 49,158 423,224
Chardonnay 42,030 423,224
Chenin Blanc 24,739 423,224
Chianti 27,323 423,224
Grenache 35,965 423,224
Lambrusco 423,224
Malbec 34,290 423,224
Merlot 23,084 423,224
Piesporter 10,253 423,224
Pinot Grigio 23,449 423,224
Rioja 33,951 423,224
Sauvignon Blanc 47,415 423,224
Shiraz 17,497 423,224
Total 423,224 423,224

Figure 8-4. The ALL function nested inside CALCULATE to find the grand total of
cases sold

You can see how this measure again ignores any filters on the data model.

However, let’s now focus on an expression that you may require that calculates the
average cases sold for all wines so you can compare this average to the average cases sold
for each wine. This would be the measure that would find this average:

Avg Cases All Winesales =
CALCULATE(AVERAGE (Winesales[CASES SOLD]), ALL (Winesales))

You could then author the following measure using FILTER to calculate the number
of sales where the cases sold value is greater than the average for all the wines:

No. of Sales Where Cases is GT Avg All Wines =
CALCULATE (

115

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

[No. of Sales],
FILTER (Winesales, Winesales[CASES SOLD]
>= [Avg Cases All Winesales])

In the code for “No. of Sales Where Cases is GT Avg All Wines” the FILTER function
iterates the Winesales table to filter any rows where the value in the CASES SOLD
column is greater than the value calculated by “Avg Cases All Winesales” However, to
fully appreciate the details of this expression, you need to understand the concept of
context transition that we will be exploring in a later chapter.

You can see the results of these expressions in Figure 8-5.

WINE Total Cases Total Cases All Avg Cases Avg Cases All No. of Sales
Winesales Winesales Where Cases is

GT Avg All Wines

Bordeaux 54,070 423,224 300.39 191.76 145

Champagne 49,158 423,224 372.41 191.76 131

Chardonnay 42,030 423,224 224.76 191.76 185

Chenin Blanc 24,739 423,224 123.70 191.76

Chianti 27,323 423,224 184.61 191.76 70

Grenache 35,965 423,224 197.61 191.76 91

Lambrusco 423,224 191.76

Malbec 34,290 423,224 201.71 191.76 88

Merlot 23,084 423,224 147.03 191.76 12

Piesporter 10,253 423,224 89.16 191.76

Pinot Grigio 23,449 423,224 139.58 191.76 14

Rioja 33,951 423,224 172.34 191.76 28

Sauvignon Blanc 47,415 423,224 282.23 191.76 168

Shiraz 17,497 423,224 86.19 191.76

Total 423,224 423,224 191.76 191.76 932

Figure 8-5. Calculating the grand total cases sold and the average cases for
all wines

What you have to understand here is that when ALL is nested inside CALCULATE, it
doesn’t behave as a table function. Instead, ALL is removing all the cross-filters on the fact
table and therefore evaluating all the rows of the fact table. We will be exploring this behavior
in detail as we move through this chapter.

116

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Using ALL in this way, we’ve been able to find the percentages of the Grand Total.
However, you may have a different requirement, and that is to calculate percentages
across filtered items. This brings us to the second place where we can use ALL, and that

is when it’s passed onto dimensions.

Using ALL on Dimension Tables

For example, in Figure 8-2, we've filtered salesperson “Abel” in the slicer and can see
the total number of sales for Abel for all the wines is 376. We want to know what the
individual wine totals are for “Abel” as the percentage of this value. In other words,
we need to remove the filter on the Wines dimension while retaining the filter on the
SALESPERSON column in the SalesPeople dimension that is filtering “Abel”.

If we remove a filter from a specific dimension, filters propagating from other
dimensions into the fact table will be unaffected. Therefore, if we remove the filter
from the Wines dimension, the filter on the SalesPeople dimension will be preserved,
therefore calculating the number of sales for all the wines for the filtered salesperson.

However, this measure using ALL on the Wines dimension isn’t correct:

No. of Sales All Wines Wrong =
COUNTROWS (ALL (Wines))

This measure would generate a table containing all the rows in the Wines dimension
and then count the number of rows in this table, returning 14 because there are 14 rows
in the Wines dimension. Remember that the table whose rows we want to count is that
of the Winesales fact table, filtered to show the sales of all the wines for the salesperson
selected in the slicer. Therefore, we need to calculate the number of sales in the
Winesales table which we’ve already done a number of times:

No. of Sales = COUNTROWS (Winesales)

Because we want to modify the filter context to remove the filter from the Wines
dimension, we can use the “No. of Sales” measure inside CALCULATE, and then using
the ALL function as the filter argument in CALCULATE, we can modify the filter context
as follows:

No. of Sales All Wines =
CALCULATE ([No. of Sales], ALL (Wines))

117

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Finally, we can divide to arrive at the percentage:

No. of Sales as Percent of Filtered Value =
DIVIDE ([No. of Sales] , [No. of Sales All Wines])

Let’s focus on the measure “No. of Sales All Wines” shown in Figure 8-6. We can

see it calculates the same value that is sitting in the Total row of the “No. of Sales”

measure, 376.

WINE No. of Sales No. of Sales No. of Sales as
All Wines Percent of Filtered
Value

Bordeaux 30 376 7.98%
Champagne 29 376 7.71%
Chardonnay 36 376 9.57%
Chenin Blanc 25 376 6.65%
Chianti 24 376 6.38%
Grenache 30 376 7.98%
Lambrusco 376

Malbec 25 376 6.65%
Merlot 31 376 8.24%
Piesporter 25 376 6.65%
Pinot Grigio 30 376 7.98%
Rioja 34 376 9.04%
Sauvignon Blanc 19 376 5.05%
Shiraz 38 376 10.11%
Total 376 376 100.00%

SALESPERSON

B Abel
Blanchet
Charron
Denis
Leblanc
Reyer

A4

Figure 8-6. Removing the filter from a dimension using ALL

In this Table visual, initially, filters are on both the Wines dimension and the

SalesPeople dimension, but when the “No. of Sales All Wines” measure is evaluated for
each wine, all the filters are removed from the Wines dimension (because we are using

CALCULATE), therefore always returning the value for all the wines. Filters from any

other dimensions, for example, the SalesPeople dimension, are retained; see Figure 8-7.

118

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

SalesPeople D
FIRSTNAME
SALESPERSON
SALESPERSON ID
Cellapse ~
1 /
*
Wines I Winesales O
COST BRICE > CASES SOLD
PRICE PER CASE CUSTOMER ID
SUPPLIER s SALE DATE
. *_
TYPE q SALESPERSON ID
WINE WINE ID
WINE COUNTRY 2 WINESALES NO
WINE ID -
Collapse ™
Collapse ~ *

Figure 8-7. The ALL function removes filters from the Wines dimension, but other
filters are preserved

Perhaps we’re beginning to appreciate that there’s much to understanding the ALL
function! We're getting there, but we’re not quite there yet. For instance, consider the
measure we've just been working with:

No. of Sales All Wines =
CALCULATE ([No. of Sales], ALL (Wines))

It may not be the calculation that you want. The problem is that it removes all the
filters in the Wines dimension. There will come a time when we need to be more specific
regarding from which columns in a dimension we need to remove the filters.

119

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Using ALL on a Column

Consider the example in Figure 8-8. Both the SALESPERSON column from the
SalesPeople dimension and the SUPPLIER column from the Wines dimension are being
filtered by slicers. We're filtering salesperson “Abel” and supplier “Alliance”. Remember
that there is also a filter on the WINE column from the Wines dimension filtering each
wine. However, the “No. of Sales All Wines” is showing the total for Abel for all suppliers,
376, because the measure removes all the filters from the Wines table including the
SUPPLIER column.

WINE No. of Sales No. of Sales No. of Sales as SARESPERSON =
All Wines Percent of Bl Abel
Filtered Value Blanchet
Charron
Chardonnay 36 376 9.57% Denis
Chenin Blanc 25 376 6.65% Leblanc
Lambrusco 376 Reyer
Shiraz 38 376 10.11%
SUPPLIER
fotal % 376 £h33% M Alliance
Laithwaites
| Majestic
Redsky

Figure 8-8. ALL that references a table will remove filters from all columns in a
table, which may be incorrect

Therefore, the percentage in “No. of Sales as Percent of Filtered Value” would be
correct if you want to show the percentage “Abel’s” sales of “Alliance” are of “Abel’s” total
sales for all suppliers (376). However, this would be incorrect if you want to show the
percentage “Abel’s” sales are of the total sales only for “Alliance” (99). If the latter is the
goal, we must calculate “Abel’s” total for all the wines that are supplied by “Alliance” (or
whatever supplier has been filtered), which is 99.

120

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Let’s look more closely at the problem. The current filter context uses filters on two
columns in the Wines dimension: WINE and SUPPLIER. If we could see the in-memory
Wines table for the evaluation of “Chardonnay’, it might look something like Figure 8-9.

IWINEID [~] wINE SUPPLIER 7] |rvee [~] wiNE counTry [~] PRice Per case [~] costprice [~]1
3 Chardonnay Alliance White France $100.00 $75.00 I

'————————————————————————————J

Figure 8-9. Filters are on both the WINE column and the SUPPLIER column

The measure “No. of Sales All Wines” removes both these filters and so calculates
the number of sales for Abel for all wines and all suppliers. Using the ALL function with
a table name as its argument, whether it’s a fact table or a dimension, will remove all
the filters from that table. We can, however, use ALL to remove filters from just specific
columns.

To remedy the problem in Figure 8-8, we need to remove the filter from the WINE
column but retain the filter on the SUPPLIER column. This is the measure we can create
to do this:

No. of Sales All Wines #2 =
CALCULATE ([No. of Sales] , ALL (Wines[WINE]))

You can see that in this measure, we've used a reference to the WINE column
inside ALL, and so ALL removes the filter from this column only. Figure 8-10 shows
what is happening in memory, and you can see that the filter is retained on the
SUPPLIER column.

WINEID [~] WINE SUPPLIER [-¥] TvPE [~ | WINE COUNTRY [~ | PRICE PER CASE |~| COST PRICE |;|I

|

I 14 Lambrusco Alliance White Italy $20.00 $15.00 I
I 13 Shiraz Alliance Red France $78.00 5$30.00 I
I 12 Chenin Blanc Alliance White France $50.00 $10.00 I
I 3 Chardonnay Alliance White France 5100.00 575.00 I
L |

Figure 8-10. Using ALL on a column remouves the filter from that column only

We can now calculate the correct percentage and see this evaluated in Figure 8-11:

No. of Sales as Percent of Filtered Value #2 =
DIVIDE ([No. of Sales] , [No. of Sales All Wines #2])

121

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

WINE No. of Sales No. of No. of Sales as AULLEEESS
Sales All Percent of Filtered M Abel
Wines #2 Value #2 Blanchet
Charron
Chardonnay 36 99 36.36% Denis
Chenin Blanc 25 99 25.25% Leblanc
Lambrusco 99 Reyer
Shiraz 38 99 38.38% TN N
Total 929 99 100.00% B Alliance
Laithwaites
Majestic
Redsky

Figure 8-11. The correct percentage for sales for “Abel” for “Alliance” supplier

Let’s consider another example where we must use the ALL function to remove the
filter from a specific column. This is where the requirement is to calculate percentages
across grouped items. For example, in the Matrix visual in Figure 8-12, there are two
columns from the Wines dimension in the Rows bucket of the Matrix: WINE COUNTRY
and TYPE. We've calculated the percentage the “Total Cases” values for each TYPE are
of the “Total Cases” values for each WINE COUNTRY and can see that “White” wines
constitute 47.02% of “French” wines.!

!For information on constructing Matrix visuals, visit https://www.burningsuit.
co.uk/7-secrets-of-the-matrix-visual/

122

https://www.burningsuit.co.uk/7-secrets-of-the-matrix-visual/
https://www.burningsuit.co.uk/7-secrets-of-the-matrix-visual/

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

WINE COUNTRY TYPE Total Cases All Wines Type Percentage of
Wine Country
? France Red 130,616 246,543 52.98%
White 1i1.5:927, 246,543 47.02%
Total 246,543 246,543 100.00%
= Germany Red 61,613 71,866 85.73%
White 10,253 71,866 14.27%
Total 71,866 71,866 100.00%
< Italy Red 33,951 104,815 32.39%
White 70,864 104,815 67.61%
Total 104,815 104,815 100.00%
Total 423,224 423,224 100.00%

Figure 8-12. Calculating percentages across grouped data

It would then be insightful to create a stacked column chart where we can show
the total cases for each WINE COUNTRY and TYPE. We could then use the Tooltip,
populated with our percentage measure to show the percentage breakdown across

TYPE, as in Figure 8-13.

123

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Total Cases and Percentage of Wine Country by WINE COUNTRY and TYPE
TYPE @ Red @ White
300K
250K WINE COUNTRY France
TYPE White
200K Total Cases 115,927
a Percentage of Wine Country 47.02%
@
© 150K
=
k]
100K
50K
oK
France Italy Germany
WINE COUNTRY

Figure 8-13. Stacked column chart showing the percentage breakdown across
WINE COUNTRY in the Tooltip

These are the measures that are calculated in Figure 8-12.

All Wines Type =
CALCULATE ([Total Cases], ALL (Wines[TYPE]))

Percentage of Wine Country =
DIVIDE ([Total Cases] , [All Wines Type])

Let’s look more closely at how the “All Wines Type” measure is evaluated in the
Matrix visual. The first evaluation starts with a filter on WINE COUNTRY of “France” and
a filter on TYPE of “Red’; and this is propagated to the fact table. However, to calculate
the Total Cases for “France’, the filter on TYPE must be removed so that the measure
calculates Total Cases for both “Red” and “White” types for “France”. If the filter from the
TYPE column is removed using ALL, then “France” is the only filter propagated to the

fact table; see Figure 8-14.

124

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

r-
WINEID [~] wINE [~] suppuiER [~] TvPE me coummv PRICE PER CASE |~ | cosTPRICE [~ 1

: 13 Shiraz Alliance Red France $78.00 $30.00 |
I 9 Merlot Majestic Red France $39.00 $15.00]
| 5 Grenache Redsky Red France $30.00 $10.00]

1 Bordeaux Laithwaites Red France 575.00 525.00 l
e e e e e
 WINEID [~] wmne [~] suppLiEr [~] TYPE WINE COUNTRY [-¥] PRICE PER case [~] cosTprice [~]I
| 13 Shiraz Alliance Red France $78.00 530,0‘.')l
I 12 Chenin Blanc Alliance White France $50.00 SIO.DOI
| 9 Merlot Majestic Red France $39.00 515,001
i 5 Grenache Redsky Red France $30.00 SJD‘OOI
| 3 Chardonnay Alliance White France $100.00 $75.DOI
I 2 Champagne Laithwaites White France $150.00 SIG0,00I
I 1 Bordeaux Laithwaites Red France $75.00 525,001

O . R M S R S S M N G R R R S S G R e M e S e e e e el

Figure 8-14. Using ALL on the TYPE column removes the filter from only
that column

Being able to identify which table and/or column you want to remove filters from
is key to using ALL successfully. However, consider the example in Figure 8-15 where
we have four columns in the Rows bucket. To calculate the percentage for each WINE
COUNTRY, we need to remove the filters from three columns in the Wines dimension,
that is, TYPE, SUPPLIER, and WINE.

125

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

WINE COUNTRY TYPE SUPPLIER WINE Total Cases All Wines Type, Percentage
Supplier & Wine of Wine
Country #2
par

? France “ Red “ Laithwaites Bordeaux 54,070 246,543 21.93%
= Redsky Grenache 35,965 246,543 14.59%
< Majestic Merlot 23,084 246,543 9.36%
= Alliance Shiraz 17,497 246,543 7.10%
“ White © Alliance Chardonnay 42,030 246,543 17.05%
Chenin Blanc 24,739 246,543 10.03%
? Laithwaites Champagne 49,158 246,543 19.94%
Total 246,543 246,543 100.00%
© Germany “Red 7 Laithwaites Malbec 34,290 71,866 47.71%
< Redsky Chianti 27,323 71,866 38.02%
< White = Redsky Piesporter 10,253 71,866 14.27%
Total 71,866 71,866 100.00%
“ Italy < White = Majestic Sauvignon Blanc 47,415 104,815 45.24%
Pinot Grigio 23,449 104,815 22.37%
“Red *= Majestic Rioja 33,951 104,815 32.39%
Total 104,815 104,815 100.00%

Figure 8-15. Removing filters from multiple columns

Inside the ALL function, you can reference multiple column names, so you could
write this measure:

All Wines Type, Supplier & Wine =
CALCULATE ([Total Cases],
ALL (Wines[TYPE], Wines[SUPPLIER], Wines[WINE])

Note Because we are removing the filter from the WINE column, “Lambrusco”
wine that has no data will appear in the visual. To fix this, use a visual-level filter to
filter nonblank items.

However, you can appreciate how tedious this could get if you had many columns
from which you must remove filters. This is where you could use the ALLEXCEPT
function instead of ALL.

126

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

The ALLEXCEPT Function

ALLEXCEPT removes all filters in a table except filters that are applied to the columns
you specify. This can be used for situations in which you want to remove the filters on
many but not all of the columns in a table.

The ALLEXCEPT function has the following syntax:

= ALLEXCEPT (table, columnl, colum2, etc.)

where:

table is the table where you want to clear the filters from except the filters on the
columns specified in the next arguments.

columnl, column2 are the columns where you want filters preserved.

Here is an example of the ALLEXCEPT syntax:

= ALLEXCEPT (Wines, Wines[WINE COUNTRY])

Note that in ALLEXCEPT, unlike ALL, you need to first supply the table name.
Therefore, in the Matrix visual in Figure 8-15, you could author an alternative version
of the “All Wines Type, Supplier & Wine” measure as follows:

All Except Wine Country =
CALCULATE ([Total Cases],
ALLEXCEPT (Wines, Wines[WINE COUNTRY])

So now we can calculate the percentage:

Percentage of Wine Country #2=
DIVIDE ([Total Cases] , [ALl Except Wine Country])

You might think that surely we’ve exhausted all possible “ALL” variations! We've
looked at removing filters from entire tables, either fact tables or dimensions. We've also
seen how we can remove filters from specific columns and how to remove filters from
several columns while retaining filters on others. However, there is still another scenario
that we need to explore. Consider Figure 8-16.

127

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

WINE No. of Sales Grand Total No. MINE
of Sales B Bordeaux

B Champagne
Bordeaux 180 2,207 B Chardonnay
Champagne 132 2,207 B Chenin Blanc
Chardonnay 187 2,207 Chianti
Chenin Blanc 200 2,207 Grenache
Total 699 2,207 .| Lambrusco
Malbec
Merlot
| Piesporter
Pinot Grigio
Rioja
Sauvignon Blanc
Shiraz

Figure 8-16. The “Grand Total No. of Sales” measure is not the total for the
selected wines in the slicer

Here, we have a Table visual into which the WINE column from the Wines dimension
has been placed. You can see that four wines have been filtered using the slicer. The “No.
of Sales” measure calculates the number of sales for the selected wines. The “Grand Total
No. of Sales” measure has also been included and has the following expression:

Grand Total No. of Sales =
COUNTROWS (ALL (Winesales))

This measure returns the total number of sales for all wines irrespective of the slicer
selection. This would also be true if the wines filter was generated from a filter placed
in the Filters pane. If we want to calculate percentages of the total only for the selected
wines (699 in this case), this “Grand Total No. of Sales” measure is not going to work.

The problem is that the values selected in the slicer come from the same column that
is put into the Table visual, which is the WINE column. We're using the slicer to reduce
the wines shown in the visual. Therefore, we need to find a function that specifically
finds grand totals for the items that have been filtered in the visual. The function we need
is called ALLSELECTED.

128

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

The ALLSELECTED Function

The syntax for the ALLSELECTED function is the same as for the ALL function:

= ALLSELECTED (table)

or

= ALLSELECTED (Column 1, Column 2, etc.)

However, if you were to look at the function description in the DAX Function Library,
you may be a little bemused:

‘ALLSELECTED removes context filters from columns and rows in
the current query, while retaining all other context filters or explicit
filters. The ALLSELECTED function gets the context that represents
all rows and columns in the query, while keeping explicit filters and
contexts other than row and column filters. This function can be
used to obtain visual totals in queries.”

To be fair, it is very difficult to explain what this function does. It's much easier to
look at an example of using it. Therefore, let’s return to our problem of calculating the
grand total for only the wines selected in the slicer. This is the DAX expression we need:

Grand Total No. of Sales for Selected Wines =
CALCULATE ([No. of Sales], ALLSELECTED (Wines[WINE]))

You can see this measure and the percentage calculated from it in Figure 8-17.

129

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

WINE No. of Sales Grand Total No.
of Sales for
Selected Wines
Bordeaux 180 699
Champagne 132 699
Chardonnay 187 699
Chenin Blanc 200 699
Total 699 699

WINE

M Bordeaux

Bl Champagne

B Chardonnay

B Chenin Blanc
Chianti
Grenache
Lambrusco

_ Malbec
Merlot
Piesporter

| Pinot Grigio
Rioja
Sauvignon Blanc
Shiraz

Figure 8-17. The ALLSELECTED function calculates the correct grand total

How does this expression work? Well again, let’s consider the current filter context

for the first evaluation of this measure, that is, “Bordeaux” in the WINE column of the
Wines dimension. However, ALLSELECTED replaces the filter on the WINES column
with the filter from the slicer. Therefore, the Wines dimension is filtered to reflect the

slicer selection; see Figure 8-18.

130

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

I wine o [~] wine SUPPLIER [~ | TYPE [~] wiINE cod!
1 Bordeaux Laithwaites Red France

|

| wineip [~] wiNE UPPLIER [~] TvpE [~] WINECOUJI B Bordeaux

| 12 Chenin Blanc lliance White France Bl Champagne

| 3 Chardonnay [Charc.ionnay
_ _ _ || |IM Chenin Blanc

| 2 Champagne Laithwaites White France Chiant

| 1 Bordeaux Laithwaites Red France Grenache

T e - o S e S S e e O e e e e Lambrusco

hMalhar

Figure 8-18. The ALLSELECTED function replaces the filter to reflect the slicer
selections

Mostly you can use ALLSELECTED in place of ALL because often you're using
slicers or the Filters pane to reduce the number of items shown in visuals. If there are no
selections from slicers or from the Filters pane, ALLSELECTED will remove all filters, just
like ALL.

Up to now, we've been using the ALL function (and its variations) while not
considering whether it’s being used as a table function or is being used as a modifier to
CALCULATE. The “ALL’ functions seem to be doing their job, and we’re thankful for that.
We know that ALL removes filters whether by removing filters from tables and columns
or by generating virtual tables containing all the rows. However, we are now going to
focus our attention on the difference between ALL as a table function and ALL as a
modifier to CALCULATE. Remember how in Chapter 1 we said that when working with
DAX, the devil is in the detail? Understanding this difference in these two behaviors of
ALL is a fine example of paying attention to this detail.

ALL as a Modifier to CALCULATE

To understand this aspect of ALL, let’s consider a scenario that we've looked at before,
which is removing the filter from the WINE column in the Wines dimension while still
retaining the filter on the SUPPLIER column (see Figure 8-11). This was to calculate the

number of sales for the selected supplier.
131

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

However, this time we're going to count the number of wines supplied by “Alliance”
by counting the rows in the Wines table that are filtered accordingly, using a slicer. To
do this, we've created two similar measures that both use the ALL function on the WINE

column in the Wines dimension:

No. of Wines #1 =
COUNTROWS (ALL (Wines[WINE]))

No. of Wines #2 =
CALCULATE (COUNTROWS (Wines), ALL (Wines[WINE]))

However, only one of these measures returns the correct result; see Figure 8-19.

WINE No. of No. of SUPPLIER

Wines #1 Wines #2 Bl Alliance

Laithwaltes

Chardonnay 14 4 Majestic
Chenin Blanc 14 4 Redsky
Lambrusco 14 4
Shiraz 14 4
Total 14 4

Figure 8-19. Using ALL on a column can return different results

The “No. of Wines #1” measure uses ALL as a table function and generates a one-
column table of all the distinct values in the WINE column. The measure then counts the
number of rows in this virtual table and returns 14 rows as shown in Figure 8-20.

132

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

wne [-] 1
Bordeaux
Champagne
Chardonnay
Malbec
Grenache
Piesporter
Chianti
Pinot Grigio >_ 14 ROWS
Merlot
Sauvignon Blanc
Rioja

Chenin Blanc

Shiraz

Lambrusco

Figure 8-20. ALL as a table function generates a virtual table of distinct values

The “No. of Wines #2” measure uses ALL inside CALCULATE as a modifier and
therefore removes the filter from the WINES column but preserves the filter on the
SUPPLIER column. This measure then counts the number of rows in the Wines
dimension and returns four rows; see Figure 8-21.

I wine o [~] wine SUPPLIER [-¥]| TvPE [~] WINE @

3 Chardonnay Alliance White France

e e e e e e 1

| WINEID [~] wine | [~]|suppLiER [-T] TYPE [~]| WINEQ
l 14 Lambrusco Alliance White Italy |
i 13 Shiraz Alliance Red France | >—4 Rows
I 12 Chenin Blanc Alliance White France |
3 Chardonnay Alliance White France

Figure 8-21. The ALL function as a CALCULATE modifier removes the filter on
the WINE column

133

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

This example has been easy to explain. However, the ALL function acting as a
modifier to CALCULATE can be more challenging to understand, and this is certainly the
case in the next example we’re going to explore.

We've built three measures that calculate the number of sales where the cases sold
is greater than 300. They're all using the expression “ALL (Winesales)” (highlighted
in gray), and the expressions look much the same. You might therefore expect them to
return the same result:

No. of Sales Where Cases GT 300 #1
CALCULATE ([No. of Sales],
ALL (Winesales),
Winesales[CASES SOLD] > 300

)

No. of Sales Where Cases GT 300 #2
CALCULATE (

[No. of Sales],

FILTER (

ALL (Winesales), Winesales[CASES SOLD] > 300)

)

No. of Sales Where Cases GT 300 #3 =
CALCULATE (
[No. of Sales],
ALL (Winesales),
FILTER (Winesales, Winesales[CASES SOLD] >300)

However, as you can see in Figure 8-22, whereas measures #1 and #2 return the same
value, measure #3 returns a different value.

134

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

WINE No. of Sales No. of Sales No. of Sales
Where Cases Where Cases Where Cases
GT 300 #1 GT 300 #2 GT 300 #3

Bordeaux 286 286 89

Champagne 286 286 100

Chardonnay 286 286

Chenin Blanc 286 286

Chianti 286 286

Grenache 286 286 32

Lambrusco 286 286

Malbec 286 286 1

Merlot 286 286

Piesporter 286 286

Pinot Grigio 286 286

Rioja 286 286

Sauvignon Blanc 286 286 64

Shiraz 286 286

Total 286 286 286

Figure 8-22. Similar expressions can return different results

These three measures all use ALL on the Winesales table so they should ignore any
filters on the Winesales table. This is true for measures #1 and #2 (there are 286 rows in
the Winesales table where CASES SOLD is greater than 300), but what about measure #3?
In this measure, the ALL function appears to be ignored, and the cross-filter propagated
from the Wines dimension is retained. Therefore, this measure returns the number of
sales for each wine where CASES SOLD is greater than 300.

Question: Which of these measures is the odd one out?

You might think measure #3 is the odd one out because it returns a different value.
However, you could argue that measure #2 is the odd one out because it’s the only
measure where ALL is being used as a table function. In the other two measures, ALL is
acting as a CALCULATE modifier.

135

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

To understand this, let’s look at the evaluation of each of these measures in
more detail.
In this measure

No. of Sales Where Cases GT 300 #1 =
CALCULATE ([No. of Sales],
ALL (Winesales), Winesales[CASES SOLD] > 350

)

there are two filter arguments in CALCULATE. The first one using ALL is modifying the
filter to remove filters from the Winesales table. This is evaluated first and produces an
empty filter. The second filter is a column filter on the CASES SOLD column, filtering
cases sold greater than 300; see Figure 8-23.

136

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Evaluation of the ALL argument that modifies CALCULATE is done first
I

k
Wines I Winesales I
COST PRICE Z CASES SOLD
PRICE PER CASE CUSTCMER ID
SUPPLIER *. SALE DATE
i * |
TYPE q =] SALESPERSON ID
WINE COUNTRY Z WINESALES NO
WINE ID s
Collapse /~
Collapse ~ *

Evaluation of the filter argument is done next
I I

k%
Winesales)
> CASES SOLD @
CUSTOMER ID

Tt SALE DATE
SALESPERSON 1D
WINE ID

2 WINESALES NO

Collapse ™~

*

|

Figure 8-23. The evaluation of “No. of Sales Where Cases GT 300 #1”

1. ALL behaves as a modifier to CALCULATE and removes any filters
or cross-filters on Winesales, including the filter coming through
from the Wines dimension. This results in an empty filter, and
therefore, the Winesales table now has no filters on it.

137

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

2. Anewfilter is then placed on the CASES SOLD column of the
Winesales table to filter any cases sold that are greater than

300. This is the new filter in which the “No. of Sales” measure is

evaluated and the rows of the Winesales table are counted.

In this measure

No. of Sales Where Cases GT 300 #2 =
CALCULATE (
[No. of Sales],
FILTER (
ALL (Winesales), Winesales[CASES SOLD] >350)

)

there is just one filter argument in CALCULATE supplied by the FILTER function

(highlighted in gray). Inside the FILTER function, the ALL function generates a virtual

table of all the rows in the Winesales table, therefore removing the cross-filter from the

Wines dimension. The FILTER function iterates this virtual table to return the rows

where CASES SOLD is greater than 300; see Figure 8-24.

! I

3
9

* SALEDATE SALE DATE

WINE ID
Collapse ~

Collapse

l

E JNE — e —
Wines : Winesales : @ In Memory Win:

esales Table o :

COST PRICE 2 CASES SOLD | 2 CASESSOLD
PRICE PER CASE / CUSTOMER ID ;_:cuy:omn 3]
SUPPLIER (—

TYPE @ -,_T SALESPERSON | | X saespersoniD
WINE COUNTRY T WINESALES N I J WINESALES NO

l Collapse ~~
* —— — —

Figure 8-24. The evaluation of “No. of Sales Where Cases GT 300 #2”

1. The current filter context filters each WINE in the Wines
dimension, and this is cross-filtered to the Winesales table.

2. The ALL function inside FILTER generates a virtual table of all the

rows of Winesales, ignoring the wine filter.

138

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

3. The FILTER function iterates over the virtual Winesales table to
filter out the rows where CASES SOLD is greater than 300. This is
the new filter in which the “No. of Sales” measure is evaluated and
the rows of the virtual Winesales table are counted.

The outcome of this measure is the same as in #1 before. However, you can
appreciate that the generation of a virtual table is less efficient than simply placing a
filter on a column. Here is yet another example of paying a heavy processing price when
using a table filter inside CALCULATE (we’ve looked at this earlier when learning about
the FILTER function).

In this measure

No. of Sales Where Cases GT 300 #3 =
CALCULATE (
[No. of Sales],
ALL (Winesales),
FILTER (Winesales, Winesales[CASES SOLD] >300)

)

there are two filter arguments inside CALCULATE. The first, “ALL (Winesales)”, is a
CALCULATE modifier. The second, “FILTER (Winesales, Winesales[CASES SOLD] >
3007, is a table filter. We need to understand that CALCULATE modifiers are evaluated
first before any other filter arguments. Let’s take the first argument that is modifying the
filter context to remove the filters from the Winesales table. This is evaluated first and
creates an empty filter because all filters on the Winesales table have been removed.
The second filter uses the FILTER function to create a virtual Winesales table. But
which rows have been filtered in the virtual Winesales table generated by FILTER? We
have asked FILTER to filter to the rows where CASES SOLD is greater than 300. However,
remember what we know about the FILTER function. This function filters only the rows
in the current filter context. So the table generated by FILTER still contains the rows for
each wine (e.g., only rows for “Bordeaux” in the first evaluation), and these rows are
further filtered to just rows where CASES SOLD is greater than 350; see Figure 8-25.

139

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Evaluation of the ALL argument that modifies CALCULATE is done first

]
*
Wines o) Winesales O
COST PRICE 5 CASESSOLD
PRICE PER CASE CUSTCMER ID
SUPPLIER * SALE DATE
i
TYPE -) SALESPERSON ID
WINE 1D
WINE COUNTRY 2 WINESALES NO
WINE ID -
Collapse ~
Cellapse ~ %

Evaluation of the filter argument using FILTER is done next

e .
Wines o Winesales il | In Memory Winesales Table " :
COST PRICE 3 CASESSOLD | Y CASESSOLD
PRICE PER CASE J cusTo CUSTOMER 1D
SUPPLIER % SA | SALE DATE
TYPE @ 1 _j ESPE D | Z saeseersonip
WINE COUNTRY T WINESALES NO I 2. WINESALES NO
WINE ID Collapse ~ Collapse ~
Collapse ~ %k l————————
I

Figure 8-25. The evaluation of “No. of Sales Where Cases GT 300 #3”

1. The first argument uses ALL as a modifier to remove the filters
from the Winesales table. This is evaluated first, and there is now
an empty filter on the Winesales table.

2. The filter argument using FILTER is now evaluated separately.
The Wines dimension is cross-filtered to the Winesales fact table
filtering each wine.

3. The FILTER function iterates the Winesales table in the current
filter context and generates a virtual table containing the rows for,
for example, “Bordeaux” wine.

4. It then further filters these rows so only rows containing CASES
SOLD that is greater than 300 for that wine remain in the table.

140

CHAPTER 8 THE ALL FUNCTION AND ALL ITS VARIATIONS

Because the first argument using ALL has produced an empty
filter, this is the new filter in which the “No. of Sales” measure is
evaluated and the rows of the virtual Winesales table are counted.

So let’s summarize what we now know about ALL. The ALL function as a table
function generates a virtual table containing all the rows from a table or all the distinct
rows of a column or columns. This virtual table containing all the rows can be refiltered
by FILTER, and this will then propagate filters through the model as in measure
#2 before.

The ALL function as a modifier to CALCULATE is evaluated first before any filter
arguments inside CALCULATE. ALL as a modifier removes any filters from a table or a
column and generates an empty filter. Any other filter arguments of CALCULATE are
then evaluated and generate the new filter context as in measures #1 and #3 before.

Because ALL has a different behavior when used as a top-level argument to
CALCULATE, users believed it should have a different name when used in this context.
As aresult, in 2019, a new function was introduced into the DAX Function Library,
REMOVEFILTERS. This function is synonymous with ALL, but it can be used only as a
CALCULATE modifier and not as a table expression like ALL.

In this chapter we have explored the ALL, ALLEXCEPT and ALLSELECTED functions
that are challenging functions with which to get to grips. Regardless of how long you've
been using DAX, the examples described here will always be problematic to understand,
but it’s only by thinking through the evaluation of these measures, paying close attention
to the details, can we come to truly understand how DAX works.

Having covered ALL and its variations, we can now move on to look at a group of
functions called time intelligence functions where paradoxically, the ALL function has
mostly been made redundant.

141

CHAPTER 9

Calculations on Dates:
Using DAX Time
Intelligence

Have you ever wanted to compare sales for the current month against sales for last
month? Or perhaps something a little more ambitious, such as cumulative totals or even
a rolling monthly average? If the answer is yes, and why wouldn’t it be, calculations
using date data such as these require the use of a group of DAX functions called “time
intelligence” functions. Exploring these functions will be the focus of this chapter, and
you will learn how to design expressions to enable you to evaluate data across different
granularities of time such as financial years, quarters, months, and even down to the
day grain. In doing so, you will be able to compare and contrast calculations over

those periods to build insights into the data that’s important to you, such as trends and
patterns over time.

Note The term “time intelligence” is a little misleading. These are not time
intelligence functions but aate intelligence functions, so these functions will not
help you with calculations on hours, minutes, or seconds, although we can do
these calculations with the help of a Time dimension.

The starting point to using time intelligence functions is the creation of a date
dimension. This is because most time intelligence functions are designed to work with
a date table as an integral part of the data model. You may feel your data model doesn’t
require a date dimension, but you'll struggle to create the date-based calculations you
need, and you certainly won’t be able to reap the benefits of time intelligence measures.

143
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_9

https://doi.org/10.1007/978-1-4842-8188-8_9

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

However, people new to DAX often don’t appreciate this aspect of date calculations
and therefore don’t have a date dimension in their model. If this is the case, Power BI
will help you with your date analysis by generating built-in date hierarchies, and this is
what we will explore first.

Power Bl Date Hierarchies

In the absence of a date dimension in your model, if you have columns of a date data
type in any tables, for every one of these columns, Power Bl will generate an in-memory
date table for you that also contains a date hierarchy. We have removed the DateTable
dimension from our data model, and so the SALE DATE column is now expressed as a
date hierarchy as shown in Figure 9-1.

v [] [SALE DATE
v [B Date Hierarchy

0O Year

[0 Quarter
O Month
O Day

Figure 9-1. A date type column with a date hierarchy generated by Power Bl

This feature is called “Auto date/time,” but you can turn off this behavior either
globally or only for the current file in the Options pane shown in Figure 9-2.

144

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

Options

GLOBAL

Data Load
Power Query Editor
- DIFCCIONeRe

CURRENT FILE

Data Load
Regional Settings

Privacv

Time intelligence

v Auto date/time for new files) Learn more

Figure 9-2. You can turn off the generation of a date hierarchy using the
Options pane

If you have the “Auto date/time” feature turned on and you don’t have a date
dimension in your model, any fields of a date data type will be structured into

hierarchies. These built-in date hierarchies are useful for drilling into different date

granularities when put into Power BI visuals and also make it possible to slice by year,
quarter, month, and day. For example, in Figure 9-3, we are using the SALE DATE
hierarchy to drill into Month granularity in a Power Bl line chart and slice by year.

Year
2017
2018

| 2019
2020
W 2021

Total Cases

s < Il o Y’Eﬂr‘

« [Motal Cases by Year. Quarter and Month

20K

@
=

o
=

14i

_\’ear

K
Jan 2021 Feb 2021 Mar 2021 Apr 2021 May 2021 Jun 2021

Axis

SALE DATE

Year

Quarter

Month

Day
Legend

Add data fields here
Values

Total Cases

X X X X X

Figure 9-3. Using the built-in date hierarchy to visualize date data

145

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

However, there are a number of drawbacks to using these hierarchies:
o What ifyour financial year doesn’t start in January?

e What if you want to analyze sales by week granularity? How would
you add week numbers?

e Whatif you want to compare sales in 2020 with sales in 2021 in a
clustered column chart?

All the preceding problems present a real challenge if you're using built-in date
hierarchies, but if you have a date table dimension in your model, life becomes a lot
easier as far as date calculations go. Therefore, the first step is generating your date
dimension table and integrating it into your data model.

Creating a Date Table

To generate your date table, you can use DAX or Power Query as explained
comprehensively in these two links:

www.sqlbi.com/articles/creating-a-simple-date-table-in-dax/
https://exceleratorbi.com.au/build-reusable-calendar-table-power-query/

Failing these two suggestions, you could use Excel to create a date table.

The only mandatory column in a date table is a column containing a list of
sequential dates that includes all the dates that cover the time span of your data. For
example, our wine sales begin in January 2017 and end in December 2021; therefore, our
date table has a DATEKEY column with values starting on January 1, 2017, and ending
on December 31, 2021 (the end of our financial year). You must include all the dates in
these years even if there is no data for specific dates. The other columns in the date table
are used to group and categorize these dates and are completely arbitrary. However, it
would be normal to have columns for your financial year and quarters and columns for
months, including month name and month number. You could also include different
financial years and week numbers. To analyze by months, you need to include both
month name and month number. This is so you can sort the month names correctly, and
some measures will require referencing both month name and number.

We've now replaced our DateTable back into our data model. You can see the
DateTable is related to the fact table using the SALE DATE and the DATEKEY columns as
shown in Figure 9-4.

146

http://www.sqlbi.com/articles/creating-a-simple-date-table-in-dax/
https://exceleratorbi.com.au/build-reusable-calendar-table-power-query/

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

[

E I
Winesales o

> CASES SOLD
CUSTOMER ID

* | SALE DATE

SALESPERSON ID
WINE ID
> WINESALES NO

Collapse ~

*

D)

DateTable

DATEKEY
MONTH

> MONTHNO
Qrr
> VEAR

Collapse

Figure 9-4. The DateTable is related to the Winesales fact table using the
DATEKEY column

Note It’s usual to use the column in your date table that contains the list of
unique dates as the linking field or primary key, but it would be possible to use
some other unique field in the date table as the linking field. However, you must
always have a column containing a list of sequential dates in your date table even
if you don’t use this field to link to the fact table.

The next requirement regarding the date table is to ensure the model “knows” this is
your date dimension. This is particularly true if you haven’t used the field containing the
list of unique dates as the primary key of the date table. You do this by marking the date
dimension as a date table by selecting Mark as date table from the Table Tools tab.

147

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

Now, in the “Date column” drop-down, select the column in your date table that

contains the list of unique dates, as shown in Figure 9-5.

Mark as date table

Select a column to be used for the date. The column must be of the datd

unique values. Learn more

Date column

DATEKEY v

v Validated successfully

When you mark this as a date table, the built-in date tables that were
Visuals or DAX expressions referring to them may break.

Learn how to fix visuals and DAX expressions

Figure 9-5. Use the Mark as date table option to ensure the integrity of the date
dimension

Note You will find more information on the requirement to “Mark as date table”
here: https://www.sqlbi.com/articles/mark-as-date-table/

The final step in the setup of the data dimension is to sort the month names
correctly. You can see in Figure 9-6 that we've used the Sort by column button on the
Column Tools tab to sort the Month by the Month No.

148

https://www.sqlbi.com/articles/mark-as-date-table/

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

! 5
-] amr [~] montkno [~]imontH (-] (]| EE] @]
2017 Qtr1 1 Jan 3 Sort by Data
column ~ groups v
2017 Qtr1l 1 Jan ks
Month
2017 Qtr1 1 Jan
2017 Qtr1 1 Jan DteKey
2017 Qtr1 1 Jan _ MonthNo
2017 Qtr1 1 Jan aitr
2017 Qtr1l 1 Jan Ve

Figure 9-6. Use the Sort by column option to sort the month names

Now that we have generated our date dimension, we can reap the benefits of using
the time intelligence functions inside DAX and analyze our data across years, quarters,
months, and days in many insightful ways.

Using Time Intelligence Functions

Time intelligence functions use a base date from which to perform the required
calculation. This base date is supplied by the current filter context. For example, the
terms “previous month” and “same period last year” are relative terms, relative, that is,

to the date that is in the current filter context. Therefore, with most of these functions,
you must have a specific date filtered (a year, a quarter, a month, or a day) either by using
slicers, by using the Filters pane, or by having dates in the visual. For example, if you
want to find the previous month’s sales, you must have a current month filtered in the
visual or in a slicer; see Figure 9-7.

149

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

YEAR MONTH Total Cases Previous ~ WINE Total Cases Previous MK YEAR
Month's Total Month's Jan 2017
Cases Total Cases Feb 2018
Mar 2019
2017 Jan 6,657 Bordeaux 998 478 Apr 2020
2017 Feb 5,705 6,657 Champagne 251 1,038 May W 2021
2017 Mar 5,544 5,705 Chardonnay 430 Jun
2017 Apr 5,364 5,544 Chenin Blanc 483 586 Jul
2017 May 4,757 5,364 Chianti 123 619‘ Aug
2017 Jun 3,011 4,757 Grenache 916 893 Sep
2017 Jul 5,079 3,01 Malbec 801 963 Oct
2017 Aug 3,182 5,079 Piesporter 484 Nov
2017 Sep 7,279 3,182 Pinot Grigio 338 487 M Dec
2017 Oct 5,602 7,279 Rioja 658 858
2017 Nov 5,045 5,602 Sauvignon Blanc 1,465 1,721
2017 Dec 7.521 5,045 Shiraz 512 98
| L2018 Jan 6.247 1.521 Total 6,975 8,225
| Total 421,281 %

Figure 9-7. The “base date” is supplied by the filter context which can be through
columns in the visual or by year and month slicers

All time intelligence functions (except LASTNONBLANK and
LASTNONBLANKVALUE) have an argument that requires specifying a column of dates
to be used in the calculation. In most cases, in this argument, you supply the name of the
column in your date table that holds the list of unique dates, for example, the DATEKEY
column in our data; see Figure 9-8.

PREVIOUSMONTH

Returns a previous lonth.

1 Previous Month = CALCULATE([Total Sales]_,PREVIOUSMONTHlPateTable[DATEKEYJ)-‘)

Figure 9-8. The “Dates” argument normally requires referencing the column that
holds the list of unique dates

Note There is an exception to this. In the LASTDATE and FIRSTDATE functions,
you may need to reference the date column in your fact table.

150

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

For every DAX expression you construct using time intelligence functions, you could
author an equivalent expression using standard DAX functions such as CALCULATE,
FILTER, MAX, and MIN. However, if this were the case, there is one function you would
also need, and that’s the ALL function. For example, to find dates in May when the
current filter context is filtering dates in June, you would have to use the ALL function
to remove the current filter on June in the date table so that it could be refiltered for the
dates in May. By using time intelligence functions and referencing the “Dates” column
of the date table, the work of the ALL function is implicit. That’s why when using time
intelligence functions, you don’t need to remove filters by using ALL and then reapply
your specific filter.

The time intelligence functions we're going to explore in this chapter are outlined in
Table 9-1. The return value is typically a virtual table containing a single column of dates.
The dates returned into this column are also shown in Table 9-1.

Table 9-1. Time intelligence functions and their return value

Function Dates Returned

PREVIOUSMONTH The previous month from the month in the current filter context.
SAMEPERIODLASTYEAR The same period last year from the month in the current filter context.

DATEADD Prior (or future) years, quarters, months, or days from the current filter
context.

DATESYTD The year up to the date in the current filter context.

DATESBETWEEN Between two dates.

DATESINPERIOD Starting with a date and then going back (or forward) by any number of
years, quarters, months, or days from the current filter context.

LASTDATE The last date in the current filter context.

LASTNONBLANK The last date in a column where the expression is nonblank in the current

filter context.

LASTNONBLANKVALUE The last value in a column where the expression is nonblank in the current
filter context.

151

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

Typically, time intelligence functions generate a virtual one-column table containing
filtered dates from the DATEKEY column in the date dimension (or whatever you've
named this column). This virtual table is used as a table filter inside CALCULATE to filter
the dates in the fact table.

However, DAX time intelligence functions either can be fable functions that are
nested inside CALCULATE as the filter argument or can return scalar values. The reason
for this is that if a table function returns a one-column, one-row table, this virtual table is
converted into a scalar value by the DAX engine; see Table 9-2.

Table 9-2. Showing “Table” or “Scalar” functions, or both

Table Table or Scalar Scalar

DATEADD LASTDATE LASTNONBLANKVALUE
DATESBETWEEN LASTNONBLANK

DATESINPERIOD

DATESYTD

PREVIOUSMONTH

SAMEPERIODLASTYEAR

For example, it would be possible to use LASTDATE as follows:
Used as a scalar

LastDate Example #1 =
LASTDATE (Winesales[SALE DATE])

Used as a table filter inside CALCULATE

LastDate Example #2 =
CALCULATE([Total Sales],LASTDATE(Winesales[SALE DATE]))

Used to return a scalar inside CALCULATE

LastDate Example #3 =
CALCULATE(LASTDATE(Winesales[SALE DATE]),DateTable[YEAR]=2020)

Let’s now analyze our total cases values across different time frames. You can see the
results of the following expressions in Figure 9-9. Note the use of slicers to filter the base
date of December 2021 from which the expressions are calculated.

152

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

Previous Month/Year — PREVIOUSMONTH/YEAR

These are the DAX expressions to calculate the previous month’s or year’s values,
respectively:

Previous Month Total Cases =
CALCULATE ([Total Cases],
PREVIOUSMONTH (DateTable[DATEKEY])

)

Previous Year Total Cases =
CALCULATE ([Total Cases],
PREVIOUSYEAR (DateTable[DATEKEY])

The PREVIOUSYEAR function assumes that your financial year ends on December
31. If you use a different financial year, you can use the second argument of this function
to define your year-end date. To avoid any date locale issues, use the date format “YYYY-
MM-DD” (the function ignores the year, so use any year value); for example, if your year-
end date is the March 31st, this would be your measure:

Year To Date Cases =
CALCULATE ([Total Cases] ,
PREVIOUSYEAR (DateTable[DATEKEY], "2021-03-31"

)
)

Same Period Last Year — SAMEPERIODLASTYEAR

This is the DAX expression to calculate values in the same period in the previous year:

Same Period Last Year Cases =
CALCULATE ([Total Cases],
SAMEPERIODLASTYEAR (DateTable[DATEKEY])

153

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

Values for Any Time Ago — DATEADD

These are the DAX expressions that calculate values for 6 months ago and 30 days ago,
respectively:

6 Months Ago Cases =
CALCULATE ([Total Cases],
DATEADD (DateTable[DATEKEY], -6, MONTH)

)

30 Days Ago Cases =
CALCULATE ([Total Cases] ,
DATEADD (DateTable[DATEKEY], -30, DAY)

Year to Date — DATESYTD

This expression will calculate year to date values for the year in the current filter context:

Year To Date Cases =
CALCULATE ([Total Cases] ,
DATESYTD (DateTable[DATEKEY])

The DATESYTD function, like PREVIOUSYEAR, assumes that your financial year
ends in December, and just like PREVIOUSYEAR, you can use the second argument of
this function to define your year-end date, using the format “YYYY-MM-DD” to avoid
date locale issues, as follows:

Year To Date Cases =
CALCULATE ([Total Cases] ,
DATESYTD (DateTable[DATEKEY], "2021-03-31")

154

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

WINE Total Cases Previous Same Period 6 Months Year To YEAR
Month Total Last Year Cases Ago Cases Date 2017
Cases Cases 2018
Bordeaux 998 951 563 139 18514 212
Champagne 251 1,038 1,825 1,089 12,164 o ;g;?
Chardonnay 430 218 887 940 12,671
Chenin Blanc 595 586 360 869 8,206 MONTH
Chianti 123 619 1,279 1,996 8,837 Jan
Grenache 916 893 189 1,240 10,293 Feb
Malbec 801 963 914 769 11,082 Mar
Merlot 98 343 573 6378 cpr
Piesporter 484 440 681 3,736 E’:y
Pinot Grigio 338 487 802 752 6,400 Jul
Rioja 833 858 1,416 821 9,193 Aug
Sauvignon Blanc 1,465 1,721 929 335 12,247 Sep
Shiraz 616 98 301 516 4,675 Oct
Total 7,366 9,014 10,348 10,720 124,396 Nov
M Dec

Figure 9-9. Time intelligence calculations

With the help of the time intelligence functions, these expressions have all been
straightforward to write. Let’'s now move forward and explore some more complex
calculations.

Total to Date or Cumulative Totals

The DAX measure for calculating total to date or a cumulative total for the “Total Sales”
measure is as follows (see Figure 9-10):

Cumulative Total =
CALCULATE ([Total Sales] ,
DATESBETWEEN (DateTable[DATEKEY], O ,
LASTDATE (DateTable[DATEKEY])

155

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

YEAR MONTH Total Sales Cumulative Total
2017 Jan $451,887 $451,887
2017 Feb $385,299 $837,186
2017 Mar $400,977 $1,238,163
2017 Apr $327,070 $1,565,233
2017 May $353,073 $1,918,306
2017 Jun $241,419 $2,159,725
2017 Jul $410,507 $2,570,232
2017 Aug $194,755 $2,764,987
2017 Sep $559,821 $3,324,808
2017 Oct $438,513 $3,763,321
2017 Nov $301,695 $4,065,016
2017 Dec $584,269 $4,649,285
2018 Jan $407,812 $5,057,097
2018 Feb $299,495 $5,356,592
2018 Mar $232,473 $5,589,065
Total $29,732,482 $29,732,482

Figure 9-10. The cumulative total sales

This expression uses the DATESBETWEEN function that returns a table of dates that
fall between a start date and an end date.

Notice that the start date for the DATESBETWEEN function is zero, which means the
start date will be the earliest value in the dates column, or you could use the BLANK()
function (we will look at this function in the following chapter). The end date is found
by the LASTDATE function, which finds the last date in the current filter context. This
will be the last date of the month sitting in any row of the Table visual or the last date of a
montbh filtered in a slicer or Filters pane.

Rolling Annual Totals and Averages

To calculate rolling annual totals and averages, you must use two functions:
DATESINPERIOD and LASTDATE. Let’s do the rolling annual total first:

Rolling Annual Total Sales =
CALCULATE ([Total Sales],
DATESINPERIOD (DateTable[DATEKEY],

156

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE
LASTDATE (DateTable[DATEKEY]) , -1 , YEAR))

The LASTDATE function in this measure finds the last date in the current filter
context (i.e., the last date of the month sitting in any row of the Table visual, in a slicer,
or in the Filters pane). The DATESINPERIOD function calculates the total sales, starting
with this last date and going back by 1 year.

Now for the rolling annual average:

Rolling Annual Average Total Sales =
CALCULATE (
[Total Sales] / COUNTROWS (VALUES (DateTable[MONTH])),
DATESINPERIOD (
DateTable[DATEKEY],
LASTDATE (DateTable[DATEKEY]), -1, VYEAR

The expression for the rolling annual average does much the same as the expression
for the rolling annual total. However, we need to find the average monthly total for each
rolling year. If we divided the “Total Sales” measure by 12, this would not be correct
for the first year because in January, only one month is rolling; in February, only two
months are rolling; in March, only three months; etc. This is why we need to use the
COUNTROWS and VALUES functions to calculate the correct number of rolling months
for the denominator and not simply divide by 12. The results of these measures are
shown in Figure 9-11.

157

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

YEAR MONTH Total Sales Rolling Annual Rolling Annual
Total Sales Average Total Sales
2017 Jan $451,887 $451,887 $451,887
2017 Feb $385,299 $837,186 $418,593
2017 Mar $400,977 $1,238,163 $412,721
2017 Apr $327,070 $1,565,233 $391,308
2017 May $353,073 $1,918,306 $383,661
2017 Jun $241,419 $2,159,725 $359,954
2017 Jul $410,507 $2,570,232 $367,176
2017 Aug $194,755 $2,764,987 $345,623
2017 Sep $559,821 $3,324,808 $369,423
2017 Oct $438,513 $3,763,321 $376,332
2017 Nov $301,695 $4,065,016 $369,547
2017 Dec $584,269 $4,649,285 $387,440
2018 Jan $407,812 $4,605,210 $383,768
2018 Feb $299,495 $4,519,406 $376,617
2018 Mar $232,473 $4,350,902 $362,575
2018 Anr €ARA 275 ¢4 508 107 ¢275 A7A
Total $29,732,482 $8,263,718 $688,643

Figure 9-11. The rolling annual and average sales

We will meet the VALUES function later in this book, so at this stage, suffice to say
that this function generates a virtual table containing only the values in the MONTH
column of the date dimension that are visible in the filter context generated by the
DATESINPERIOD expression. The COUNTROWS function counts the rows in the virtual
table, giving us the correct number of cumulative months in the first year of our data.

Calculating the Last Transaction Date and the Last
Transaction Value

If you want to find the first or last date for which there is data, for example, the last
date for which there is a value for the “Total Sales” measure, you can use the functions
FIRSTNONBLANK and LASTNONBLANK as follows:

Date of Last Transaction =
LASTNONBLANK (DateTable[DATEKEY], [Total Sales])

158

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

Date of First Transaction =
FIRSTNONBLANK (DateTable[DATEKEY], [Total Sales])

You could then find the value of the total sales on these dates by using
LASTNONBLANKVALUE and FIRSTNONBLANKVALUE,; see Figure 9-12.

Value of First Transaction =
FIRSTNONBLANKVALUE (DateTable[DATEKEY], [Total Sales])

WINE Date of First Date of Last Value of First Value of Last
Transaction Transaction Transaction Transaction

Bordeaux 18/01/2017 23/12/2021 $24,525 $21,750
Champagne 22/01/2017 11/12/2021 $52,050 $37,650
Chardonnay 07/01/2017 07/12/2021 $14,700 $22,500
Chenin Blanc 15/01/2017 22/12/2021 $7,350 $5,150
Chianti 09/01/2017 27/12/2021 $6,920 $4,920
Grenache 02/01/2017 30/12/2021 $2,100 $15,120
Malbec 01/01/2017 14/12/2021 $27,710 $22,865
Merlot 14/01/2017 25/10/2021 $4,680 $7,293
Piesporter 15/01/2017 19/11/2021 $9,450 $9,045
Pinot Grigio 19/01/2017 23/12/2021 $9,720 $5,730
Rioja 08/01/2017 26/12/2021 $6,975 $7,065
Sauvignon Blanc 01/01/2017 24/12/2021 $8,520 $13,240
Shiraz 10/01/2017 30/12/2021 $8,268 $15,912
Total 01/01/2017 30/12/2021 $36,230 $31,032

Figure 9-12. Calculating first and last transaction dates and values

Value of Last Transaction =
LASTNONBLANKVALUE (DateTable[DATEKEY], [Total Sales])

The functions LASTNONBLANK and LASTNONBLANKVALUE can be used in more
creative ways. Perhaps you need to calculate the date of the previous transaction, and
perhaps you would like to find the difference in sales values between consecutive sales,
as shown in Figure 9-13.

159

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

DATEKEY Previous Sales Previous Sales Total Sales Sales
Date Value Difference

01 January 2017 $36,230 $36,230
02 January 2017 01 January 2017 $36,230 $2,100 ($34,130)
03 January 2017 02 January 2017 $2,100 $10,560 $8,460
07 January 2017 03 January 2017 $10,560 $14,700 $4,140
08 January 2017 07 January 2017 $14,700 $6,975 ($7,725)
09 January 2017 08 January 2017 $6,975 $6,920 ($55)
10 January 2017 09 January 2017 $6,920 $8,268 $1,348
12 January 2017 10 January 2017 $8,268 $22,152 $13,884
13 January 2017 12 January 2017 $22,152 $22,800 $648
14 January 2017 13 January 2017 $22,800 $4,680 ($18,120)
15 January 2017 14 January 2017 $4,680 $44,949 $40,269
17 January 2017 15 January 2017 $44,949 $7,410 ($37,539)
18 January 2017 17 January 2017 $7,410 $24,525 $17,115
19 January 2017 18 January 2017 $24,525 $44,220 $19,695
20 January 2017 19 January 2017 $44,220 $34,480 ($9,740)
22 January 2017 20 January 2017 $34,480 $52,050 $17,570

Figure 9-13. Calculating the difference in values between consecutive transactions

These are the expressions used to accomplish these tasks:

Previous Sales Date =
CALCULATE (
LASTNONBLANK (DateTable[DATEKEY],[Total Sales]),

)

DateTable[DATEKEY] < MAX (DateTable[DATEKEY])

Previous Sales Value =
CALCULATE (

LASTNONBLANKVALUE (DateTable[DATEKEY], [Total Sales]),
DateTable[DATEKEY] < MAX (DateTable[DATEKEY])

)

Sales Difference =
[Total Sales] - [Previous Sales Value]

160

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

Because we are using the DATEKEY column from the date dimension in
the Table visual in Figure 9-13, the expressions using LASTNONBLANK and
LASTNONBLANKVALUE will be evaluated for every date in this column, regardless of
whether each date has a transaction in the Winesales table. When you then populate
the “Total Sales” measure into the Table visual, you will see blank values for dates where
there are no transactions. To resolve this, use a visual-level filter and filter the “Total
Sales” measure to exclude blank values.

The important factor in the evaluation of these expressions is the use of CALCULATE
to modify the filter context in which the LASTNONBLANK and LASTNONBLANKVALUE
are evaluated. The expression “MAX (DateTable[DATEKEY])” returns the date value
in the current filter context, for example, 7 January 2017; see Figure 9-14. The MAX
function is used to return a scalar value. As there is only a single date in the current
filter context, we could equally use MIN or SUM. The filter argument of CALCULATE
therefore is saying “find the date in the DATEKEY column of the DateTable that is before
the date returned by ‘MAX (DateTable[DATEKEY])’ but only if it has a sales value and
is not blank.” The LASTNONBLANK function returns this date, that is, 3 January 2017.
The LASTNONBLANKVALUE function returns the sales value associated with this date,
$10,560.

DATEKEY Previous Sales Previous Sales Total Sales Sales

Date Value Difference
01 January 2017 $36,230 $36,230
02 January 2017 01 January 2017 $36,230 $2,100 ($34,130)
03 January 2017 02 January 2017 $2,100 $10,560 $8,460
07 January 2017 03 January 2017 $10,560 $14,700 $4,140
08 January 2017 07 January 2017 $14,700 $6,975 ($7,725)

Figure 9-14. Focusing on an evaluation of the LASTNONBLANK and
LASTNONBLANKVALUE expressions

We can then simply subtract the “Previous Sales Value” measure from the “Total
Sales” measure.

161

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

Finding the Difference Between Two Dates

Finding the difference in days between two dates in DAX can be done in a similar way to
Excel; simply subtract one date from another. However, in DAX, you must nest the dates
in the INT function to return a value in days as opposed to returning a date:

Days Difference =
INT ([Date of Last Transaction]) - INT ([Date of First Transaction])

DAX also has the same function DATEDIFF that we use in Excel to find the difference
between weeks, months, years, etc. (see Figure 9-15).

Months Difference =
DATEDIFF ([Date of First Transaction], [Date of Last Transaction], MONTH)

WINE Date of First Date of Last Days Months
Transaction Transaction Difference Difference

Bordeaux 18/01/2017 23/12/2021 1,800 59
Champagne 22/01/2017 11/12/2021 1,784 59
Chardonnay 07/01/2017 07/12/2021 1,795 59
Chenin Blanc 15/01/2017 22/12/2021 1,802 59
Chianti 09/01/2017 27/12/2021 1,813 59
Grenache 02/01/2017 30/12/2021 1,823 59
Malbec 01/01/2017 14/12/2021 1,808 59
Merlot 14/01/2017 25/10/2021 1,745 57
Piesporter 15/01/2017 19/11/2021 1,769 58
Pinot Grigio 19/01/2017 23/12/2021 1,799 59
Rioja 08/01/2017 26/12/2021 1,813 59
Sauvignon Blanc 01/01/2017 24/12/2021 1,818 59
Shiraz 10/01/2017 30/12/2021 1,815 59
Total 01/01/2017 30/12/2021 1,824 59

Figure 9-15. Calculating days between and months between two dates

162

CHAPTER9 CALCULATIONS ON DATES: USING DAX TIME INTELLIGENCE

Hopefully, our foray into some of the more ubiquitous DAX time intelligence
functions has whetted your appetite for performing calculations on dates. There are of
course a number of other time intelligence functions that we haven’t explored here but
that you might find useful in the analysis of your data, so why not self-explore more of
these valuable DAX functions. You will find them all here:

https://docs.microsoft.com/en-us/dax/time-intelligence-functions-dax

163

https://docs.microsoft.com/en-us/dax/time-intelligence-functions-dax

CHAPTER 10

Empty Values vs. Zero

In this chapter, we will look at a very specific DAX behavior, and that is how DAX treats
empty, missing, and null values.!

Note We will be examining this behavior in the context of a calculated column
and mostly creating expressions that would only be valid in this context. However,
you must appreciate that the behavior of empty, missing, and null values is exactly
the same in the context of DAX measures, and the examples at the end of this
chapter will illustrate this.

The BLANK() Function

In DAX, there is a special way to identify null or empty values, and that’s by using a value
called “blank.” To return blank values, we can use the BLANK() function as shown in a
calculated column created in the Winesales table (Figure 10-1):

10 Percent =
IF (Winesales[CASES SOLD] > 100,
Winesales[CASES SOLD] * 0.1, BLANK ())

! To follow along with the examples, use the Power BI Desktop file “2 DAX Blanks & Zeros.pbix”.

165
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_10

https://doi.org/10.1007/978-1-4842-8188-8_10

CHAPTER 10 EMPTY VALUES VS. ZERO

¥ W | 10 Per cent =
2 IF |(Winesales[CASES SOLD] > 100, Winesales[CASES SOLD] * 0.1, BLANK ())|

SALE DATE |-4]| winesaLEs NO [~ sALEsPERsON ID [~] customer D [~] wiNEID [~] casessolp [~| 10Percent |~ |
30/12/2021 2219 6 25 5 16 16.8
30/12/2021 2218 5 73 13 6
30/12/2021 2218 5 73 13 6
30/12/2021 2218 5 73 13 6
30/12/2021 2219 6 25 5 16 16.8
30/12/2021 2219 6 25 5 16 16.8
28/12/2021 2217 5 38 13 3
27123021 2218 A =7 Z 12 122

Figure 10-1. Use the BLANK() function to return blank values

When constructing DAX expressions using IF, if you want to return BLANK() on
the “Value if false” argument, you can just close off on the bracket because BLANK()
is the default if no value is supplied in the argument. So we could rewrite the previous
expression like this:

10 Percent =
IF (Winesales[CASES SOLD] > 100,
Winesales[CASES SOLD] * 0.1)

We can test for null or blank values as in the following calculated column:

Note In the sample .pbix file, sort the Winesales table by SALE DATE ascending
to see the blanks and zeros in the CASES SOLD column.

Blank? =
IF (Winesales[CASES SOLD] = BLANK(), "Blank", "Other")

Notice that testing for BLANK() includes 0 (zero), so we never get “Other” for zero
(Figure 10-2).

166

CHAPTER 10

EMPTY VALUES VS. ZERO

X Vv

01/01/2017
01/01/2017
02/01/2017
03/01/2017
07/01/2017
08/01/2017
09/01/2017
10/01/2017

12/01/2017

1 Blank? =

2 EF 'd Winesales[CASES SOLD] = BLANK(), "Blank", "O'ther")}

2

s G Ny o W B W R

B R W N Rk A W oy

16
16
20
12
17
45
11
75
14

Figure 10-2. Testing for a blank includes zero values

SALE DATE WINESALES NO |~ | SALESPERSONID [~]| CUSTOMERID [~] WINEID [~]

10

10

11

13

CASES SOLD Eﬁ
o

0
o

173
106
148

Blank
Blank
Blank
Blank
Blank
Blank
Other
QOther

QOther

What's surprising, however, is that the reverse is true, so in the following calculated

column, testing for 0 includes blank values, so again we don’t get “Other” for blank

values (see

Zero? =

Figure 10-3):

IF (Winesales[CASES SOLD] = 0, "Zero", "Other")

X V|t Zero? = -
2 IF (| Winesales[CASES SOLD] = @, "Zero", "Other")

SALE DATE [-7] WINESALES NO [~| SALESPERSONID [~ | CUSTOMERID [~| WINEID [~] cAsessoLD [~ | Zero? | ~|
01/01/2017 2 6 16 10 0| zero
01/01/2017 1 3 16 4 0| zero
02/01/2017 3 4 20 5 0| zero
03/01/2017 4 1 12 10 Zero
07/01/2017 5 2 17 3 Zero
08/01/2017 6 3 45 11 Zero
09/01/2017 7 6 11 7 173 Other
10/01/2017 8 2 75 13 106] Other

Figure 10-3. Testing for zero includes blanks

Therefore, we can see that DAX treats BLANK() and 0 (zero) as the same value when

used in the predicate of the IF function, as in the previous two examples.

167

CHAPTER 10 EMPTY VALUES VS. ZERO

The ISBLANK Function

So what if you want to distinguish between 0 and blank values? You can use a DAX
function that will “weed out” blanks as compared to 0. That function is ISBLANK as used
in this following calculated column (Figure 10-4):

Blank or Zero? =
IF (
ISBLANK (Winesales[CASES SOLD]),
"Blank",
IF (Winesales[CASES SOLD] = o0, "Zero", "Other")

¥ R Blank or Zero? =
2 1F |
3 'ISSLANK (Winesales[CASES sSOLD]),
4 "Blank",
5 IF (Winesales[CASES SOLD] = @, "Zero", "Other")
6)

SALE DATE [.T] WINESALES NO [~]| SALESPERSON ID [~] cusTOMERID [~] WINEID [~] cAsessoLD [~]| Blankor Zero? | ~ |
01/01/2017 2 6 16 10 0| zero
01/01/2017 1 3 16 4 0| zero
02/01/2017 3 4 20 5 0| zero
03/01/2017 4 1 12 10 Blank
07/01/2017 5 2 17 3 Blank
08/01/2017 6 3 45 11 Blank
09/01/2017 7 6 11 7 173| Other
10/01/2017 8 2 75 13 106 Other
12012017 Q A 14 12 1484 Othar

Figure 10-4. Use the ISBLANK function to test for blanks and not zeros

Using ISBLANK, we now have “Zero” returned for zero values and “Blank” returned
for blank values, and any other values return “Other”.

Testing for Zero

If you want to find just 0, you can use this calculated column (Figure 10-5):

Zero? =

168

CHAPTER 10 EMPTY VALUES VS. ZERO

IF (
NOT (ISBLANK (Winesales[CASES SOLD]))
8& Winesales[CASES SOLD] = o,

"Zero",
"Other”
)
X |p zero? =
2 IF |
3 NOT (ISBLANK (Winesales[CASES SOLD]))
4 && Winesales[CASES SOLD] = @,
5 "Zero",
6 "Other"
7 0l
SALE DATE WINESALES NO [~ | SALESPERSON ID [~] cUSTOMERID [~] WINEID [~] casessoLp [~]| zero? |~ |
01/01/2017 2 6 16 10 0| zero
01/01/2017 1 3 16 4 0| zero
02/01/2017 3 4 20 5 0| zero
03/01/2017 4 1 12 10 Other
07/01/2017 5 2 17 3 Other
08/01/2017 6 3 45 1 Other
09/01/2017 7 6 11 7 173| Other

Figure 10-5. Testing for zeros

Now, we only see “Zero” where applicable.

Using Measures to Find Blanks and Zero

You can also use a measure inside ISBLANK. For example, to find how many customers
have no sales, as opposed to 0 (zero) sales, this would be the DAX expression:

No. of Customers with No Sales =
COUNTROWS (FILTER (Customers, ISBLANK ([Total Sales])))

Whereas this expression would find the number of customers who had either zero
sales or no sales:

No. of Customers with Zero or No Sales =

169

CHAPTER 10 EMPTY VALUES VS. ZERO
COUNTROWS (FILTER (Customers, [Total Sales] =0))
This expression would find the number of customers who had zero sales:

No. of Customers with Zero sales =
COUNTROWS (
FILTER (Customers, NOT (ISBLANK ([Total Sales]))
8&% [Total Sales] = 0)

You can see these measures used in Card visuals in Figure 10-6. To see the customers
with no sales in the Table visual, use the “Show items with no data” option.

CUSTOMER NAME Total Sales 3

Acme & Sons

Bloxon Bros. 5

Jones Ltd No. of Customers with No Sales
Sainsbury's

Smith & Co

Back River & Co $0

Palo Alto Ltd $14,836 6

St. Leonards Ltd $16,965

Victoria Ltd $24,710 No. of Customers with Zero or No Sales
Brown & Co $25,542

Brooklyn Ltd $27,018

Canoga Park Ltd $37,310

Loveland & Co $38,098 1

Burlington Ltd $41,552 :
Kennebunkport & Co $48,150 No. of Customers with Zero Sales
Llivernool & Sons ~ $49.843

Total $29,732,482 °

Figure 10-6. Customers with no sales and zero sales

We can conclude, therefore, that we must be careful using the following expression:
“=IF ([expression] = 0)”

because it will include blank values as well as zero values.

170

CHAPTER 10 EMPTY VALUES VS. ZERO

Using the COALESCE Function

There is often a requirement to substitute a blank value for another value, such as zero.
This would be the expression that would achieve this outcome:

If Blank Return Zero =
If (ISBLANK ([Total Sales]), 0, [Total Sales])

However, in March 2020, a new function was introduced into the DAX library, and
that was the COALESCE function that provides us with a more succinct expression as in
these two examples:

If Blank Return Zero =
COALESCE([Total Sales],0)

If Blank Return No Sales =
COALESCE([Total Sales],"No Sales")

The first argument of this function is the expression where you are looking for blank
values, for example, the “Total Sales” measure. The second argument is the value you
want returned if the expression is blank, for example, 0 or “No Sales’, see Figure 10-7.

171

CHAPTER 10 EMPTY VALUES VS. ZERO

CUSTOMER NAME Total Sales If Blank If Blank Return
Return Zero No Sales
Acme & Sons $0 No Sales
Bloxon Bros. $0 No Sales
Jones Ltd $0 No Sales
Sainsbury's $0 No Sales
Smith & Co $0 No Sales
Back River & Co $0 $0 $0
Palo Alto Ltd $14,836 $14,836 $14,836
St. Leonards Ltd $16,965 $16,965 $16,965
Victoria Ltd $24,710 $24,710 $24,710
Brown & Co $25,542 $25,542 $25,542
Brooklyn Ltd $27,018 $27,018 $27,018
Canoga Park Ltd $37,310 $37,310 $37,310
Loveland & Co $38,098 $38,098 $38,098
Burlington Ltd $41,552 $41,552 $41,552
Kennebunkport & Co $48,150 $48,150 $48,150
FvAmrava sl LU S v €40 242 €40 842 €40 842
Total $29,732,482 $29,732,482 $29,732,482

Figure 10-7. Use the COALESCE function to replace blanks with a value

In this chapter, you have learned that DAX treats blanks and zeros as the same value
unless you specifically use the ISBLANK function in your expression to distinguish
between these two values. This chapter has also been a welcome transgression from
the hard work of learning how to analyze your data by using some of the more difficult
aspects of DAX such as using ALL to calculate percentages and using time intelligence to
calculate rolling averages.

In the next chapter, we prepare ourselves for the more complex expressions to
come. You must now learn how to use DAX variables in your code to facilitate authoring
measures that require a more advanced knowledge of DAX.

172

CHAPTER 11

Using Variables: Making
Our Code More Readable

We've managed very well so far without the use of variables in our DAX code. Indeed,
variables haven’t always been around in the DAX language. They came on board in
2015, five years after DAX was first developed. In this chapter, we will elaborate on why
variables are so useful when writing DAX expressions, and once you've learned how to
utilize them, we will be including them henceforth in our expression, where applicable.!

Using variables in your DAX expressions can help you write the more complex
calculations that we will begin to tackle as we move forward in this book. There are three
major advantages gained by using variables:

1. Improved performance
2. Improved readability
3. Reduced complexity

In this chapter, we will explore these three benefits of including variables when
generating DAX code. We will also look at the immutable and constant nature of
variables and when they may be a hindrance rather than a help.

To include variables in your code, use the keyword VAR followed by the name of the
variable and then the definition of the variable. The keyword RETURN is then used at the
end of the code to return the expression to be evaluated. For example:

Example Measure =

VAR MyVariable = SUM (Winesales[CASES SOLD])
RETURN

MyVariable * 1.1

To follow along with the examples, use the Power BI Desktop file “1 DAX Sample Data.pbix”.

173
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_11

https://doi.org/10.1007/978-1-4842-8188-8_11

CHAPTER 11 USING VARIABLES: MAKING OUR CODE MORE READABLE

Variable declarations are usually made at the beginning of the expression, and their
value remains constant throughout the evaluation. However, you can declare variables
within the expression to limit the scope.

Variables can be used in both measures and calculated columns to harvest the
values generated by

o Expressions, for example, SUM (Winesales| CASES SOLD])
e Measures, for example, [Total Cases]

o Tables, for example, FILTER (Winesales, Winesales|[CASES
SOLD] >300)

e Values, for example, 0.1, 10, 20

When variables are used in calculated columns, they can also harvest values
generated in columns.

The name of the variable must not contain spaces, and you can’t use reserved
words such as “date” or “min”, Also, it makes sense if the name of the variable isn’t the
name of an existing table or column. Some people like to use the underscore to start the
variable name.

Improved Performance

As an example of how variables can improve performance, let’s look at a measure to
calculate 10% or 5% of the CASES SOLD based on the CASES SOLD value being greater
than 20,000 and 15,000, respectively. This would be the expression you might author:

10 PC or 5 PC =
IF (
SUM (Winesales[CASES SOLD]) > 20000,
SUM (Winesales[CASES SOLD]) * 0.1,
IF (
SUM (Winesales[CASES SOLD]) » 15000,
SUM (Winesales[CASES SOLD]) * 0.5,
SUM (Winesales[CASES SOLD])

174

CHAPTER 11 USING VARIABLES: MAKING OUR CODE MORE READABLE

The problem with this expression, especially as far as performance goes, is that there
are five repetitions of the SUM function, forcing the evaluation of these expressions five
times. Also, the use of the nested IF is rather cumbersome. Using the SWITCH function
in place of the nested IF is a small improvement:

10 PC or 5 PC #2 =
SWITCH (
TRUE (),
SUM (Winesales[CASES SOLD]) > 20000,
SUM (Winesales[CASES SOLD]) * 0.1,
SUM (Winesales[CASES SOLD]) > 15000,
SUM (Winesales[CASES SOLD]) * 0.5,
SUM (Winesales[CASES SOLD])

This is the first time that we have met SWITCH, and its construct is as follows:
=SWITCH (expression, valuel, resultl, value2, result2 etc...else)

Notice that inside SWITCH, the function TRUE() is used as the expression to be
evaluated and then Boolean statements are listed, followed by the value to be returned if
the statements are true. The final argument is the “else” expression.

However, despite the fact that the measure using SWTICH is more compact to write,
it doesn’t offer any great improvement in performance as the SUM function is still being
evaluated multiple times.

Therefore, let us now introduce the use of a variable by using the keyword VAR to
define the variable and the keyword RETURN to return the expression to be evaluated, as
follows:

10 PC or 5 PC #3 =
VAR TotalCasesValue =
SUM (Winesales[CASES SOLD])

RETURN
SWITCH (
TRUE (),
TotalCasesValue > 20000, TotalCasesValue * 0.1,
TotalCasesValue > 15000, TotalCasesValue * 0.5,
TotalCasesValue
)

175

CHAPTER 11 USING VARIABLES: MAKING OUR CODE MORE READABLE

In this expression, not only do we avoid repeating the SUM function, but also the
total cases calculation is performed only once when the variable is declared rather than
being recalculated for every test.

Improved Readability

Variables can also help to clarify expressions that use nested measures or nested
expressions where the readability of the expressions gets more convoluted. For example,
consider the following expression that calculates growth percentage. Notice that the
first variable defines a measure and the second variable defines an expression. The use
of the variables and the RETURN statement result in the expression much simpler to

understand:

Growth % =
VAR CurrentCases = [Total Cases]
VAR LastYrCases =
CALCULATE ([Total Cases], PREVIOUSYEAR (
DateTable[DateKey]))
RETURN
DIVIDE (CurrentCases - LastYrCases, LastYrCases)

Note Because this measure uses the PREVIOUSYEAR function, you must have a
year filtered (e.g., by using a slicer) in the visual that uses the measure.

Not only can variables define measures and expressions, but they can also define
tables. In Chapter 7, we calculated the number of high profit wines as follows:

High-profit Wines =
CALCULATE ([No Of Sales],
FILTER (Wines, Wines[PRICE PER CASE] »>=
Wines[COST PRICE] * 3))

176

CHAPTER 11 USING VARIABLES: MAKING OUR CODE MORE READABLE

However, we could use a variable to hold the table expression defined by the FILTER
function and use that as the filter argument inside CALCULATE. Again, using the
RETURN statement greatly streamlines the expression:

High-profit Wines #1 =
VAR TableOfWines =
FILTER (Wines, Wines[PRICE PER CASE] »>=
Wines[COST PRICE] * 3)
RETURN
CALCULATE ([No Of Sales], TableOfWines)

We can use variables in calculated columns too, for instance, within the
arguments of IF:

Cases Sold Increase =

VAR CasesSold = Winesales[CASES SOLD]

VAR MyValuel = 1.1

VAR MyValue2 = 1.2

RETURN

IF(CasesSold > 100, CasesSold * MyValuel, CasesSold * MyValue2)

We will look at further examples of how variables can help you when used in the
context of the calculated column when we delve into more complex DAX expressions in
later chapters.

Reduced Complexity

Our next example of the benefit to be reaped by using a variable is by revisiting a
calculation we built when exploring the FILTER function in Chapter 7. We calculated
the number of sales where the value in the CASES SOLD column was above the average

cases for all wines. This was the measure:

No. of Sales Where Cases is GT Avg All Wines =
CALCULATE([No. of Sales],
FILTER (Winesales,
Winesales[CASES SOLD] >= [Avg Cases All Winesales]))

177

CHAPTER 11 USING VARIABLES: MAKING OUR CODE MORE READABLE

The problem with this code is that because it nests the measure “Avg Cases All
Winesales” within the expression, this measure must already exist in our model, as
would any measures we use in this context. We may be required to continually locate
such measures in the Fields list in order to edit or debug them, leading to frustration and
annoyance.

The preferred expression would use two variables as follows:

No. of Sales Where Cases is GT Avg All Wines #2 =

VAR AvgAllWines =

CALCULATE(AVERAGE (Winesales[CASES SOLD]) ,ALL (Winesales))
VAR FilterAvgAll =

FILTER (Winesales, Winesales[CASES SOLD] >= AvgAllWines)

RETURN
CALCULATE ([No. of Sales], FilterAvgAll)

Variables As Constants

There is one last important point to make regarding variables, and that is the term
“variable” can be misleading. Perhaps if we called DAX variables “constants,” this
might be a more accurate description because that’s what they really are. Consider the
following expression:

Sales for Abel =
VAR MyAmount = [Total Sales]
RETURN
CALCULATE (MyAmount, SalesPeople[SALESPERSON] = "abel")

We can see in Figure 11-1 that this expression does not return the sales amount for
salesperson “Abel” but simply returns the total sales.

178

CHAPTER 11

USING VARIABLES: MAKING OUR CODE MORE READABLE

WINE Total Sales Sales for Abel
Bordeaux $4,055,250 $4,055,250
Champagne $7,373,700 $7,373,700
Chardonnay $4,203,000 $4,203,000
Chenin Blanc $1,236,950 $1,236,950
Chianti $1,092,920 $1,092,920
Grenache $1,078,950 $1,078,950
Malbec $2,914,650 $2,914,650
Merlot $900,276 $900,276
Piesporter $1,384,155 $1,384,155
Pinot Grigio $703,470 $703,470
Rioja $1,527,795 $1,527,795
Sauvignon Blanc $1,896,600 $1,896,600
Shiraz $1,364,766 $1,364,766
Total $29,732,482 $29,732,482

Figure 11-1. Variables behave as constants and can’t be modified by CALCULATE

The reason for this is that the variable “MyAmount” is calculated where it is
declared, in this case, before any other code. It then does not and cannot change by using
CALCULATE to modify the filter. This is where we must use a measure such as “Total
Sales” inside CALCULATE instead.

However, the immutable nature of variables is also their strength. For instance,
consider the scenario where you want to identify the months where you've had
exceptionally high sales. You've identified exceptionally high sales as those transactions
where the sales value is greater than 5% of the total sales for that month.

This is the code you would probably write:

No of Sales GT 5% Wrong =
CALCULATE (
[No of Sales],
FILTER (
Winesales,
[Total Sales] > [Total Sales] * 0.05

179

CHAPTER 11 USING VARIABLES: MAKING OUR CODE MORE READABLE

However, this measure does not return the correct result. The value of the “Total
Sales” measure when used inside an iterator such as the FILTER function calculates
the total sales for each row in the Winesales table, not the total sales for each month.
Therefore, the measure “Total Sales GT 5% Wrong” calculates the number of sales where
the sales value is greater than 5% of the sales value on each row (i.e., each transaction)
and so returns the number of sales; see Figure 11-2.

YEAR MONTH Total Sales No of Sales GT No of Sales
5% Wrong
2018 May $213,304 18 18
2018 Jun $399,831 30 30
2018 Jul $329,686 29 29
2018 Aug $386,823 26 26
2018 Sep $355,690 30 30
2018 Oct $301,611 23 23
2018 Nov $439,965 28 28
2018 Dec $356,906 25 25
2019 Jan $148,855 14 14
2019 Feb $167,738 14 14
2019 Mar $213,333 12 12
2019 Apr $170,815 15 15
2019 May $517,246 31 31
2019 lun $281 813 24 24

Figure 11-2. The “No of Sales GT 5% Wrong” measure returns the number of sales

This expression uses the concept of context transition that we will meet in a later
chapter, but nevertheless, it’s intuitive to understand that if FILTER is iterating the
Winesales table, it must be scanning the table row by row.

The correct expression must calculate the total sales in the current filter context,
which is the total sales for each month, that has been lost by the iteration of FILTER. To
reapply this filter, CALCULATE can use the filter that is placed on the Winesales table,
the code for which would be a challenge even to experienced DAX users:

No of Sales GT 5% Difficult =
CALCULATE (
[No of Sales],

180

CHAPTER 11 USING VARIABLES: MAKING OUR CODE MORE READABLE

FILTER (
Winesales,
[Total Sales] > CALCULATE ([Total Sales], Winesales) * 0.05

This measure has been labelled as the “difficult” expression because it uses two
challenging DAX concepts that we've yet to meet: context transition and table expansion.
However, you may be relieved to know that you don’t need this advanced knowledge to
arrive at the correct calculation. You can use variables instead, and this will render the

expression very easy:

No of Sales GT 5% Easy =
VAR PerCentToFind = [Total Sales] * 0.05
RETURN
CALCULATE ([No of Sales],
FILTER (Winesales, [Total Sales] > PerCentToFind))

The “easy” expression uses a variable to calculate 5% of the “Total Sales” measure,
and this is evaluated first and remains constant. This variable is then used to calculate
the number of sales in each month that have a total sales value that is greater than the
value stored by the variable.

The moral of this story? Let’s just be grateful for variables!

181

CHAPTER 12

Returning Values
in the Current Filter

There is often a requirement when designing reports to display the value or values

selected in slicers or in the Filters pane. This might be to show these values in the title

of a visual using conditional formatting or to show them in Card visuals, as shown in

Figure 12-1.

Sales by Wine, filtered by
Bordeaux, Champagne,
Chardonnay, and more...

WINE Total Sales

WINE
B Bordeaux
M Champagne
M Chardonnay
Il Chenin Blanc

Bordeaux $4,055,250
Champagne $7,373,700
Chardonnay $4,203,000
Chenin Blanc $1,236,950
Chianti $1,092,920

Total $17,961,820

Sales by Wine,
filtered by
Bordeaux,

B Chianti Champagne,

Grenache Chardonnay, and

Lambrusco more...
Malbec

Merlot
Piesporter

Pinot Grigio
Rioja

Sauvignon Blanc
Shiraz

Figure 12-1. Displaying the values in the current filter context

If this is your goal, we have three DAX functions that do this job: SELECTEDVALUE,
CONCATENATEX, and VALUES. In this chapter, we will be exploring the use of these
functions to return filter selections. You will learn how to generate dynamic titles for

© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_12

https://doi.org/10.1007/978-1-4842-8188-8_12

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

your visuals that label the data filtered within them. However, this chapter will also
introduce the concept of the parameter table, a table that is unrelated to other tables in
the model and used to capture values selected by the user. Such values can then be used
dynamically within your calculations.

The SELECTEDVALUE and CONCATENATEX functions fall into the category of
functions that return scalar values and can return either a numeric or a text value. This
is why it’s not a verity to say the measures only return scalar values, as that would imply
that they can only return numeric values. Measures using either of these functions will
often return a text value. The VALUES function is unusual in that it can return either a
scalar value or a table, and therefore, we will hold off looking at this function until the
end of the chapter.

You've learned that a measure must return a single value whether numeric or text
and SELECTEDVALUE and CONCATENATEX are no exception. SELECTEDVALUE
will return the value in the current filter context but only if there is one value to return.
However, sometimes, the filter context holds more than one value, when we make
multiple selections in slicers for instance, so how can we return values in this scenario?

If the requirement is to return multiple values that are in the filter context, we
must use another function: CONCATENATEX. This function falls into the “X” group
of iterating functions that you learned about in Chapter 5. In order that a single value
is returned, measures using CONCATENATEX will concatenate multiple values in the
current filter context and so return a single text string.

Therefore, we have two functions SELECTEDVALUE and CONCATENATEX, one of
them being an iterator, that are very different from each other. However, they are used
for the same purpose, and that is flagging up items that have been filtered out by slicer or
filter selections. Let’s now look at the first of these: SELECTEDVALUE.

The SELECTEDVALUE Function

The SELECTEDVALUE function returns the value in the filter context when there’s only
one value in the specified column, otherwise, it returns the alternate result. It has the
following syntax:

= SELECTEDVALUE(column name, alternate result)

where:

column name is the column from which you want to find the value.

184

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

alternate result (optional) is the value returned when the column has been filtered
to more than one distinct value or no value. When not provided, the default value is
BLANK().

Here is an example of the SELECTEDVALUE syntax:

= SELECTEDVALUE (Wines[TYPE], “Many”)

Before we look more closely at this function, it’s important that we recap on what we
mean by “the current filter context” by considering the following measure:

Total Cases =
SUM (Winesales[CASES SOLD])

SALESPERSON Total Cases "™*
B Bordeaux
Abel 8,531 Champagne
Blanchet 6,734 Chardonnay
Charron 8,640 Chenin Blanc
Denis 11,991 Chianti
Leblanc 9,293 Grenache
Reyer 8,881 Lambrusco
Total 54,070 L Malbec
Merlot
Piesporter
Pinot Grigio
Rioja
Sauvignon Blanc
Shiraz

Figure 12-2. The filters for the evaluation of the “Total Cases” measure are placed
on both the SALESPERSON and WINE columns

This visual in Figure 12-2 contains the “Total Cases” measure filtered by the
SALESPERSON and WINE columns. For the first evaluation of 8,531 cases, there is a filter
on salesperson “Abel” and “Bordeaux” wine. However, it’s the filter on the WINE column
from the slicer on which we will focus. If we could see the filter on the Wines dimension,
it would look something like Figure 12-3 where the table has been filtered to one row.

185

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

IWINEID v WINE suppusn ~| TYPE |~ | WINE COUNTRY |~ | PRICE PER CASE |~ | COST PRICE |~ I
I 1 Bordeaux Laithwaites Red France $75.00 $25.00 l

Figure 12-3. The slicer filters just one row in the Wines dimension

We know that this filter is then propagated to the fact table along with the filter on
the SalesPeople dimension, both these filters making up the current filter context.

Often, we have many slicers on the report canvas, and it’s not always apparent to
users of the report which slicers they have clicked on. It would be beneficial if we could
provide them with this information as in Figure 12-4.

You have selected Bordeaux WINE
SALESPERSON Total Cases B Bordeaux You have
Champagne
Abel 8,531 Chardonnay selected
Blanchet 6,734 Chenin Blanc Bord eaux
Charron 8,640 Chianti .
Denis 11,991 | Grenache Wine Selected
Leblanc 9,293 Lambrusco
Reyer 8,881 Malbec
Total 54,070 Merlot
Piesporter
Pinot Grigio
Rioja
Sauvignon Blanc
Shiraz

Figure 12-4. Informing users of slicer selections

This is where the SELECTEDVALUE function can help us. You can see in Figure 12-4
that the wine selected in the slicer is shown in both the title of the Table visual using
conditional formatting and in the Card visual. This is the measure that we used in these
examples:

Wine Selected =
"You have selected " & SELECTEDVALUE (Wines[WINE])

186

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

This example uses the SELECTEDVALUE function to return the value from the
WINE column sitting in the current filter context. This is also the first time that we've
used the ampersand (&) in a DAX expression. Just like Excel, the ampersand is the DAX
concatenate operator and is used to string parts of a DAX expression together.

Note If you need help in using conditional formatting in the Title of a visuals,
follow this link: https://docs.microsoft.com/en-us/power-bi/create-
reports/desktop-conditional-format-visual-titles

But what if there’s more than one value selected in the slicer? As we will see in the
following, one option is to use CONCATENATEX, but there is another, much easier
solution because the SELECTEDVALUE function allows you to supply an alternative
result when multiple items have been selected, as shown here:

Wine Selected #2 =
"You have selected " &
SELECTEDVALUE (Wines[WINE],"multiple wines")

However, because the “alternate result” argument of SELECTEDVALUE kicks in
whether there are multiple selections or no selection, we have a problem. You'll notice
that if you have nothing selected in the slicer, the Table visual title and Card visual will
still tell you that you have multiple wines selected (Figure 12-5)!

187

https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-conditional-format-visual-titles
https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-conditional-format-visual-titles

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

You have selected
multiple wines

SALESPERSON Total Cases

Abel 69,871
Blanchet 65,581
Charron 68,137
Denis 84,018
Leblanc 69,304
Reyer 66,313
Total 423,224

WINE

Bordeaux
Champagne
Chardonnay
Chenin Blanc
Chianti
Grenache
Lambrusco
Malbec
Merlot
Piesporter
Pinot Grigio
Rioja

You have
selected

multiple wines
Wine Selected #2

Sauvignon Blanc

Shiraz

Figure 12-5. The “alternate result” shows for no selection as well as for many

selected

One way to avoid this problem is to ensure users can’t make multiple selections or

no selection by turning on “Single select” on the Slicer settings formatting card. The
other way is to use CONTCATENATEX as we will be discovering later in this chapter.
The SELECTEDVALUE function also allows you to test for specific values in the
current filter. In Figure 12-6, the Card visual' shows “Expensive Wine” if the PRICE PER
CASE value of the wine selected in the slicer is greater than $75.00; otherwise, it shows

“Cheap Wine".

!For information on formatting the Card visual, visit https://docs.microsoft.com/en-us/
power-bi/visuals/power-bi-visualization-card

188

https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-card
https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-card

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

WINE WINE
Bordeaux Bordeaux
B Champagne ‘ Champagne
Chardonnay ExpenSIVe Chardonnay Cheap W|ne
Chenin Blanc W| ne B Chenin Blanc
Chianti Chianti
Grenache Grenache
Lambrusco Lambrusco
Malbec Malbec
Marl~t Merlnt

Figure 12-6. Using SELECTEDVALUE to test for values in the current filter

This is the expression used in Figure 12-6:

High Price =

IF (
SELECTEDVALUE (Wines[PRICE PER CASE]) » 75,
"Expensive Wine",
"Cheap Wine"

It’s important to note here that when using SELECTEDVALUE, you can select any
value sitting in any column of the row that has been filtered, not just the column used in
the slicer.

However, we still have a problem when a user selects multiple values in a slicer. You
may not want to use “single select” in the slicer but instead be able to select multiple
items and list the items in a Table or Card visual. We've also seen that the “alternate
result” of SELECTEDVALUE displays when there is no selection as well as when
there are many selected. Let’s now see how we can solve this problem by using the
CONCATENATEX function.

The CONCATENATEX Function

We know that any function that ends in an “X” is an iterating function, and
CONCATENATEX is no exception. It iterates the table referenced in its first argument

189

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

and then concatenates the values in the column referenced in its second argument.
Specifically, the CONCATENATEX function has the following arguments:

= CONCATENATEX(table, expression, delimiter, order by, order)

where:

table is the table to be iterated.

expression is the column (or expression) whose values you want concatenating for
every row in table.

delimiter is the character you want to separate the values, for example, a comma or
an ampersand.

order by (optional) is usually a column by which you want to sort the values.

order (optional) is ASC or DESC.

Now let’s look at an example of an expression using CONCATENATEX:

Types of Wine =
CONCATENATEX (Wines, Wines[WINE] , ", " , Wines[WINE ID], ASC)

In this measure, CONCATENATEX iterates the Wines table and, for every row in
the table, returns a concatenated list of values from the WINE column, separated with
a comma and sorted ascending by WINE ID. In Figure 12-7, you can see the values that
this expression returns when the TYPE column from the Wines tables has been placed
in the Table visual. The “Types of Wine” measure displays all the wines beside their
type (i.e., Red or White), separated by a comma and sorted by the WINE ID column
ascending.

TYPE Types of Wine

Red Bordeaux, Malbec, Grenache,
Chianti, Merlot, Rioja, Shiraz

White Champagne, Chardonnay,
Piesporter, Pinot Grigio, Sauvignon
Blanc, Chenin Blanc, Lambrusco

Total Bordeaux, Champagne,
Chardonnay, Malbec, Grenache,
Piesporter, Chianti, Pinot Grigio,
Merlot, Sauvignon Blanc, Rioja,
Chenin Blanc, Shiraz, Lambrusco

Figure 12-7. The values returned by the “Types of Wine” measure

190

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

We can use just the first three arguments and place this measure in a Card visual,
using a slicer to filter by the WINE column:

Types of Wine #1 =
CONCATENATEX (
Wines, Wines[WINE] ,
n s n)
Here, CONCATENATEX will simply return all the wine names in the current filter;

see Figure 12-8. At last, we've been able to solve the problem of displaying slicer
selections when multiple items have been selected.

WINE

Bordeaux, B Bordeaux

B Champagne
Champagne' Bl Chardonnay

ChardonnaY- B Chenin Blanc
Chianti, Chenin B cChiant

Bla nec Grenache
Lambrusco

Types of Wine #1 Malbec
Merlot
Piesporter
Pinot Grigio

Rinia

Figure 12-8. The “Types of Wine #1” measure in a Card visual sliced by WINE

However, we're not quite there yet. If there is no selection in the slicer, the Card
visual returns all the wine names which probably isn’t what you want. To resolve this, we
need to take our “Types of Wine #1” expression a little further.

In Figure 12-9, we have used two similar measures in the title of a Table visual using
conditional formatting: “Types of Wine #2” and “Types of Wine #3”. Both measures return
the phrase “Sales by Wine, filtered by’, and the list of wines will grow as the selection
grows. To avoid cluttering the visual with many wine names, the “Types of Wine #3”
shows “and More” when more than three wines have been selected. When there is no
selection in the slicer, the title of the visuals shows “Sales by Wine’; rather than “you have
selected multiple wines’, as in the case of the measures using SELECTEDVALUE.

191

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

“Types of Wine #2 “Types of Wine #3 WINE
Sales by Wine, filtered by Bordeaux, Sales by Wine, filtered by Il Bordeaux
Champagne, Chardonnay, Chianti, Bordeaux, Champagne, Ml Champagne
Chenin Blanc Chardonna B Chardonnay
SALESPERSON Total Cases SALESPERSON Total Cases Il Chenin Blanc
Abel 34,091 Abel 34007 M Chianti
Grenache
Blanchet 33,554 Blanchet 22554 Lambrusco
Charron 34,785 Charron 34,785 Malbec
Denis 35,555 Denis 35,555 Merlot
Leblanc 32,183 Leblanc 32,183 Piesporter
Reyer 27,152 Reyer 27,152 Pinot Grigio
Total 197,320 Total 197,320 Rioja
Camnnmnan Rlan-~
“Types of Wine #2 “Types of Wine #3 WINE
Sales by Wine Sales by Wine Bordeaux
SALESPERSON Total Cases SALESPERSON Total Cases Champagne
Chardonnay
Abel 69,871 Abel 69,871 Chenin Blanc
Blanchet 65,581 Blanchet 65,581 Chianti
Charron 68,137 Charron 68,137 Grenache
Denis 84,018 Denis 84,018 Lambrusco
Leblanc 69,304 Leblanc 69,304 Malbec
Reyer 66,313 Reyer 66,313 Merlot
Total 423,224 Total 423,224 Piesporter
Dinat Gricin

Figure 12-9. Using CONCATENATEX to solve the problem of multiple selections
and no selection
Therefore, using CONCATENATEX, we have solutions for all four problem scenarios:
1. No selection in the slicer
2. Selections in the slicer
3. Three or fewer wines selected
4. More than three wines selected

The measure required that solves problem scenarios #1 and #2 is relatively
straightforward. However, we need to extend this expression to accommodate scenarios
#3 and #4, and this is where the expression will become a little more ambitious.

192

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

Therefore, let’s tackle the situation where users make selections in the slicer or there is
no selection.
To resolve this scenario, the measure we build must return either

1. “Sales of Wines” if there are no selections in the slicer
or

2. “Sales of Wines filtered by” followed by a list of wines selected in
the slicer

Therefore, we need a way to find out whether the filter on the WINES column has
reduced the number of rows in the Wines dimension. If it has, there must be selections
in the slicer. If it hasn’t, there must be no selection in the slicer. What we can do here
is use the function named VALUES that generates a virtual one-column table that lists
the values in the WINE column in the current filter context. We can then use the ALL
function to return another virtual one-column table containing all the wine names. If
these tables have the same number of rows in them, then there must be no selections in
the slicer.

Note We deep dive into the VALUES function later in this chapter.

Here is the expression that we can build. Note the use of variables to harvest the
values returned by COUNTROWS:

Types of Wine #2 =
VAR NoFilteredWines =
COUNTROWS (VALUES (Wines[WINE]))
VAR NoAllWines=
COUNTROWS (ALL(Wines[WINE]))
RETURN
IF (NoFilteredWines = NoAllWines ,
"Sales by Wine",
"Sales by Wine, filtered by "
&
CONCATENATEX (
Wines, Wines[WINE] ,

5t))

193

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

Let’s now turn our attention to resolving the scenario of users selecting more than
three wines in the slicer. If they select three or fewer wines or no wines, then the measure
will return the same as “Types of Wine #2”. However, if they select four or more wines,
we want the measure to return a list of the first three wines selected followed by “and
more...” Therefore, we need to generate a list of just the top three wine names selected in
the slicer. We can use a table function named TOPN to do this job. As its name suggests,
TOPN will build a virtual table containing only the top N (e.g., 3) values as in the
following expression:

TOPN (3, VALUES (Wines[WINE]))

Notice again how the VALUES function is used to generate a one-column table listing
the wine names in the current filter context. The TOPN function will extract the top three
of these wine names into its own table that can then be used by CONCATENATEX to
concatenate these values. We can then concatenate “and more...” using the ampersand.

You can see the following expression will solve our final scenario. All we need to do
is add the IF function to execute the TOPN expression, followed by the TOPN expression
itself, added to the bottom of the code (highlighted in gray):

Types of Wine #3 =
VAR NoFilteredWines =
COUNTROWS (VALUES (Wines[WINE]))
VAR NoAllWines=
COUNTROWS (ALL (Wines[WINE]))
RETURN
IF (NoFilteredWines = NoAllWines ,
"Sales by Wine",
"Sales by Wine, filtered by "
&
IF (NoFilteredWines <=3,

CONCATENATEX (
Wines ,
Wines[WINE] ,
", II) ,

194

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

CONCATENATEX (
TOPN (3, VALUES (Wines[WINE])),
Wines[WINE] ,
"
& " and more..."

))

In building these measures, you have learned how CONCATENATEX can be used
to string together slicer selections. However, it has also been a valuable exercise in the
use of table functions and table expressions to generate virtual in-memory tables that
are then used within the expression. This concept lies at the heart of DAX, building
temporary tables that contain the values used by scalar functions. It might also be
worth noting here that the measure “Types of Wine #3” is an order of magnitude more
advanced than anything you have tackled so far in this book, but you now have the skills
to author such complex code.

We have also covered the details of the SELECTEDVALUE function on which we
are now going to refocus. This is because we can put it to better use than alerting users
to whatever has been chosen in a slicer. We understand that SELECTEDVALUE will
return a single value, and in this way, we can use this function to harvest ad hoc values
in columns of unrelated tables. These unrelated tables have a name, parameter tables
whose use we are now going to explore.

Using Parameter Tables

You can use SELECTEDVALUE to return a user-selected parameter. This chosen
parameter can then be used as a value inside a measure.

Consider the Table visual in Figure 12-10. Here, we have a slicer that allows us to
select a sales projection scenario for our “Total Sales” measure as follows:

e “Bestcase” (increase by 20%)
e “Probable” (increase by 10%)

e “Worst case” (decrease by 10%)

195

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

The total sales is then calculated accordingly in the “What If Scenario” measure.

WINE Total Sales ~ What If Scenario T,
Bordeaux $4,055,250 54866300 MM Best
Champagne $7,373,700 $8,848,440 ;;ziatb'e
Chardonnay $4,203,000 $5,043,600

Chenin Blanc $1,236,950 $1,484,340

Chianti $1,092,920 $1,311,504

Grenache $1,078,950 $1,294,740

Malbec $2,914,650 $3,497,580

Merlot $900,276 $1,080,331

Piesporter $1,384,155 $1,660,986

Pinot Grigio $703,470 $844,164

Rioja $1,527,795 $1,833,354

Sauvignon Blanc $1,896,600 $2,275,920

Shiraz $1,364,766 $1,637,719

Total $29,732,482 $35,678,978

Figure 12-10. Using a parameter table to analyze sales projection scenarios

To create these scenarios, we’ve used the Enter data button on the Home tab and
created this table, called “What If’; as shown Figure 12-11.

Scenario E Value E| What - o
Best 3.2
Worst 0.9 Scenario
> Value
Probable T
Collapse ™~

Figure 12-11. The “What If” parameter table

196

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

Notice in Figure 12-11 that this table is not related to any other tables in the data
model. We now need to place a slicer on the canvas populated with the “Scenario”
column from the “What If” table, and we’re ready to create this measure:

What If Scenario =
[Total Sales] * SELECTEDVALUE ('What If'[Value])

When we select a value from the Scenario slicer, for example, “Probable’, this value
is filtered in the “What If” table. There is only one row in the “What If” table, and the
value sitting in the Value column is then used to multiply the value of the “Total Sales”
measure.

You have learned that you can build parameter tables and by using
SELECTEDVALUE can construct expressions that test for specific values selected from
the parameter table. Once you know you can do this, you can use the values selected to
drive specific calculations. Let’s look at an example of this. You may have found that one
of the frustrations of working in Power Bl is that you can only populate column values
into slicers. However, this question often arises: Can I put measures into slicers? The
answer is yes, you can! Consider Figure 12-12.

WINE Measure to SR
RN B No of Sales
Bordeaux 180 Total Cases
Champagne 132 Total Sales
Chardonnay 187
Chenin Blanc 200
Chianti 148
Grenache 182
Malbec 170
Merlot 157
Piesnorter 115

Figure 12-12. Creating slicers for measures

Here, we have a slicer that lists three measures. On selecting a measure in the slicer,
the “Measure to Show” measure in the Table visual calculates the selected measure.

197

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

To build this example, again, we started with creating the parameter table and
named it “Select Measures”. This table has two columns. The column named “Measure”
lists the measures, but appreciate that these names are arbitrary; you don’t have to use
the exact measure names. The second column named “Value” assigns a value to the
“Measure” name. As with all parameter tables, this table is unrelated to any other tables
in the model; see Figure 12-13.

Measure rl Value \—‘
Select Measures o -
Total Sales
Total Cases - Measure
No of Sales 3 > Value
Collapse ~

Figure 12-13. The “Select Measures” parameter table

A slicer was then placed on the canvas containing the “Measure” column from the
“Select Measures” table.
This is the expression for “Measure to Show”:

MEASURE toShow =
SWITCH (
SELECTEDVALUE ('Select Measures'[Value]),
1, [Total Sales],
2, [Total Cases],
3, [No. of Sales]

)

Note the use of the SWITCH function in place of using IF, but either does the job.
This measure was then placed in the Table visual alongside the WINE column from the
Wines table.

198

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

The Values Function

It was debatable whether I would include the VALUES function in this book because
in recent years, its requirement has largely been replaced by the SELECTEDVALUE
function. However, the reason I changed my mind is that if you're a DAX user, you would
know and understand the VALUES function, even if you were rarely required to use it.

Before the arrival of the SELECTEDVALUE function in 2017, the VALUES
function was one of the major DAX functions. For this reason, you will meet VALUES
when you browse other people’s code, and therefore, it would be a good idea if you
knew the purpose of the function within an expression. Also, these two functions,
SELECTEDVALUE and VALUES, are not interchangeable; sometimes, only VALUES will
do. Indeed, we've already had cause to use the VALUES function when we were exploring
CONCATENATEX.

VALUES is particularly useful when you want to convert a column reference into a
table reference or when you want to reapply “lost” filters.

This function has a very simple syntax. Inside the function, you either reference a
table or a column:

=VALUES (table name or column name)

Here are two examples of VALUES syntax; the first references a table and the second,
a column:

= VALUES (Wines)

= VALUES (Wines[WINE])

This function is a table function and returns a virtual table as follows:

e When the input parameter is a column name, it returns a one-
column table that contains the distinct values from the specified
column using the current filter context. Duplicate values are removed,
and only unique values are returned.

¢ When the input parameter is a table name, it returns a table
containing the rows from the specified table using the current filter
context, and duplicate rows are preserved.

Although SELECTEDVALUE has largely replaced VALUES, they are two quite
different functions. SELECTEDVALUE is a scalar function that will return a single value.
Therefore, inside SELECTEDVALUE, you can only reference the column name where the
scalar value you require is located. The VALUES function, on the other hand, is described

199

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

as being a table function, and inside VALUES, you can reference either a column name or
a table name. If you reference a column name inside VALUES, that column is converted
to a table and so allows you to use columns as table expressions. Because this is one

of the benefits of using this function, VALUES is more commonly used with a column
reference, and it’s this behavior of VALUES on which we will concentrate in this section.

A Table or a Scalar Function?

However, if SELECTEDVALUE returns a scalar value and VALUES returns a table, how
can VALUES be replaced by SELECTEDVALUE? This is where the VALUES function gets
interesting because although it’s described as a table function, VALUES can return either
a table or a scalar value.

The reason for this is that when a DAX table expression returns a one-column, one-
row table, it’s converted by the DAX engine from a table to a scalar value (remember
that the LASTNONBLANK function also exhibited this behavior; see Chapter 9). This
is when VALUES changes its nature and switches from returning a table to returning a
scalar value.

We can now explore an example of this behavior.

Note The following examples of DAX measures using the VALUES and
SELECTEDVALUE functions are for explanation purposes only. We write measures
that return the wine names that we’ve already put into a visual, and clearly,

there’s no purpose to these calculations. The reason we’re using these particular
expressions is to explain more readily how the VALUES function works. We later put
the VALUES function to more realistic and beneficial use.

Consider the following expression that will return a one-column table containing the
name of the wine sitting in the current filter context.

Values Wine = VALUES (Wines[Wine])

200

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

Before we put this measure into a Table visual, we must turn off the Total row of
the visual (for reasons we will explain presently).? When the measure is placed into the
visual, it returns the values in the WINE column in the current filter; see Figure 12-14.

WINE Values Wine
Bordeaux Bordeaux
Champagne Champagne
Chardonnay Chardonnay
Chenin Blanc Chenin Blanc
Chianti Chianti
Grenache Grenache
Lambrusco Lambrusco
Malbec Malbec
Merlot Merlot
Piesporter Piesporter
Pinot Grigio Pinot Grigio
Rioja Rioja
Sauvignon Blanc Sauvignon Blanc
Shiraz Shiraz

Figure 12-14. The VALUES function returns the value in the current filter context

We get no error on the evaluation of the “Values Wine” measure, so it would appear
that VALUES is behaving like a scalar function (remember that all measures must return
scalars). We can see how this is possible. In the first evaluation for “Bordeaux” wine, the
VALUES expression creates a virtual table containing a list of unique values in the WINE
column that are in the current filter. It therefore generates a one-column, one-row table
containing the value “Bordeaux”. If we could see this table, it may well look like the table
containing a single value as shown in Figure 12-15.

e —
I wine Bl |
| Bordeaux]
1

Figure 12-15. The one-column, one-row table generated by VALUES

2For information on removing the Total row, visit https://community.powerbi.com/t5/Desktop/
How-to-remove-the-quot-Total

201

https://community.powerbi.com/t5/Desktop/How-to-remove-the-quot-Total
https://community.powerbi.com/t5/Desktop/How-to-remove-the-quot-Total

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

This table contains a single value that can be converted to a scalar, and this is why it
can be used successfully in the measure “Values Wine”.
However, let’s now replace the Total row in the Table visual. When we do this, the

measure will now return an error as shown in Figure 12-16.

Couldn't load the data for this visual

MdxScript(Model) (180, 36) Calculation error in measure 'DAX
Measures'[Values Wine]: A table of multiple values was supplied
® where a single value was expected.

Can't display the visual. See details

Send a Frown | Close

Figure 12-16. An error is returned when the VALUES function evaluates the
Total row

The error message reads:
“A table of multiple values was supplied where a single value was expected.”

Why do we get this error when the Total row shows but not when it’s absent? When
a DAX expression is evaluated for the Total row, there is no longer a single value being
returned by VALUES, but now all the wine names are in the filter context. Therefore,
the VALUES function will return a virtual table containing all the values in the WINE
column. This is the “table of multiple values” that the error message is referring to
(Figure 12-17).

202

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

WINE -
1 Bordeaux
I Champagne
1 Chardennay
| Malbec

| Grenache

l Chianti

I Finot Grigio

1 Merlot

1 Sauvignon Blanc
1 Rioja

1 Chenin Blanc

I
1
I
I
I
I
1 Piesporter 1
I
1
1
1
1
1
I

I Shiraz

Figure 12-17. VALUES returns a “table of multiple values” when evaluating the
Total row

Therefore, we can deduce that it’s the evaluation of the Total row that’s the problem
because you can’t put multiple values into a “cell” in the Total row. This is why in the
Table visual in Figure 12-14, we must remove the Total row for our expression to work.
However, you might think this is a bit of a workaround and at some point want to show
the Total row value for your measure.

To remedy this, rather than removing the Total row from the visual, instead, we can
get DAX to distinguish between the evaluation for each wine and the evaluation for the
Total row. For this, we must use a DAX function that returns TRUE if there is just one
value in the current filter context. Its name is unsurprisingly HASONEVALUE. Here is the

expression we need:

Values Wine =

IF (HASONEVALUE (Wines[WINE]),
VALUES (Wines[WINE]),
"All Wines")

But doesn’t the preceding expression return the same values as this one?

Selected Value Wine =
SELECTEDVALUE (Wines[WINE], "All Wines")

203

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER
WINE Values Wine Selected Value Wine
Bordeaux Bordeaux Bordeaux
Champagne Champagne Champagne
Chardonnay Chardonnay Chardonnay
Chenin Blanc Chenin Blanc Chenin Blanc
Chianti Chianti Chianti
Grenache Grenache Grenache
Lambrusco Lambrusco Lambrusco
Malbec Malbec Malbec
Merlot Merlot Merlot
Piesporter Piesporter Piesporter
Pinot Grigio Pinot Grigio Pinot Grigio
Rioja Rioja Rioja
Sauvignon Blanc Sauvignon Blanc Sauvignon Blanc
Shiraz Shiraz Shiraz
Total " All Wines All Wines

Figure 12-18. The VALUES function returns the same values as the
SELECTEDVALUE function

Well, yes, it does (Figure 12-18), and because the VALUES expression is more
complex, you would probably prefer to use SELECTEDVALUE. Whenever you use
VALUES to return a scalar value, you could use SELECTEDVALUE instead. What'’s more,
with SELECTEDVALUE, you don’t have to account for only one value in the filter context
as it’s implicit in the “alternate result” argument.

You may be wondering why you would want to return the wine names anyway, using
either SELECTEDVALUE or using VALUES, when you've already got them as the first
column in the visual!

204

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

Replacing “Lost Filters”

You may feel that these examples, although explaining how VALUES works, are not
“real-world” calculations. However, you have now learned how the VALUES function
operates, that it can return either a table or a scalar value. We need to find a better use for
VALUES and also find a situation where we can’t substitute SELECTEDVALUE. A better
example of the VALUES function is when we use VALUES as a table function, rather than
returning a scalar. So let’s look at this next scenario.

One of the problems with filtering using slicers is that you lose the original unfiltered
value. One way to overcome this problem is to use two visuals and then use “Edit
Interactions” so that a slicer filters one of the visuals but not the other (Figure 12-19).

Total Sales responds to the slicer Total Sales does not respond to the slicer
WINE Total Sales saLEsPERsON WINE Total Sales
Bordeaux $639,8het Bordeaux $4,055,250
Champagne $1,648,950 [Charron Champagne $7,373,700
Chardonnay $809,900] Denis Chardonnay $4,203,000
Chenin Blanc $138450 [Leblanc Chenin Blanc $1,236,950
Chianti $147,960 [Reyer Chianti $1,092,920
Grenache $183,690 Grenache $1,078,950
Malbec $402,730 Malbec $2,914,650
Merlot $176,280 Merlot $900,276
Piesporter $278,640 Piesporter $1,384,155
Pinot Grigio $126,330 Pinot Grigio $703,470
Rioja $255,105 Rioja $1,527,795
Sauvignon Blanc ~ $212,720 Sauvignon Blanc $1,896,600
Shiraz $244,686 Shiraz $1,364,766
Total $5,265,266 Total $29,732,482

Figure 12-19. Using “Edit Interactions, you can prevent slicers from filtering
a visual

3For information on how to edit the interactions of visuals, visit https://docs.microsoft.com/
en-us/power-bi/create-reports/service-reports-visual-interactions

205

https://docs.microsoft.com/en-us/power-bi/create-reports/service-reports-visual-interactions
https://docs.microsoft.com/en-us/power-bi/create-reports/service-reports-visual-interactions

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

However, we want a single visual that retains the unfiltered values alongside the
filtered ones, as in Figure 12-20. This is the DAX expression for the “Total Sales Not
Filtered” measure:

Total Sales Not Filtered =
CALCULATE ([Total Sales],
ALL (Winesales),

VALUES (Wines[WINE])

)
WINE Total Sales Total Sales e
Not Filtered Hl Abel

Blanchet

Bordeaux $639,825 $4,055,250 "] Charron

Champagne $1,648,950 $7,373,700 Denis

Chardonnay $809,900 $4,203,000 | Leblanc

Chenin Blanc $138,450 $1,236,950 Reyer

Chianti $147,960 $1,092,920

Grenache $183,690 $1,078,950

Malbec $402,730 $2,914,650

Merlot $176,280 $900,276

Piesporter $278,640 $1,384,155

Pinot Grigio $126,330 $703,470

Rioja $255,105 $1,527,795

Sauvignon Blanc $212,720 $1,896,600

Shiraz $244,686 $1,364,766

Total $5,265,266 $29,732,482

Figure 12-20. A table visual where the “Total Sales Not Filtered” measure ignores
the slicer filter

Now let’s examine the “Total Sales Not Filtered” measure in more detail. The first
filter argument to CALCULATE is the ALL function that acts as a modifier and removes
any cross-filters on the Winesales fact table coming from both the WINE column and the

206

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

SALESPERSON column. In the second filter argument, VALUES is used to build a virtual
one-column, one-row table containing the wine name in the current filter context, that
is, “Bordeaux” in the first evaluation. This is equivalent to “Wines[WINE] = “Bordeaux”.
CALCULATE then applies this new filter to the Winesales table that is then refiltered
accordingly. The end result is that there is a filter on the WINE column but no longer
a filter on the SALESPERSON column, and therefore, we see sales for all salespeople
for each wine. When the measure calculates the Total row, it constructs a virtual one-
column table containing all the wine names to be used as the filter.

However, the following expression is an alternative way of achieving the same result:

Total Sales Not Filtered #2 =
CALCULATE ([Total Sales], ALL (Winesales), Wines)

In this measure, we've referenced the entire Wines table as the filter instead of using
VALUES to generate a virtual one-column table. We can do this because the Wines table
has been filtered down to one row (or all rows for the evaluation of the Total row) and the
entire table can be used as a table expression.

This is the first time we have referenced a table in the filter argument to CALCULATE
rather than a table expression, and we're going to do this again later on. Remember that
the Wines table will contain a single row containing the wine in the current filter context,
or all the rows of the Wines table when evaluating the Total row. This expression is
perhaps a better one because we don’t need to nest yet another function.

Converting Columns to Tables

We've already established that the VALUES function is a useful function to add to your
DAX “toolbox” even though you can normally use SELECTEDVALUE instead. What
you will discover as you work with DAX is that VALUES is more commonly used with a
column reference because one of its major uses is to convert columns into tables. For

example, this expression:
“= Wines[WINE]” is a column,
but this expression:
“= VALUES (Wines[WINE])” is a table.
We will look later at using VALUES in this way when we look at the TREATAS function

later in this book.

207

CHAPTER 12 RETURNING VALUES IN THE CURRENT FILTER

With its dual personality of returning either a table or a scalar value, and particularly
how it can convert a column to a table, VALUES is a function well worth getting to know.

In this chapter, we have explored three functions, SELECTEDVALUE,
CONCATENATEX, and VALUES, that allow you to use the value or values sitting in the
current filter. You have learned that by creating parameter tables, you can harvest these
values to use within your DAX expressions. But more than this, when working with
CONCATENATEX, you have understood how, by using variables, you can hold the values
returned by these functions so they can be referenced later within the expression. You
have also successfully generated a number of temporary in-memory tables to control
filters placed on the data model. All these techniques are ubiquitous to writing DAX
expressions and will hold you in good stead as you move forward and author more
complex code.

208

CHAPTER 13

Controlling the Direction
of Filter Propagation

Up to now, you have understood that filters only flow from the one side of the
relationship to the many, from dimensions into the fact table, as indicated by the arrows
in the linking lines in Model view; see Figure 13-1.

SalesPeople o
[B] Regions a3

FIRSTNAME

SALESPERSON Recion

SALESPERSON ID REGION®

Collapse ~ Collapse ~
i 1
= |
Wines o J L
COST PRICE | 4 » T
PRICE PER CASE ; |
SUPPLIER * %
1—— "
TvPE E Winesales ol E Customers o
WINE
WINE COUNTRY Z CasESSOLD CUSTOMER ID
-
WINE 1D CUSTOMER ID - CUSTOMER NAME
(B. REGION NAME ! T NO.OF STORES
Collapse
% SALEDATE prsl [REGION ID
[sALES
SALESPERSON 1D Collapse

VANE 1D
Z WANESALES NO
Collapse <~
*

[

Figure 13-1. Filters only flow from dimensions into fact tables

However, there will be situations when you will want to author measures that require
filters to propagate in the opposite direction. In this chapter, we explore these situations
and learn how to reverse the direction of the filters using two methods:

209
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_13

https://doi.org/10.1007/978-1-4842-8188-8_13

CHAPTER 13 CONTROLLING THE DIRECTION OF FILTER PROPAGATION

1. The CROSSFILTER function to programmatically reverse the filters

2. Editing the data model to make filter propagation flow both to and
from the fact table

However, regarding method #2, we will be warning you of the downside if you
change the structure of your data model. In fact, it’s important to understand that if you
want filters to flow in the opposite direction, this will always be problematic whichever
way you choose to work it.

Programming Bidirectional Filters

For example, let’s look at a problem we explored in Chapter 4 when you were learning
about the filter context and which at that time, you were not able to resolve. In the
Customers dimension, we have the column NO. OF STORES; see Figure 13-2.

CUSTOMERID [~] customername [~] ReGion D [~] County [~] Area [~] country [{] mO.oOFsTORES [~]
1 Landstuhl Ltd 1800 | West Midlands England United Kingdorh 2L
2 Erlangen & Co 800 Greater London England United Kingdoth 21
4 Black Ltd 500 | Central Bedfordshire England | United Kingdom 19
5 Snogualmie & Sons 1200 Greater Manchester England United Kingdodh i3
6 Leeds & Co 1000 Merseyside England | United Kingdoth 11
7 Newcastle upon Tyne & Sons 1900 County Durham England United Kingdorh 18
8 Charlottesville & Co 300 Greater London England United Kingdorh 13
9 Brown & Co 1400 Derbyshire England | United Kingdodh 24

10 Lavender Bay Ltd 500 Leicestershire England United Kingdomh 10
12 ElCajon & Sons 400 Greater London England | United Kingdodh 1
12 Seden Wanllew |td 1200 | Wect Midlaned Enoland Liniterd Kinadadh 23

Figure 13-2. The Customers table and the NO. OF STORES column

We would like to calculate the number of stores in which we’ve sold each wine. We
might create this measure:

Total Stores =
SUM (Customers[NO. OF STORES])

However, as you can see in Figure 13-3, this measure does not work.

210

CHAPTER 13 CONTROLLING THE DIRECTION OF FILTER PROPAGATION

WINE Total Stores
Bordeaux 1,181
Champagne 1,181
Chardonnay 1,181
Chenin Blanc 1,181
Chianti 1,181
Grenache 1l ks
Lambrusco 1,181
Malbec 1,181
Marlat 1181

Figure 13-3. The “Total Stores” measure does not return the correct results

In Chapter 4, we established the reason for the incorrect values. The filter on the
Wines dimension only propagates to the fact table and does not propagate onward to the
Customers dimension; see Figure 13-4.

Wines oL *
COST PRICE [E] winesates O 8 ¥
PRICE PER CASE T casessowd [B] customers O
PFLI
Wmﬂ ' 1 J SUSTOMER > CUSTOMER 1D
WINE 1 o 1 CUSTOMER NAME
WINE COUNTRY & PR * T T NO.OF STORES
o Suck REGION ID
VINEID SALESPERSON ID

WINE ID
2 WINESALES NO

Collapse ~ Collapse ~

Collapse ~

I

Figure 13-4. The filter does not propagate from Winesales to Customers

So how do we find the number of stores in which we’ve sold our wines? The answer
lies in using a function called CROSSFILTER.

The CROSSFILTER function returns no value but is used as a modifier to the
CALCULATE function. It programmatically sets the direction of the filter propagation in
the execution of the measure in which it is used. It has the following syntax:

= CROSSFILTER (columnl, column2, direction)

211

CHAPTER 13 CONTROLLING THE DIRECTION OF FILTER PROPAGATION

where:

columnl is the column name that represents the many side of the relationship to
be used.

column?2 is the column name that represents the one side of the relationship to
be used.

direction is the cross-filter direction to be used in the measure and can be set to
“both” to generate bidirection filters.

Here is an example of CROSSFITLER syntax:

= CROSSFILTER (Winesales| CUSTOMERID], Customers[CUSTOMERID], both)

The CROSSFILTER function specifies the cross-filtering direction to be used by a
measure, so we can now, in memory, change the direction in which the filters propagate.
We can rewrite our original “Total Stores” measure like this:

Total Stores =
CALCULATE (
SUM (Customers[NO. OF STORES]),
CROSSFILTER (Winesales[CUSTOMER ID], Customers[CUSTOMER ID], BOTH)

This measure uses CROSSFILTER to change the direction of the relationship between
Customers and Winesales. When this measure is evaluated, the Winesales table is cross-
filtered by the Wines dimension, and this filter is propagated onward to the Customers
dimension; see Figure 13-5.

[E] wines ol *
1 ' on -
e Winesales CA *
PRICE PER CASE T CASES SOLD Gustomers » i
SUPPLIER : a , CUSTOMER ID / CUSTOMER 1D
v
PE - [Bh REGION NAME & CUSTOMER NAME
WINE L & SsALEDATE - b I NO.OF STORES
WINE COUNTRY (B saLes REGIOM 1D
WINEID SALESPERSON ID
Collapse WINE ID Collapse ~
T WINESALES NO
Collapse ™~
i

Figure 13-5. The CROSSFILTER function can change the direction of the filter
programmatically

212

CHAPTER 13 CONTROLLING THE DIRECTION OF FILTER PROPAGATION

So in the first instance for “Bordeaux” wine, the Customers table becomes cross-
filtered to contain only customers who bought this wine, and we can see that there were
728 stores in which we’ve sold “Bordeaux”; see Figure 13-6.

WINE Total Stores
Bordeaux 728
Champagne 709
Chardonnay 805
Chenin Blanc 7.5
Chianti 626
Grenache 685
Malbec 736
Merlot 749
Piesporter 563
Pinot Grigio 696
Rioja 832
Sauvignon Blanc 777
Shiraz 727
Total 1,181

Figure 13-6. The “Total Stores” measure is now calculated correctly

However, note the value in the Total row, 1,181. It is not the total of the values for all
the wines in the Table visual. Changing the filter propagation to bidirectional has a side
effect. Many of the same customers have bought each wine, and so their total number of
stores is included in multiple evaluations. However, the Total row sums the number of
stores for all customers for all wines.

Why You Should Never Use
Bidirectional Relationships

The CROSSFILTER function allows you to programmatically change the direction of filter
propagation in the execution of a specific measure. However, you may know that there’s
an easier way to change the filter direction, and that’s to change the structure of the data
model. To do this, you can double-click on the linking line between two tables in Model
view to edit the relationship, setting the “Cross filter direction” to “Both”; see Figure 13-7.

213

CHAPTER 13 CONTROLLING THE DIRECTION OF FILTER PROPAGATION

Edit relationship

Select tables and colump 1800 West Midlands England United Kingdom 21

800 Greater London England United Kingdom 21

. 500 Central Bedfordshire England United Kingdom 19
Winesales

SALE DATE WINESALES

St Cross filter direction
L 1 Teatr =
30/12/2021 gel
30/12/2021 1 Apply security filter in both directions
£
I
* — e
b | " Customers R :
Inesales o
> CASES SOLD Count
y
5 [Cases Sold Increase i 1 County
B Column - 4 CUSTOMER ID
& Column2 CUSTOMER NAME
CUSTOMER ID > NO. OF STORES
SALE DATE REGION ID
Collapse ~ Collapse ~
*

Figure 13-7. You can edit the relationship and set the cross-filter to both

However, a quick fix as this is, we would never recommend that you do this for
two reasons. Firstly, bidirectional relationships are much less efficient and can hinder
the performance of the data model, but perhaps, more importantly, they introduce
ambiguity into the data model. It’s beyond the scope of this book to elaborate on the
concept of ambiguity, but for more information on these issues, check out this link:

www.sqlbi.com/articles/bidirectional-relationships-and-ambiguity-in-dax/

However, even at a more basic level, you will find that creating many bidirectional
relationships in your model will render the data model unpredictable when filters are
propagated, and you will start to lose control of what filters what. You will find it much
easier if your model abides by the rule of single directional relationships, and if you must
change the filter direction, use CROSSFILTER.

There are usually three reasons why people edit a relationship to bidirectional
filtering, all of which are not valid reasons:

214

http://www.sqlbi.com/articles/bidirectional-relationships-and-ambiguity-in-dax/

CHAPTER 13 CONTROLLING THE DIRECTION OF FILTER PROPAGATION

1. There is a lack of understanding of the subtleties of the Power BI
data model and filter propagation.

2. People don’t know enough DAX to be able to programmatically
change the filter direction using CROSSFILTER.

3. People want to cross-filter slicers when the slicers use columns
from different dimensions.

Let’s take a look at the last of these reasons: wanting to cross-filter slicers when
using columns from different dimensions. If this is your objective, you don’t need to use
bidirectional filtering. You can do this by using a measure in a visual-level filter on the
slicer you want cross-filtered.

For example, in Figure 13-8, you can see we have two slicers: one using the
CUSTOMER NAME column from the Customers dimension and one using the WINE
column from the Wines dimension. If we select from the CUSTOMER NAME slicer, for
example, “Ballard & Sons’, the WINE slicer won’t change to reflect the wines that “Ballard
& Sons” has bought. We always see all the wines regardless of selections made in the
CUSTOMER NAME slicer.

CUSTOMER NAME WINE
Acme & Sons Bordeaux
Back River & Co Champagne

M Ballard & Sons Chardonnay
Barstow Ltd Chenin Blanc
Beaverton & Co Chianti
Black Ltd Grenache
Bloxon Bros. Lambrusco
Bluffton Bros Malbec
Branch Ltd Merlot
Brooklyn & Co Piesporter
Brooklyn Ltd Pinot Grigio
Brown & Co Rioja

Burlington Ltd
Burningsuit Ltd
Busan & Co
Canoga Park Ltd

Sauvignon Blanc
Shiraz

Figure 13-8. Slicers don’t cross-filter from one dimension to another

215

CHAPTER 13 CONTROLLING THE DIRECTION OF FILTER PROPAGATION

You already know why this is. If the Customers table is filtered, the filter is
propagated to the Winesales table but not filtered onward to the Wines table because
filters don’t flow from the many side of the relationship to the one side. However, we
can force the Wines table to cross-filter accordingly. We can do this by placing a visual
filter on the WINE slicer using a measure, such as “Total Sales’, and filter only Wines that
have a “Total Sales” value. In fact, we can use any measure that does a calculation on the
Winesales table and then set this filter to “Show items when the value is not blank” as
shown in the visual filter in Figure 13-9.

| Filters on this visual
CUSTOMER NAME .FWINE = =
Acme & Sons Bordeaux Total S
Back River & Co Champagne tinotblenk
B Ballard & Sons Chianti Show items when the value
Barstow Ltd Malbec ;
Beaverton & Co Piesporter — AU =
Black Ltd Rioja @ And O Or
Bloxon Bros.
Bluffton Bros | | %
Branch Ltd
Brooklyn & Co Apply filter
Brooklyn Ltd
Brown & Co WINE
Burlington Ltd is (All)
Burningsuit Ltd
< | Add data fields here
Canoga Park Ltd L = N

Figure 13-9. Use a visual filter populated with a measure and set to “is not blank”
to cross-filter slicers

So there really is no excuse for editing relationships to bidirectional! Always design
measures using the CROSSFILTER function to do this. However, as we have seen, the
problem of measures that use bidirectional filters, whether using CROSSFILTER or
editing the relationship, is that the Total row shows a misleading value. There is no
real solution to this outcome; the total is correct but may not be the total you want to
show. You can, of course, always turn off the display of the total row in the Table or
Matrix visual.

216

CHAPTER 14

Working with Multiple
Relationships Between
Tables

In our data model, all our tables have single relationships between other tables. Indeed,
it’s only possible to have one active relationship between any two tables, but you can
have as many inactive relationships as you want. In this chapter, you will learn how

to use multiple relationships between tables and activate inactive relationships. This
may be because you require multiple links from a dimension table into the fact table.
However, there is another less obvious use of inactive relationships that we will discover
in this chapter, and that is using comparison dimension tables. Here, we can use
measures to force filter propagation through the comparison dimension table, therefore
being able to compare a column from a default dimension with its counterpart in a
comparison dimension.

If you attempt to build a second relationship or subsequent relationships between
any two tables, all but the first relationship will be inactive, indicated by a dotted
relationship line. Consider the tables in Figure 14-1. We now have two date columns
in our Winesales table: SALE DATE and ORDER DATE.! The first relationship was
established between the DATEKEY column in the DateTable and the SALE DATE column
in the Winesales table. When we attempt to create a second relationship between
the DateTable and the Winesales table by using ORDER DATE, we get a dotted line
indicating that this relationship is inactive.

!'To follow along with the examples, use the Power BI Desktop file “3 DAX USERELATIONSHIP.pbix”.

217
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_14

https://doi.org/10.1007/978-1-4842-8188-8_14

CHAPTER 14 WORKING WITH MULTIPLE RELATIONSHIPS BETWEEN TABLES

Winesales

> CASES SOLD
CUSTOMER ID
ORDERDATE

Winesales

> CASES SOLD
CUSTOMER ID

| ORDER DATE

ol | SALE DATE

SALESPERSON ID
WINE
WINE ID
> WINESALES NO
Collapse

DateTable

| DATE KEY

MONTH
MONTH NO
QTR

YEAR

Collapse

SALE DATE
SALESPERSON 1D
WINE
WINE ID

> WINESALES NO

Collapse ™~

e

DateTable

l DATE KEY

MONTH
MONTH NO
QTR

YEAR

Collapse ~™~

Figure 14-1. Active and inactive relationships

All measures will use the active relationship by default, so how do you use the

inactive relationship? For example, if we build a Table visual containing the YEAR and

MONTH columns from the DateTable (Figure 14-2), we can find the number of sales in

each month using this measure:

No. of Sales =
COUNTROWS (Winesales)

218

CHAPTER 14 WORKING WITH MULTIPLE RELATIONSHIPS BETWEEN TABLES

YEAR MONTH No. of Sales
2017 Jan 32
2017 Feb 29
2017 Mar 27
2017 Apr 28
2017 May g
2017 Jun 14
2017 Jul 23
2017 Aug 16
2017 Sep 36
Total 2,197

Figure 14-2. Using YEAR and MONTH from the DateTable filters the SALE DATE
column in the Winesales table

In this visual, the “No. of Sales” measure filters the YEAR and MONTH columns in
the DateTable, which is propagated to the Winesales table using the active relationship
and therefore filters the SALE DATE column for that year and month. However, to
calculate the number of orders, we will need to use the inactive relationship so that the
ORDER DATE column is filtered for that year and month instead. To do this, we can use
the USERELATIONSHIP function.

Activating Inactive Relationships

The USERELATIONSHIP function, like the CROSSFILTER function, returns no value but
is used as a modifier to the CALCULATE function. It programmatically uses an inactive
relationship to propagation filters in the execution of the measure in which it is used. It
has the following syntax:

= USERELATIONSHIP (columnl, column2)

where:

column1 is the column name that represents the many side of the relationship to
be used.

219

CHAPTER 14 WORKING WITH MULTIPLE RELATIONSHIPS BETWEEN TABLES

column?2 is the column name that represents the one side of the relationship to
be used.

Here is an example of the USERELATIONSHIP syntax:

= USERELATIONSHIP (Winesales[SALE DATE], DateTable[ORDER DATE])

You must have an inactive relationship in place in order to use the
USERELATIONSHIP function.

This is the measure to calculate the number of orders in each month shown in
Figure 14-3:

No. of Orders =
CALCULATE (
COUNTROWS (Winesales),
USERELATIONSHIP (Winesales[ORDER DATE], DateTable[DATEKEY]))

YEAR MONTH No. of Sales No. of Orders
2017 Jan 32 43
2017 Feb 29 26
2017 Mar 27 24
2017 Apr 28 2
2017 May 2T 22
2017 Jun 14 13
2017 Jul 23 24
2017 Aug 16 20
2017 Sep 36 35
2017 Oct 235 24
2017 Nov 28 31
Total 2,197 2,197

Figure 14-3. Calculating the number of sales and number of orders

When this measure is evaluated, the year and month filtered in the DateTable are
propagated to the Winesales table to cross-filter the ORDER DATE column to find the
orders in that month.

220

CHAPTER 14 WORKING WITH MULTIPLE RELATIONSHIPS BETWEEN TABLES

Comparing Values in the Same Column

The USERELATIONSHIP function can be used for another purpose: dynamic
comparisons between values from the same column in a dimension. In other words,
being able to compare a column from a default dimension with its counterpartin a
comparison dimension.

Consider the example shown in Figure 14-4. Here, we are comparing 2020 sales (the
“Total Sales” measure) to 2021 sales (the “Compare Year” measure), but the benefit here
is that we are making the comparison in the same Table visual, rather than using separate
visuals for each year.

YEAR ~ WINE Total Sales Compare Year COMPARE YEAR
igg Bordeaux $1,066,125 $1,085,025 igg
. Champagne $1,746,900 $1,719,150 5576

Chardonna $1,177,000 $1,130,200 5020
5021 Chenin Blanc $402,000 $335,85

Chianti $285,800 $341,400
Grenache $305,880 $291,060
Malbec $856,545 $896,155
Merlot $199,485 $314,340
Piesporter $441,450 $550,800
Pinot Grigio $173,460 $181,200
Rioja $426,195 $441,990
Sauvignon Blanc ~ $502,440 $587,560
Shiraz $334,386 $322,686
Total $7,917,666 $8,197,416

Figure 14-4. Comparing sales for two different years selected in slicers

221

CHAPTER 14 WORKING WITH MULTIPLE RELATIONSHIPS BETWEEN TABLES

The starting point for the “Compare Year” measure is to create a comparison
DateTable in the data model by duplicating the original DateTable. We've named the
duplicate DateTable “DateTable Compare” This table is then related to the Winesales
table using the DATEKEY column from the “DateTable Compare” table and the SALE
DATE column from the Winesales table; see Figure 14-5.

Winesales o
2 CASES SOLD
CUSTOMER ID
ORDER DATE
[sacoare
k SALESPERSON 1D
WINE ID
> WINESALES NO
Collapse -~
* ok [k
@ DateTable Compare oot
- : s ="
- | paTexey
: MONTH
1 T MONTH NO
................................. j QR
YEAR
Collapse ~~

Figure 14-5. Relate the comparison table to the fact table but set the relationship
to inactive

You must then edit this relationship to ensure that it’s marked as inactive by checking
off “Make this relationship active” in the Edit Relationship dialog; see Figure 14-6.

222

CHAPTER 14 WORKING WITH MULTIPLE RELATIONSHIPS BETWEEN TABLES

Edit relationship

Select tables and columns that are related.

DATE KEY YEAR QTR MONTH NO MONTH

Winesales 01 July 2020 2020 Qtr3 7 Jul
02 July 2020 2020 Qtr3 7 Jul
SALE DATE wi
03 July 2020 2020 Qtr3 7 Jul
30/12/2021
30/12/2021
30/12/2021 Cardinality
<

Many to one (*:1)

] Make this relationship active

Assume referential integrity

Figure 14-6. Making a relationship inactive

The next step is to create the two slicers as shown in Figure 14-4. The slicer on the
left, named “YEAR, is created using the YEAR column from the DateTable. Selecting
a year from this slicer filters the “Total Sales” measure. The slicer on the right, named
“COMPARE YEAR’, uses the YEAR column from the “DateTable Compare” table.
Selecting a year from this slicer filters the “Compare Year” measure as follows:

Compare Year =
CALCULATE (
[Total Sales],
ALL (DateTable),
USERELATIONSHIP (Winesales[SALE DATE], 'DateTable Compare'[DATEKEY])

Notice the use of the ALL function to remove the filter on the YEAR column of the
DateTable coming through from the YEAR slicer that is used by the active relationship.

223

CHAPTER 14 WORKING WITH MULTIPLE RELATIONSHIPS BETWEEN TABLES

Using USERELATIONSHIP to make comparisons between your data is a simple
strategy and doesn’t require complex DAX, so let’s take this idea a step further. Let’s see
if we can answer this question: Of the customers who bought wine X, who also bought
wine Y? For example, of the customers who bought “Champagne’; who also bought
“Pinot Grigio”?

We've set out the solution to this question in Figure 14-7. The “No. of Sales”
measure is being filtered by the WINE slicer on the left and shows the number of sales of
“Champagne” for each customer. The “Compare Wine” measure is being filtered by the
COMPARE WINE slicer on the right and shows the number of sales of “Pinot Grigio” for
each customer. Finally, we've created a “Both Wines” measure that shows the customers
who bought both wines, showing the combined number of sales for both wines.

iy CUSTOMER NAME No. of Sales Compare Wine Both Wines ~ » COMPAREWNE
Bordeaux || Bordeaux
B Champagne Back River & Co 1 1 2 ["] Champagne
Chardonnay Ballard & Sons 1 [_| Chardonnay
“| Chenin Blanc Black Ltd 2 2 4 ["] Chenin Blanc
__| Chianti Bluffton Bros 1 3 4 [_] Chianti
Grenache Brooklyn & Co 2 | Grenache
_| Lambrusco Burningsuit Ltd 5 4 9 [] Lambrusco
Malbec Cape Canaveral Ltd 1 4 5 LI Malbec
| Meriot Castle Rock Ltd 5 5 10 L] Merlot
Piesporter 3 6 9 |_| Piesporter
L PcsGiigio Charleston Ltd 3 2 5 Bl Pinot Grigio
__| Rioja Charlotlesvile &G - | Rioja
Sauvignon Blanc e ["] Sauvignon Blanc
| Shiraz Shatoulsco - ["] Shiraz
Cheney & Co 3
Cincinnati Ltd 2 3 5
Clifton Ltd 3 7 10
Colombes & Co 1
Lmliimalaie O C A A (+]
Total 131 167 298 o

Figure 14-7. Customers who bought either wines or both wines

You can see in Figure 14-7 that
e “Charleston Ltd” bought both “Champagne” and “Pinot Grigio”.
e “Charlottesville & Co” bought “Champagne” but not “Pinot Grigio”
e “Chatou & Co” bought “Pinot Grigio” but not “Champagne”.
If we put the “Both Wines” measure into a Table visual of its own, we see only

customers who bought both wines (Figure 14-8).

224

CHAPTER 14 WORKING WITH MULTIPLE RELATIONSHIPS BETWEEN TABLES

WINE
Bordeaux

B Champagne
Chardonnay
Chenin Blanc
Chianti
Grenache
Lambrusco
Malbec
Merlot
Piesporter
Pinot Grigio
Rioja
Sauvignon Blanc
Shiraz

CUSTOMER NAME
-~

Both Wines

Back River & Co
Black Ltd

Bluffton Bros
Burningsuit Ltd
Cape Canaveral Ltd
Castle Rock Ltd
Chandler & Sons
Charleston Ltd
Cincinnati Ltd
Clifton Ltd
Columbus & Sons
Eilenburg Ltd

El Cajon & Sons
Erlangen & Co

Fort Atkinson & Co
Fort Worth Ltd

— gl —

—
(521N oS B Vo SR Ve Jo » T o - T < TRCW 5 IR TR Vo TR o SRR 5 I o TR S Y 8]

Total

298

A

COMPARE WINE
Bordeaux
Champagne
Chardonnay
Chenin Blanc
Chianti
Grenache
Lambrusco
Malbec
Merlot
Piesporter

B Pinot Grigio
Rioja
Sauvignon Blanc
Shiraz

Figure 14-8. Customers who bought both wines

The expressions for the measures in Figure 14-7 are almost the same as those we

used when we were comparing years in Figure 14-4. First, you need to duplicate the

Wines dimension. We've called this duplicate table “Wines Compare” and then related

this duplicate table to the fact table, remembering to set the relationship as “inactive.”

These are the three measures we used in Figure 14-7:

No. of Sales =

COUNTROWS (Winesales)

Compare Wine =
CALCULATE (

[No. of Sales],
ALL (Wines),

USERELATIONSHIP (Winesales[WINE ID], 'Wines Compare'[WINE ID])

225

CHAPTER 14 WORKING WITH MULTIPLE RELATIONSHIPS BETWEEN TABLES

Both Wines =
IF (
SELECTEDVALUE (Wines[WINE]) = SELECTEDVALUE ('Wines Compare'[WINE]),
[No. of Sales],
--If the same wine is selected in both slicers, don’t add the number of
sales together
IF (
[No. of Sales] 8& [Compare Wine],
[No. of Sales] + [Compare Wine]

)

--If customers have sales for both wines, add the number of sales together

)

However, those of you that are observant may notice that the value in the Total row
of the “Both Wines” measure in Figure 14-8 (298) is not correct. It totals all rows for
the selected wines not just those rows for customers who have bought both wines. To
calculate the correct total if “Champagne” and “Pinot Grigio” are selected (258), you can
use SUMX (iterating the Customers table) and edit the “Both Wines” measure as follows:

Both Wines =
SUMX (
Customers,
IF (
SELECTEDVALUE (Wines[WINE]) = SELECTEDVALUE ('Wines
Compare' [WINE]),
[No. of Sales],
IF ([No. of Sales] && [Compare Wine], [No. of Sales] +
[Compare Wine])

We hope you feel inspired by these examples to create comparisons in your own data
by using the USERELATIONSHIP function. And of course, you now know how to activate
inactive relationships.

226

CHAPTER 15

Understanding Context
Transition

Nothing in life that’s worth anything is easy.

—Barack Obama

You could also say that nothing in DAX that’s worth anything is easy. Certainly, the
concept of context transition is one of the more challenging theories to get to grips with
in DAX. It can’t be explained in a few short paragraphs, and therefore, we dedicate this
entire chapter to teaching you the details of what context transition is and how it is used
within DAX expressions. It’s only then can you move forward in the following chapter to
explore some practical applications of this concept. Once you understand the purpose
of context transition in your code, a whole range of challenging calculations becomes
possible. In fact, most DAX expressions you meet will probably be using context
transition, and indeed, there will come a time when most DAX expressions you write will
use it.!

To explain context transition in its simplest terms, it allows you to programmatically
perform aggregations at the dimension, or group granularity, rather than the row
granularity. For example, the expression “AVERAGE (Winesales| CASES SOLD])”
calculates the average cases sold across transactions. This expression, using context
transition, AVERAGEX (Wines, [Total Cases]), will calculate the average of the
aggregated values, in this case, the average of the values returned by the “Total Cases”
measure. Mostly, context transition happens in memory when an expression is being

evaluated, and therefore, we can’t see it happening.

To follow along with the examples, use the Power BI Desktop file “1 DAX Sample Data.pbix”

227
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_15

https://doi.org/10.1007/978-1-4842-8188-8_15

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

Overview of DAX Evaluations Contexts

To understand context transition, you must have a firm handle on how DAX expressions
are evaluated. You must clearly understand the difference between filter context and row
context and be able to use these concepts correctly in your code. Therefore, our starting
point in this chapter will be to remind ourselves of the difference between these two

conditions in which our expressions are evaluated.

Row Context Revisited

When using the row context, a DAX expression iterates every row in a table. The values
used in the expression are the values sitting in the current row, which may be different
for every row. For example, the CASES SOLD value is mostly different for each row of the
Winesales table, and so this calculated column

10 Percent of Cases Sold =
Winesales[CASES SOLD] * 0.1

will iterate all the rows in the Winesales table, finding a different value for CASES SOLD
on each row and multiplying it by 0.1.

We can categorically state therefore that all calculated columns are evaluated in
the row context. But measures will also use the row context if they iterate a table. For
example, this measure (that we met when looking at the SUMX function in Chapter 5)

Total Sales =
SUMX (Winesales,
Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

)

is evaluated first in a filter context, for example, filtered for “Bordeaux” wine, but then
the SUMX function iterates the Winesales table and using the row context multiplies the
CASES SOLD value sitting in each row by the PRICE PER CASE value from the Wines
table. This will be the price of the wine in the current row of the Winesales table. The
SUMX function then sums the result of all these row-level calculations, for example, for
“Bordeaux” wine.

Therefore, what we can also state is that any DAX expression that iterates a table,

whether in a calculated column or inside a measure, uses the row context.

228

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

Filter Context Revisited

All DAX measures are evaluated in a filter context. There are no exceptions to this rule.
We understand that the filter context is typically generated from the current state of the
Power Bl report when the measure is evaluated, be it the structure of the visual, any
slicers affecting the visual, or any filters in the Filters pane. But there is another way that
the filter context can be generated, and this is what we’re now going to investigate.

How Row Context Becomes Filter Context

There is a specific situation when a DAX expression is evaluated that will turn the row
context into a filter context. This is what we know as context transition. To understand this
specific situation, let’s consider these five DAX expressions, two calculated columns and
three measures (you don’t need to know at this point what the expressions are calculating):

1. Columnl =
CALCULATE (SUM (Winesales[CASES SOLD))

2. Column2 =
[Total Cases]

3. Measurel =
AVERAGEX (Wines, [Total Cases])

4. Measure 2 =
AVERAGEX (Wines, CALCULATE (SUM (Winesales[CASES SOLD])))

5. Measure 3 =
CALCULATE ([No. of Sales], FILTER (Winesales, [Total Cases] > 350))

Question: What is common to all these expressions?
The answer is that all five expressions share the same three attributes as follows:

1. They all use the CALCULATE function.
But surely Column 2 and Measure 1 don’t? At this point, there’s
something more we need to teach you regarding measures. All
measures implicitly invoke CALCULATE even if they don’t call the
function explicitly. Therefore, Column 2 and Measure 1, which both
reference the measure “Total Cases’, are both calling CALCULATE
implicitly. The other expressions are using CALCULATE explicitly.

229

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

2. They all iterate tables creating a row context.
Column 1 and Column 2 are calculated columns, and all
calculated columns iterate tables. We know that the functions
AVERAGEX and FILTER are iterators too, so Measure 1, Measure 2,
and Measure 3 all iterate tables, creating a row context. Measure 1
and Measure 2 iterate the Wines table, and Measure 3 iterates the
Winesales table.

3. They all invoke context transition.
This is where the row context, generated by an iteration of either a
calculated column or inside a measure, is turned into a filter context.

Therefore, the specific situation to which we alluded is this: context transition occurs
whenever

e The expression uses CALCULATE either explicitly or implicitly
(because you're using a measure)
AND

e The expression (either in a column or in a measure) iterates a table
using the row context

You now understand when context transition happens, but what exactly is “context
transition”? To answer this question, let’s first take this expression and use it in a
calculated column:

Total Cases Column =
SUM (Winesales[CASES SOLD])

230

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

M gl il Total Cases Column = _
2 sum [winesales[cAsEs soLp])

SALE DATE [7] WINESALES NO [~ SALESPERSON ID [~] cUSTOMERID [~] WINEID [~] cAsEssOLD [~|| Total Cases Column [~ |
01/01/2017 2 6 16 10 213 423,224
01,/01/2017 1 i 16 4 324 423,224
02/01/2017 3 4 20 5 74 423,224
03/01/2017 4 1 12 10 264 423,224
07/01/2017 5 2 17 3 143 423,224
08/01/2017 6 3 as 11 153 423,224
09/01/2017 7 6 11 7 173 423,224
10/01/2017 8 2 75 13 106 423,224
12/01/2017 10 4 16 13 134 423,224
12/01/2017 9 4 14 13 144 423,224 I
antnstmnaz PP . 2 s o e

Figure 15-1. The calculated column returns the grand total on every row

You can see in Figure 15-1 that in every row, the expression returns the same value,
the grand total of CASES SOLD. As a calculated column, the expression iterates the table
using the row context, and therefore, there is no filter present. Aggregate functions such
as SUM, by definition, require the rows to be aggregated to first be filtered. Because there
is no filter on the table, this expression can only use the values from the entire table and
so sums all the values for CASES SOLD.

We have just learned that context transition happens when there’s an iteration, and
we use CALCULATE. We can therefore now take our first look at context transition in
action in a calculated column by editing our expression and wrapping CALCULATE
around it:

Total Cases Column =
CALCULATE (
SUM (Winesales[CASES SOLD])

231

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

W A Hl Total Cases Column =
— |2 CALCULATE [(
3| suM (winesales[cases soLp])
o)

SALE DATE [-7]| winesALEs NO [~] sALEsPERsON ID [~]| cusTomer D [~] wine D [~] casessoLp [~ ITotal Gas n
01/01/2017 2 6 16 10 213 213
01/01/2017 1 3 16 4 324 326
02/01/2017 3 4 20 5 7 70
03/01/2017 4 1 12 10 264 264
07/01/2017 5 2 17 3 143 147
08/01/2017 6 3 45 11 154 155
09/01/2017 7 6 11 7 171 173
10/01/2017 8 2 75 13 104 106
13 /a1 fan1T in A 1L 12 12, lac

Figure 15-2. Using CALCULATE evokes context transition in the
calculated column

Figure 15-2 shows that the result of this expression returns the CASES SOLD value
of each row. What has happened here is the expression iterates the table generating
arow context, as do all calculated columns. But we're also using CALCULATE in the
iteration, and by doing so, the expression ignores the row context and replaces it with a
filter context. Notice that although the expression uses CALCULATE, there are no filter
arguments inside CALCULATE. Therefore, what is the filter being used by CALCULATE?
The answer is rather a strange one (at least to new DAX users). A filter is placed on each
value in each of the columns sitting in the current row. For example, in the first row of
the table where the calculation returns 213, the filter is this:

SALE DATE = 01/01/2017
WINESALES NO = 2
SALESPERSON ID = 6
CUSTOMER ID = 16

WINE ID = 10

CASES SOLD = 213

The calculated column, “Total Cases Column’, iterates the Winesales table, and
because of the presence of CALCULATE, context transition occurs. All rows that share
the same set of filters (as described before) are grouped and become filtered in their
own right. The CASES SOLD values summed are the cases sold values sitting in each
group. Because our rows are unique, each group comprises a single row, and therefore,
the expression returns the same value as CASES SOLD. This is why, were you to have a

232

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

duplicate first row in our example, you would see 426 (213 x 2) in “Total Cases Column”
because the duplicate rows would be grouped before CASES SOLD was summed.?
However, each of our rows is unique, so each filter generated by the context transition
returns one row, which is the current row. This is an example of using CALCULATE in
a calculated column where we have an iteration (and therefore a row context) and so
CALCULATE evokes the context transition.

However, context transition also happens whenever you use a measure where there is
arow context, for example, if you put a measure into a calculated column.

Note Itis recommended that you are in Data view to create the calculated
columns as described in the following.

This is because all measures call CALCULATE implicitly, and so context transition
will also occur. For example, let’s take this measure:

Total Cases =
SUM (Winesales[CASES SOLD])

Now let’s edit our calculated column, “Total Cases Column’; to perform the same
calculation (i.e., summing the CASES SOLD column) but this time expressed as the
“Total Cases” measure:

Total Cases Column =
[Total Cases]

2For information on removing duplicate rows, visit www.excelnaccess.com/
removing-duplicate-rows-in-power-bi/

233

http://www.excelnaccess.com/removing-duplicate-rows-in-power-bi/
http://www.excelnaccess.com/removing-duplicate-rows-in-power-bi/

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

M oF il Total Cases Column =
2 |ﬂTotal Cases[]_

SALE DATE [-7] WINESALES NO [~] SALESPERSON ID [~ CUSTOMERID [~] WINEID [~] casEssoLD [~ Total Cases Column [~]
01/01/2017 2 I 16 10 213 213
01/01/2017 1 3 16 4 326 326
02/01/2017 3 4 20 5 74 70
03/01/2017 4 1 12 10 26 264
07/01/2017 5 2 17 3 147 147
08/01/2017 6 3 a5 11 15 155
09/01/2017 7 6 11 7 173 173
10/01/2017 8 - 75 i3 104 106
12/01/2017 10 4 16 13 13¢ 136

Figure 15-3. Using a measure in a calculated column evokes context transition

You will notice in Figure 15-3 that the results of this expression are the same as when
we used CALCULATE explicitly. Therefore, these two expressions

Total Cases Column =
CALCULATE (
SUM (Winesales[CASES SOLD]))

and

Total Cases Column =
[Total Cases]

are the same expressions.

At this stage in understanding context transition, I appreciate you're thinking:

Why would I want to create a calculated column that returns the same value as the
value sitting in the current row? Also, our Winesales table, being the fact table, could
potentially contain millions of rows, so any context transition occurring in a calculated
column would be very slow. In short, what is the purpose of context transition?

To answer this question, let’s see how context transition performs when invoked in
dimension tables, rather than in the fact table. Let’s now repeat the same expressions
we've been working with, but rather than placing them in the fact table, this time we will
put them in the Wines dimension.

234

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

These are the calculated columns that we can create in the Wines dimension:

Wine Total Cases 1

SUM (Winesales[CASES SOLD])

Wine Total Cases 2
CALCULATE (

SUM (Winesales[CASES SOLD]))

Wine Total Cases 3
[Total Cases]

Observing the behavior of these calculated columns in Figure 15-4, let’s look more

closely at the evaluation of each of these expressions.

1 Bordeaux Laithwaites
2 | Champagne Laithwaites
3 Chardonnay Alliance
4 Malbec Lalthwaltes
5 Grenache Redsky
& Piesporter Redsky
7 Chianti Redsky
& Pinot Grigio Majestic
g Merlot Majestic
10 Sauvignon Blanc Majestic
11 Rioja Majestic
12 Chenin Blare Alliance
13 shiraz Alliance
14 Lambrusco Alliance

Red
White
White
Red
Red
White
Red
White
Red
‘White
Red
‘White
Red
White

France
France
France
Germany

France

$75.00
$150.00
£100.00
$85.00
$320.00
5135.00
$40.00
$30.00
539.00
$40.00
$45.00
$50.00
$78.00
s20.00

winen [-] wine [<] suppuer [<] TvPe [~] wiNE cou = PRICE PER[~ | COST PRICE [~] Wine Total Cases 1 [~] Wine Total Cases 2 [|| Wine Total Cases 3 [+]

Figure 15-4. The three calculated columns in the Wines dimension

s25.00 423,224 54,070 54,070
m 423 224 A3 155, 43155
. Wine Total Cases 1 El Wine Total Cases 2 EI Wine Total Cases 3 B
423,224 54,070 54,070
423,224 49,158 49,158
423,224 42,030 42,030
423,224 34,290 34,290
423,224 35,965 35,965
423,224 10,253 10,253
423,224 27,323 27,323
423,224 23,449 23,449
423,224 23,084 23,084
423,224 47,415 47,415
423,224 33,951 33,951
423,224 24,739 24,739
423,224 17,497 17,497
423,224

The first of these calculated columns, “Wine Total Cases 1’, uses the “SUM (
Winesales|[CASES SOLD])” expression. There is no measure in this expression, and

it’s not using CALCULATE, either implicitly or explicitly. The expression uses the

SUM function that requires a filter context. In the absence of any filter, it sums the

CASES SOLD values in all the rows of the Winesales table giving us the grand total of

CASES SOLD.

235

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

The second calculated column, “Wine Total Cases 2’, is using CALCULATE that

converts the row context invoked by the iteration of the calculated column into a
filter context. At this point, we need to remind ourselves that the filter context always
propagates through the entire data model. The filter coming through from context
transition behaves no differently from a filter coming through from a visual or a slicer
on the report canvas. When the expression in the calculated column, “Wine Total Cases
2" evaluates the first row of the Wines dimension, it turns the entire row into a filter and
filters “Bordeaux” wine. We could imagine that in memory on the evaluation of the first
row, our Wines dimension looks something like the table in Figure 15-5.

g g g S S U S Sy S U ——

WINEID [~] WINE [¥] supPLIER [~]| TYPE [~ | WINE COUNTRY |~ | PRICE PER CASE [~| cosTPRICE [~] |

1 Bordeaux Laithwaites Red France $75.00 s25.00 1

Figure 15-5. The Wines dimension is filtered by context transition

Does Figure 15-5 look familiar? The filter on the Wines dimension for “Bordeaux” is
the same filter that would be applied if we had used a slicer or any other means by which
we could filter “Bordeaux” in the report. We know that because the Wines dimension is
related to the Winesales fact table in a many-to-one relationship, this filter, generated by
context transition, is propagated onward to the Winesales table. Therefore, our Winesales
table is now cross-filtered to contain only “Bordeaux” wines, and the CASES SOLD
values are summed accordingly.

What we can conclude, therefore, is that a calculated column that uses CALCULATE
where context transition occurs behaves just like a measure in a visual on the report
canvas, in that it filters and then aggregates.

Looking at the third calculated column, “Wine Total Cases 3’ here, we are using
the “Total Cases” measure that defines the same expression as in “Wine Total Cases 2"
Because all measures implicitly call CALCULATE, “Wine Total Cases 2” and “Wine Total
Cases 3” are the same expressions. Whenever you see a measure, even if it doesn’t use
CALCULATE explicitly, you should always imagine that it's wrapped inside CALCULATE.

To summarize the outputs of the three calculated columns, “Wine Total Cases 2”
and “Wine Total Cases 3” both use context transition in their evaluation, but “Wine Total
Cases 1” does not.

236

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

How Context Transition Can Return
“Surprising Results”

In our investigation of context transition, we’ve been using calculated columns to

see context transition in action. However, we don’t need to see context transition to
understand that it happens, and besides which, you're probably not going to be creating
these types of calculated columns in reality.

Mostly, context transition happens behind the scenes, in memory, when you
construct iterating measures that reference another measure (because all measures
implicitly call CALCULATE).

Let’s, at this point, remind ourselves of the specific situation where context
transition occurs:

o When the expression uses CALCULATE either explicitly or implicitly
via a measure
AND

o When the expression iterates a table using the row context

Typically, this is when we nest measures inside the iterating “X” aggregate functions
like AVERAGEX or MAXX or we use measures inside the FILTER function. Because we
can’t see context transition happening, being oblivious of its existence means we’ll
struggle to understand how DAX works. Marco Russo and Alberto Ferrari in their The
Definitive Guide to DAX explain understanding context transition as follows:

“Being ignorant of certain behaviors can ensure surprising results. Nevertheless, once
you master the behavior, you start leveraging it as you see fit. The only difference between a
strange behavior and a useful feature - at least in DAX - is your level of knowledge.”

Marco and Alberto talk about “strange behaviors” and “surprising results.” The
only reason these behaviors would seem strange or surprising to you is that you
don’t understand the behavior of context transition, the fact that in the evaluation of
measures, there’s a world of difference between iterations referencing measures that call
CALCULATE and iterations referencing expressions that do not. To illustrate this, we're
going to take a look at authoring expressions where getting it right, which is whether

$Marco Russo and Alberto Ferrari (2020), The Definitive Guide to DAX, 2nd ed, p.154
[Microsoft Press]

237

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

you nest a measure or whether you nest an expression, is key. In these examples, we're
going to see how DAX expressions can return “surprising results” unless, of course, you
understand the behavior of context transition.

Filters Using AVERAGE

In the first example, we must reference an expression in our measure to get the correct
calculation; nesting the measure that defines the same expression won’t work.

Consider the calculation to find the number of sales for each wine where cases sold
is greater than the average cases sold for that wine. For example, the average number of
cases sold for “Bordeaux” is 300 and we want to calculate how many sales of “Bordeaux”
have cases sold greater than this value (this is purely an intellectual exercise and not a
particularly useful calculation).

We've already created these two measures:

Avg Cases =
AVERAGE (Winesales[CASES SOLD])

No. of Sales =
COUNTROWS (Winesales)

Now to calculate the number of sales where the CASES SOLD value is greater than
the average cases, we could author this measure:

No. Of Sales GT Avg #1=
VAR AvgCasesTable =

FILTER (Winesales, Winesales[CASES SOLD] > [Avg Cases])
RETURN

CALCULATE ([No. Of Sales], AvgCasesTable)

Note the use of the “Avg Cases” measure (highlighted) nested in the FILTER
expression that iterates the Winesales table. We know that in the presence of a nested
measure inside an iteration, context transition is invoked.

Unfortunately, the “No. Of Sales GT Avg #1” measure does not return the correct
results; it returns blanks. This is a surprising result, I think you’ll agree; see Figure 15-6.

238

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

WINE Avg Cases No. Of Sales
GT Avg #1
v

Bordeaux 300

Champagne 372

Chardonnay 225

Chenin Blanc 124

Chianti 185

Grenache 198

Malbec 202

Merlot 147

Piesporter 89

Pinot Grigio 140

Rioja 172

Sauvignon Blanc 282

Shiraz 86

Total 192

Figure 15-6. The “No. Of Sales GT Avg #1” does not return a value

Clearly, we must take a closer look at what’s happening here. This measure, “No. Of
Sales GT Avg #1’, uses the FILTER function that iterates the Winesales table to filter rows
where the CASES SOLD value is greater than the value calculated by the “Avg Cases”
measure. But what is the value calculated by “Avg Cases”? If we put this measure, that
is, “[Avg Cases]”, into the Winesales table as a calculated column, we can see what the
FILTER function is testing the CASES SOLD value against; see Figure 15-7.

239

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

| X |1 Average Cases Column = @Avg Casesﬁ

SALEDATE [~ || WINESALES NO [~] sALESPERSONID [~] cusTOMERID [~] wiNEID [~] casessoLD [~|| Average Cases Column | ~
23/12/2021 2207 3 12 1 294 290
14/12/2021 2184 1 34 1 199 190
13/12/2021 2181 4 3 1 339 330
06/12/2021 2169 5 11 1 188 188
20/11/2021 2145 4 4 1 149 149
20/11/2021 2195 4 2 1 4z 473
14/11/2021 2134 3 37 1 323 329
15/10/2021 2083 3 16 1 197 197
07/10/2021 2065 5 39 1 451 451
05/10/2021 2060 3 18 1 304 304
21/09/2021 2037 3 25 1 249 240
19/09/2021 2033 1 17 1 38 282 |

Figure 15-7. The “Avg Cases” measure evaluated in a calculated column filters the
Winesales table to the single row that’s being evaluated

Note Remember that in the first evaluation in the Table visual in Figure 15-6,
the Winesales table will be cross-filtered in memory for “Bordeaux” wine, which is
WINE ID 1.

What we find is that the values returned by “Avg Cases” are the same as the CASES
SOLD values. This is because “Avg Cases” is a measure, and therefore, it evokes context
transition as FILTER iterates the Winesales table. This creates a filter on each row of
the Winesales table that’s being evaluated in memory. Because each row is unique, it
calculates the average of the CASES SOLD value only for the current row, which is the
same as the CASES SOLD value. Therefore, the “Avg Cases” value is never greater than
the CASES SOLD value. You could test this by changing “>” to “>=" where instead of
blanks being returned, you would get the same values as “No. of Sales”.

Let’s now replace the measure inside the FILTER function with an expression
(highlighted) that calculates the average:

No. Of Sales GT Avg #2 =
VAR AvgCasesTable =
FILTER (Winesales, Winesales[CASES SOLD] >

240

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

AVERAGE (Winesales[CASES SOLD]))
RETURN
CALCULATE ([No. Of Sales], AvgCasesTable)

This time we get the correct results; see Figure 15-8.

WINE Avg Cases No. Of Sales
GT Avg #2

Bordeaux 300 89
Champagne S 2 68
Chardonnay 225 107
Chenin Blanc 124 100
Chianti 185 7S
Grenache 198 87
Malbec 202 83
Merlot 147 81
Piesporter 89 50
Pinot Grigio 140 86
Rioja 172 106
Sauvignon Blanc 282 88
Shiraz 86 103
Total 192 932

Figure 15-8. Using a nested expression inside FILTER and not a nested measure
returns the correct results

To understand why the second version of the measure using the expression works,
we can again put the expression, “AVERAGE (Winesales| CASES SOLD])”, into a
calculated column in the Winesales table, filtered for “Bordeaux” wines (as this is the in-
memory cross-filter on the Winesales table in the first evaluation).

We can see in Figure 15-9 that the expression returns the average of the cases sold for
the wine in the current filter context.

241

CHAPTER 15

UNDERSTANDING CONTEXT TRANSITION

Note In Figure 15-9, we are simulating the rows in the Winesales table that
would be visible in the current filter in memory, which you will not be able to see
in Data view. Therefore, when you put “AVERAGE (Winesales[CASES SOLD])” into
a calculated column, you will see the average for all transactions (192), not just

those for “Bordeaux” (300).

X / |1 Avg Cases Column = AVERAGE || Winesales[cAsEs soLp] []

18/01/2017
19/01/2017
27/01/2017
07/02/2017
19/02/2017
08/04/2017
11/04/2017
26/06/2017
13/08/2017
03/10/2017
04/10/2017
28/10/2017

Act14 a0

18
22
29
43
58
94
98
156
187
233
235
253

2sn

1

By kR Nk B R R R

12
19
26
30

£
19
11
18
36
10
26
44

SALE DATE [7] WINESALES NO [~]| SALESPERSON ID [~] cusTOMER ID [~] wiNEID [~] casEssoLD [~

PO TR T N TN T S I T R TR T

327
384
401
261

o
284
347
394
297
374
232
232

a3

Avg Cases Column EI
300
300
300
300
300
300
300
300
300
300
300
300

EY-¥.

Figure 15-9. The “AVERAGE (Winesales[CASESSOLD])” expression evaluated in

a calculated column returns the average cases for each wine

We know that the average number of cases sold for “Bordeaux” is 300. So in the first

evaluation for “Bordeaux’; there are 89 transactions where cases sold is greater than 300.

We can understand therefore that despite the fact that the expression and the

measure both calculate the same average, we must nest the average expression inside the

measure being evaluated, not nest the measure that calculates the average.

Filters Using MAX

In our second example of how DAX can return “surprising results,” we will calculate

cumulative totals, as shown in Figure 15-10.

242

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

YEAR MONTH Total Sales Cumulative Total
12017 Jan $451,887 $451,887
2017 Feb $385,299 $837,186
2017 Mar $400,977 $1,238,163
2017 Apr $327,070 $1,565,233
2017 May $353,073 $1,918,306
2017 Jun $241,419 $2,159,725
2017 Jul $410,507 $2,570,232
2017 Aug $194,755 $2,764,987
2017 Sep $559,821 $3,324,808
2017 Oct $438,513 $3,763,321
2017 Nov $301,695 $4,065,016
2017 Dec $584,269 $4,649,285
2018 Jan $407,812 $5,057,097
2018 Feb $299,495 $5,356,592
2018 Mar $232473 $5.589.065
Total $29,732,482 $29,732,482

Figure 15-10. Calculating cumulative totals in the “Cumulative Total” measure

To generate the “Cumulative Total” measure, we must again use a nested expression
in the parent measure, not a nested measure, and this time we’ll be using the aggregate
function, MAX.

Note We’ve calculated cumulative totals before using the time intelligence
function, DATESBETWEEN. However, in this section, we explore an alternative
method of achieving the same result.

To calculate cumulative totals in the Table visual in Figure 15-10, for any given date
in the current filter context, we must sum a value (in our example, the total sales value)
up to the latest date in the current filter context. For example, if “May 2017” is the current
filter, we must sum values up to and including 31 May 2017. We might think, therefore,
that we need to first construct a measure that finds the latest date in the current filter
context using the MAX function like so:

Max Date =

243

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION
MAX (DateTable[DATEKEY])

We could then use this “Max Date” measure (highlighted) in the following expression
(note the use of ALL to remove the filter on the DateTable that is currently filtering
each month):

Cumulative Total Wrong
VAR FilteredDatesTable
FILTER (
ALL (DateTable),
DateTable[DATEKEY] <= [Max Date]

)
RETURN

CALCULATE ([Total Sales], FilteredDatesTable)

Looking at the result of this expression in the visual in Figure 15-11, clearly, this
hasn’t worked.

YEAR MONTH Total Sales Cumulative Total
Wrong

2017 Jan $451,887 $29,732,482
2017 Feb $385,299 $29,732,482
2017 Mar $400,977 $29,732,482
2017 Apr $327,070 $29,732,482
2017 May $353,073 $29,732,482
2017 Jun $241,419 $29,732,482
2017 Jul $410,507 $29,732,482
2017 Aug $194,755 $29,732,482
2017 Sep $559,821 $29,732,482
2017 Oct $438,513 $29,732,482
2017 Nov $301,695 $29,732,482
2017 Dec $584,269 $29,732,482
2018 Jan $407,812 $29,732,482
2018 Feb $299,495 $29,732,482
Total $29,732,482 $29,732,482

Figure 15-11. The “Cumulative Total Wrong” measure returns incorrect results

244

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

Let’s take a look at what’s going wrong with “Cumulative Total Wrong”. Here, we're
using the measure “Max Date’, which defines the maximum date. The FILTER function
with ALL generates a virtual DateTable containing all the rows in the DateTable. It then
iterates this virtual table to compare each date in the DATEKEY column to the date
calculated by “Max Date” What is the value of “Max Date”? The “Max Date” measure
evokes context transition and so filters each row to a single row. Therefore, when
iterating the DateTable, it will always return the same date that is sitting in the current
row of the DateTable. To understand this, we can put the “Max Date” measure into a
calculated column in the DateTable as shown in Figure 15-12.

X |1 Max Date Column = [Max Date]

DATEKEY [~]| YEAR [¥| QTR [~]| MONTH NO. [~| MONTH [-T]| Max Date Column | ~ |
31 May 2017 2017 Qtr2 5 May 31/05/2017
30 May 2017 2017 Qtr2 5 May 30/05/2017
29 May 2017 2017 Qtr2 5 May 29/05/2017
28 May 2017 2017 Qtr2 5 May 28/05/2017
27 May 2017 2017 Qtr2 5 May 27/05/2017
26 May 2017 2017 Qtr2 5 May 26/05/2017
25 May 2017 2017 Qtr2 5 May 25/05/2017
24 May 2017 2017 Qtr2 5 May 24/05/2017
23 May 2017 2017 Qtr2 5 May 23/05/2017
22 Mav 2017 2017 Qtr2 5 Mav 22/05/2017

Figure 15-12. The “Max Date” measure evaluated in a calculated column filters
the DateTable to the single row that’s being evaluated

Because DATEKEY is always equal to “Max Date’, all the dates are filtered by the
FILTER function, and so CALCULATE calculates the total cases for all dates (to see this in
another way, try replacing the “<=" with “<” where you will now get blanks returned).

Therefore, to remedy this, we must use an expression (highlighted) to calculate the
latest date in the current filter context, and this is the correct measure:

Cumulative Total =
VAR FilteredDatesTable =
FILTER (
ALL (DateTable),

245

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

DateTable[DATEKEY] <= MAX (DateTable[DATEKEY])
)
RETURN
CALCULATE ([Total Sales], FilteredDatesTable)

In this measure, the FILTER function with ALL iterates the virtual DateTable table
to compare each date in the DATEKEY column to the date calculated by the expression
“MAX (DateTable[DATEKEY)’ This expression will find the latest date in the current
filter context; for example, it will return 31 May 2017 when evaluating “May 2017”; see
Figure 15-13.

‘ >< i i 1 Max Date Column = MAX (DateTable[DATEKEY])

DATEKEY [-1] YEAR [~] QTR [~] MONTHNO [~] MONTH [~| Max Date Column |~ |
01 May 2017 2017 Qtr2 5 May 31 May 2017
02 May 2017 2017 Qtr2 5 May 31 May 2017
03 May 2017 2017 Qtr2 5 May 31 Moy 2017
04 May 2017 2017 Qtr2 5 May 31 May 2017
05 May 2017 2017 Qtr2 5 May 31 Moy 2017
06 May 2017 2017 Qtr2 5 May 31 May 2017
07 May 2017 2017 Qtr2 5 May 31 May 2017
08 May 2017 2017 Qtr2 5 May 31 May 2017
09 May 2017 2017 Qtr2 5 May 31 May 2017
10 Mav 2017 2017 _Qtr2 5 Mav 31 May 2017

Figure 15-13. The MAX expression evaluated in a calculated column returns the
maximum date for the month in the current filter

Note In Figure 15-13, we’re again simulating the rows in the DateTable that
would be visible in memory in the current filter. You cannot see in-memory filters in
Data view. Therefore, if you put the “MAX (DateTable[DATEKEY)” expression into a
calculated column in the DateTable, you will see the last date for all dates, that is,
31 December 2021.

246

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

The FILTER function will compare every date in the DATEKEY column of the virtual
DateTable to the date calculated by “MAX (DateTable[DATEKEY)” and therefore will
filter all the dates that are before or equal to this date.

Filters Using Measures

In the last of our “surprising results” examples, we must use a measure and not an
expression. For example, it could transpire that you want to calculate the number of
transactions where the “Total Sales” value for each transaction is greater than $10,000. To
remind you, this is the expression that is used in the “Total Sales” measure:

Total Sales =
SUMX (Winesales, Winesales[CASES SOLD] *
RELATED (Wines[PRICE PER CASE])

You may be tempted to use this expression (highlighted) to calculate the number of
sales that are greater than $10,000:

No. Of Sales GT 10,000 #1=
VAR MySales =
SUMX (Winesales, Winesales[CASES SOLD] *
RELATED (Wines[PRICE PER CASE]))
VAR SalesTable =
FILTER (Winesales, MySales > 10000)
RETURN
CALCULATE ([No. Of Sales], SalesTable)

However, as you can appreciate from Figure 15-14, this measure returns the number
of sales, not the number greater than $10,000.

247

CHAPTER 15

Figure 15-14. The “No. Of Sales GT 10,000” measure does not return the
correct result

In the “No. Of Sales GT $10,000 #1” measure, we are using SUMX to calculate the
total sales. However, the SUMX expression would sum the total sales for all transactions
in the Winesales table for each wine in the current filter context, giving us the grand
total of “Total Sales” for each wine. In Figure 15-15, the SUMX expression has been
placed into a calculated column in the Winesales table to understand its return value in
memory (only showing total sales for “Bordeaux”), which is the total sales for the wine,
not the total sales for each transaction. When FILTER iterates the Winesales table, this

UNDERSTANDING CONTEXT TRANSITION

WINE No. of Sales No. Of Sales
GT 10,000 #1
Bordeaux 180 180
Champagne 132 132
Chardonnay 187 187
Chenin Blanc 200 200
Chianti 148 148
Grenache 182 182
Malbec 170 170
Merlot 157 157
Piesporter 115 115
Pinot Grigio 168 168
Rioja 197 197
Sauvignon Blanc 168 168
Shiraz 203 203
Total 2,207 2,207

value will always be greater than $10,000.

248

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

I }(v/ |1 Total Sales Column = SUMX (Winesales, Winesales[CASES SOLD] * I
| 2 RELATED (Wines[PRICE PER CASE])) |
I |sate pare [7] winEsaLEs NO [~] sALEsPERsONID [~] cusTOMERID [~] wiNEID [~] casessoip [~]|fotalSale n -1l 1
I 18/01/2017 i8 1 12 1 327 54,055,250 I
18/01/2017 22 1 19 ; 386 54,055,250
I 27/01/2017 29 1 26 1 401 54,055,250 l
V| or02r2017 43 1 30 1 266 34,055,250 | |
I 19/02/2017 58 4 2 1 168 54,055,250 I
08/04/2017 94 1 19 1 284 $4,055,250
I 11/04/2017 98 5 11) 347 sa,055.250 |1
1| 2600602017 156 2 18 1 394 $4,055,250 | |
|| 13/08/2017 187 1 36 1 297 $4,055,250 I
03/10/2017 233 6 10 1 376 $4,055,250
I 04/10/2017 235 1 26 4 232 s4,055,250 | |
I 28/10/2017 253 & 44 1 232 54,055,250 I
I_ 05_/11/2_01?'_ — 20 T _I — i — 1_ — _439_ — _54_,955,25_;3 J

Figure 15-15. The SUMX expression evaluated in a calculated column returns the
grand total sales for the wine in the current filter

When we write the expression to find the number of sales greater than $10,000, we
must therefore use the “Total Sales” measure (highlighted) inside FILTER as follows:

No. Of Sales GT 10,000 #2 =
VAR MyTable =

FILTER (Winesales, [Total Sales] > 10000)
RETURN

CALCULATE ([No. Of Sales], MyTable)

As you can now see in Figure 15-16, the “No. Of Sales GT 10,000 #2” measure using
the nested measure “Total Sales” returns the correct value.

249

CHAPTER 15

Figure 15-16. Using a nested measure inside FILTER and not an expression
returns the correct results for the number of sales greater than $10,000

We must again investigate the reason why our second attempt at this calculation
using the nested measure works. If we put the “Total Sales” measure into a calculated
column, this will reveal what FILTER returns when it iterates the Winesales table in
memory. We can see that it is the total sales for each transaction because it’s using

UNDERSTANDING CONTEXT TRANSITION

WINE No. of Sales No. Of Sales
GT 10,000 #2

Bordeau X : 180 170

Champagne 132 131

Chardonnay 187 186

Chenin Blanc 200

Chianti 148 35

Grenache 182 15

Malbec 170 151

Merlot 15

Piesporter 115 90

Pinot Grigio 168

Rioja 197

Sauvignon Blanc 168 122

Shiraz 203 37

Total 2,207 937

context transition to filter each row in memory; see Figure 15-17.

250

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

X v |1 Total sales column = [Total Sales]

SALE DATE [-7] WINESALES NO [~] SALESPERSONID [+] cusToMERID [~] wiNEID [~] casessoLD [~] [Total Sales Column |~ |
18/01/2017 18 1 12 1 327 $24525
19/01/2017 22 1 19 1 386 $28,950
27/01/2017 29 1 2 1 401 $30,075
07/02/2017 43 1 30 1 266 $19,950
19/02/2017 58 4 2 1 168 $12,600
08/04/2017 94 1 18 1 284 $21,300
11/04/2017 98 5 11 1 347 $26,025
26/06/2017 156 2 18 1 394 $29,550
13/08/2017 187 1 36 1 297 $22,275
03/10/2017 233 6 10 1 376 $28,200
04/10/2017 235 1 2 1 232 $17,400
28/10/2017 253 6 44 1 232 $17,400
NES11/201F 2680 1 148 1 A3Q 422 GE

Figure 15-17. The “Total Cases” measure evaluated in a calculated column filters
the Winesales table to the single row that’s being evaluated

When FILTER iterates the Winesales table, it can use this value to find values greater
than $10,000.

I think we’ve made our point regarding the “surprising results” to which Marco Russo
and Alberto Ferrari alluded, and in doing so, you now understand the concept of context
transition. This is where the row context is transitioned into a filter context because of
the presence of CALCULATE within an iteration, and these filters propagate through the
data model, just as all filters do. No matter how long you've been using DAX, these are
challenging calculations to get your head around. In what follows in this chapter, we’ll
explore why it’s so important that you take up the challenge to understand the strange
behaviors and surprising results that context transition throws at you because in doing
so, you will begin to reap the real benefits of using DAX.

Aggregating Totals Using Context Transition

The power of context transition comes when you use it to calculate averages, maximums,
and minimums of totals as opposed to row-level values, and in this section, we will be
exploring why this is mandatory knowledge in advanced calculations. This is also where
the importance of having clearly defined dimension tables comes to the fore because to
achieve this type of calculation, we will be passing context transition across dimension

251

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

tables both real and virtual. What you will discover in the following section is that
context transition can just as equally be passed into virtual tables generated by table
expressions as it can be passed into actual dimensions within the data model.

Aggregating in Dimensions

We will begin by exploring how context transition works when used in expressions that
reference dimension tables.
For example, take this simple measure:

Max Cases =
MAX (Winesales[CASES SOLD])

The “Max Cases” measure can tell us the maximum number of cases in any single
transaction in the Winesales table for each wine. For example, for “Bordeaux’, the
maximum number of cases sold in any single transaction is 500 cases. This is a row-level
calculation, but this is not what we want.

This measure, we know, will sum the cases sold values in the Winesales table:

Total Cases =
SUM (Winesales[CASES SOLD])

Our goal here is to calculate the maximum of this “Total Cases” measure, not the
maximum of the individual transactions, as shown in Figure 15-18.

252

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

WINE Max Cases Total Cases

Bordeaux 500 54,070

Champagne 500 49,158

Chardonnay 250 42,030

Chenin Blanc 150 24,739

Chianti 299 27,323 L1+ -
Grenache 350 35,965 ibetlickes e
Malbec 326 34,290 -maximum of
Merlot 200 | 23,084 dis Totdl Casss
Piesporter 162 10,253

Pinot Grigio 200 23,449

Rioja 200 33,951

Sauvignon Blanc 350 47,415

Shiraz 150 17,497

Total 500 423,224

Figure 15-18. The “Max Cases” measure is a row-level calculation, but we want to
calculate across totals

To do this, we need to use context transition. We know that context transition
happens when a measure is iterated over a table. We looked earlier at creating a
calculated column in the Wines dimension (“Wine Total Cases 3”) that used the measure
“Total Cases” to evoke context transition and so found the total cases sold value for each
wine in the Wines dimension; see Figure 15-19.

253

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

/ |[1 Wine Total Cases 3 =
2 ﬂ:i‘rotal Casesi_]J
WINEID [~] WINE [~]/suppLER [~]| TYPE [~] WINE COUNTRY [~] PRICE PER CASE [~]| cOST PRICE [~| Wine Total Cases3 |~ |
1 Bord Laithwai Red France $75.00 $25.00 54,070
2 Champagne Laithwai White France 5150.00 5100.09 48,158
3 Chardonnay Alliance White France $100.00 $75.04 42,030
4 Malbec Laithwaites Red Germany 585.00 540.04 34,2590
5 Grenache Redsky Red France 530.00 510.04 35,965
& Piesporter Redsky White Germany $135.00 5$50.04 10,253
7 Chianti Redsky Red Germany $40.00 $10.09 27,323
& Pinot Grigio Majestic White Italy $30.00 $5.0d 23,449
9 Merlot Majestic Red France $39.00 515.04 23,084
10 Sauvignon Blanc Majestic White Italy 540.00 520.04 47,415
11 Rioja Majestic Red Italy $45.00 $15.04 33,951
12 CheninBlanc Alliance White France $50.00 $10.04 24,739
13 Shiraz Alliance Red France 578.00 $30.00 17,497
14 Lambrusco Alliance White Italy 520.00 $15.04

Figure 15-19. Creating a calculated column in the Wines dimension using the
“Total Cases” measure evokes context

Rather than putting this measure into a calculated column to witness the context
transition, we could nest this measure in another measure using MAXX, and this will
iterate the Wines dimension, just as the calculated column does. If we do this, context
transition will happen in memory, and we can find the maximum of the values that you
can see in the calculated column. Let’s now author this measure:

Max of Totals =
MAXX (Wines, [Total Cases])

The MAXX function iterates the Wines dimension in memory to calculate the “Total
Cases” measure for every row in the dimension, just like the calculated column in
Figure 15-19. It then finds the maximum of these values.

Note We are using the MAXX function here because it’s clearer to understand the
evaluation — you can easily see which value is the largest. However, the AVERAGEX
function would work better because you must calculate the average of the totals to
know what that value is.

254

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

However, when this measure is placed in the Table visual in Figure 15-20, why does
it return the same result as the “Total Cases” measure in all rows except in the Total row,
where the value is correct?

WINE Max Cases Total Cases Max of Totals
Bordeaux 500 54,070 54,070
Champagne 500 49,158 49,158
Chardonnay 250 42,030 42,030
Chenin Blanc 150 24,739 24,739
Chianti 299 27,323 27,323
Grenache 350 35,965 35,965
Malbec 326 34,290 34,290
Merlot 200 23,084 23,084
Piesporter 162 10,253 10,253
Pinot Grigio 200 23,449 23,449
Rioja 200 33,951 33,951
Sauvignon Blanc 350 47415 47 415
Shiraz 150 17,497 17,497
Total 500 423,224 54,070

Figure 15-20. “Max of Totals” measure is correct in the Total row, which is 54,070,
the cases sold for “Bordeaux”

Let’s now answer this question. In this Table visual, the first evaluation is for
“Bordeaux” wine, and so in the current filter, there is only one value for “Total Cases’,
and that is the value of the total cases for “Bordeaux”. The maximum of only one value
is that value, and that is why we see the same value for “Total Cases” and for “Max of
Totals” It’s not until the measure reaches the evaluation of the Total row, where there
is no filter on the Wines dimension, that it can then find the maximum of all the wines,
which is 54,070 for “Bordeaux”.

What is important to emphasize here is that context transition always works
within filters placed on the data model. For example, if we add a Salesperson slicer to
the canvas and filter “Abel’, we can now see the maximum cases for “Abel” (10,993).
Because the Winesales fact table is now filtered for “Abel’s” sales, context transition now
calculates these values in the new filter context; see Figure 15-21.

255

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

WINE Total Cases Max of Totals SALESEEDIEN
B Abel

Bordeaux 8,531 8,531 | Blanchet

Champagne 10,993 10,993 | Charron

Chardonnay 8,099 8,099 Denis

Chenin Blanc 2,769 2,769 Leblanc

Chianti 3,699 3,699 L_| Reyer

Grenache 6,123 6,123

Malbec 4,738 4,738

Merlot 4,520 4,520

Piesporter 2,064 2,064

Pinot Grigio 4,211 4,211

Rioja 5,669 5,669

Sauvignon Blanc 5318 5,318

Shiraz 3,137 3.137

Total 69,871 r 10,993

Figure 15-21. The “Max of Totals” measure calculated in a different filter context

However, because the “Max of Totals” measure returns the same value as “Total
Cases” for each of the wines, the “Max of Totals” measure does not really work in a visual
that filters the wine names. This measure is more fitting when placed in a visual that
filters a different dimension. In Figure 15-22, we have used the “Max of Totals” measure
in a Matrix and a Table visual that shows the maximum value for each salesperson. We
have focused on the maximum cases value for “Abel’, which is 10,993 for “Champagne’”.
We've also placed this measure in a Card visual to show the maximum for all wines.

256

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

SALESPERSON Total Cases Max of Totals * SALESPERSON Total Cases Max of Totals
“ Abel 69,871 m Abel 69871 [$10,993]
Bordeaux 8,531 $8,531 Blanchet 65,581 $10,345 $ 5 4, 0 7 0
Champagne $10,993 Charron 68137 $11052 pio 6Totals
Chardonnay 8,099 $8,099 Denis 84,018 $12,224
Chenin Blanc 2,768 $2,769 Leblanc 69,304 $9,293
Chianti 3,699 $3,699 Reyer 66,313 $8,881
Grenache 6,123 $6,123 Total 423,224 $54,070
Malbec 4738 $4,738
Merlot 4,520 $4,520
Piesporter 2,064 $2,064
Pinot Grigio 4211 $4,211
Total 423,224 $54,070

Figure 15-22. The “Max of Totals” measure works better if placed in visuals that
filter dimensions other than the Wines dimension

Let’s now consider another scenario. Rather than calculating the maximum of
the total cases, perhaps you want to programmatically identify which wine has the
maximum total (“Bordeaux” in our case).

In this situation, for the evaluation of each wine, we must calculate the maximum
of the totals for all the wines. We can then compare the maximum against each wine’s
total. Therefore, we must remove the filter from the Wines dimension by using ALL or
ALLSELECTED as in this example:

Max of Totals #2 =
MAXX (
ALL (Wines) , [Total Cases])

In this measure, we are using ALL to generate a virtual table containing all the rows
in the Wines dimension, and therefore, MAXX will iterate all the rows in this temporary
table. Context transition calculates the total cases for every row, and MAXX finds the
largest of these. If you have a slicer filtering the wines, you must use ALLSELECTED
which will output to a virtual table containing the wines filtered in the slicer.

We can now write the measure that specifically returns the name of the wine that has
the maximum cases sold, using the expression in the “Max of Totals #2” measure as a
variable:

Wine with Max =
VAR MyMax =

257

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

MAXX (ALL (Wines), [Total Cases])
RETURN

CALCULATE (VALUES (Wines[WINE]),

FILTER (Wines, [Total Cases] = MyMax))

Note the use of the VALUES function to return the name of the wine that will be
filtered according to the filter expression.

WINE Total Cases Max of Totals #2
Bordeaux 54,070 54,070 Bordeaux
Champagne 49,158 54,070 Wine with Max
Chardonnay 42,030 54,070
Chenin Blanc 24,739 54,070
Chianti 27,323 54,070
Grenache 35,965 54,070
Lambrusco 54,070
Malbec 34,290 54,070
Merlot 23,084 54,070
Piesporter 10,253 54,070
Pinot Grigio 23,449 54,070
Rioja 33,951 54,070
Sauvignon Blanc 47,415 54,070
Shiraz 17,497 54,070
Total 423,224 54,070

Figure 15-23. The “Max of Totals #2” returns the maximum value for all wines.
We can then use this expression to find the wine that has the maximum

You can see the results of these measures in Figure 15-23. Note how we use the
“Wine with Max” measure in a Card visual that displays the scalar value returned
by VALUES.

In the preceding examples, we're using ALL to generate a virtual table containing all
the rows and all the columns in the Wines dimension. We'll see in the next section that
we could equally use ALL to generate a virtual table containing only the WINE column.

258

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

Aggregating in Virtual Tables

So far, we've looked at finding the maximum of the total values using context transition
with a dimension table. We then used ALL to generate a virtual Wines dimension

to find the maximum of the totals of all the wines. Therefore, we know that context
transition can be generated in virtual tables too. We are now ready to explore examples
of using ALL to build virtual tables that contain only the columns that we require for the
expression, not all the columns in the table. Because ALL will return a table containing a
column or columns of distinct values, we are essentially using ALL to group our data so
that context transition can calculate totals across these ad hoc groups.

Using ALL to Group Columns in the Same Table

For example, we've been asked to calculate the variance between the total sales for each
wine and the average of these totals. Consider the following measure that uses context
transition to find the average of “Total Sales” for our wines. However, this time we're
using the ALL function on the WINE column rather than ALL on the Wines table:

Average of Totals =
AVERAGEX (ALL (Wines[WINE]), [Total Sales])

As mentioned before, depending on the filters in your report, you may need to use
ALLSELECTED in place of ALL.
Let’s look at the three steps in the evaluation of this measure:

1. The ALL function creates a virtual table comprising a single
column holding a list of unique values in the WINE column.

2. AVERAGEX then iterates the virtual table and using context
transition calculates the “Total Sales” measure for each of the
wines in the virtual table generated by ALL.

3. AVERAGEX finds the average of these values.

In Figure 15-24, you can see the virtual table generated by ALL and how the average
of the total values is calculated.

259

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

WINE E Total Sales E |

Bordeaux
Champagne
Chardonnay
Malbec
Grenache

Piesporter

Pinot Grigio
Merlot
Sauvignon Blanc
Rioja

Chenin Blanc
Shiraz

Lambrusco

I
I
I
I
I
I
I
l Chianti
I
I
I
|
I
I
I

$4,055,250
$7,373,700
$4,203,000
$2,914,650
$1,078,950
$1,384,155
$1,092,920

$703,470

$900,276
$1,896,600
81,527,795
$1,236,950
$1,364,766

]

= Average = 2,287,114

--—_—--_J

Figure 15-24. The ALL function creates a virtual one-column table of the WINE
column. The table is iterated by AVERAGEX, and context transition calculates the

“Total Sales” for each row. AVERAGEX finds the average of these values

Now we can edit this measure to calculate how each wine’s total sales vary from the

average and visualize the data; see Figure 15-25.

Variance from Average of Totals =

VAR AvgOfTotals =

AVERAGEX (ALL (Wines[WINE]), [Total Sales])

RETURN

[Total Sales] - AvgOfTotals

260

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

WINE Total Sales Average of Variance from a1t e
il . o Crampagre

Chardonnay -

Bordeaux $4,055250 $2,287,114 $1,768,136 Bt i

Champagne $7,373,700 $2,287,114 $5,086,586 Wisthss -

Chardonnay $4,203,000 $2,287,114 $1,915,886 B oo il

Chenin Blanc $1,236950 $2,287,114 ($1,050,164) 3

Chianti $1,092920 $2287,114 ($1,194,194) s t

Grenache $1,078,950 $2,287,114 ($1,208,164) Bineparii]

Malbec $2,914,650 $2,287,114 $627,536 Shiraz 1

Merlot $900,276 $2,287,114 ($1,386,838) | CheninBlanc [

Piesporter $1,384,155 $2,287,114 ($902,959) chianti [

Pinot Grigio $703,470 $2,287,114 ($1,583,644) Grenache [

Rioja $1,527,795 $2,287,114 ($759,319) merot [

Sauvignon Blanc $1,896,600 $2,287,114 ($390,514) Pinot Grigio -

Shiraz $1,364,766 $2,287,114 ($922,348)

Total $20,732,482 $2,287,114 $27,445,368 (2M) sOM $2M $4M S6M

Figure 15-25. Using context transition to calculate the average of the totals and
then we can find the variance

Here, we have been using ALL to group by values in the WINE column. Indeed,
we could use ALL to group by salespeople, customers, or regions by generating tables
containing just a list of the names of the entities in these dimensions accordingly.
However, if we want to pass context transition into the DateTable, it becomes a little
more problematic. For example, the expression

Average Daily Sales For Dates =
AVERAGEX (DateTable, [Total Sales])

would pass context transition to every row in the DateTable, therefore aggregating the
total sales for each day. Therefore, this measure would calculate the average daily sales.
However, this may not be the date granularity in which you are interested. Perhaps you
would like to calculate the average quarterly sales in each year, as shown in Figure 15-26.
Here, we have authored the measure “Average Quarterly for Each Year” and placed this
in a Matrix visual. Note that this measure works best if the visual only shows the YEAR
column from the DateTable.

261

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

YEAR Total Sales Average * YEAR Total Sales Average
Quarterly for Quarterly for
Each Year Each Year
= 2017 | $4,649,285 $1,162,321 2017 | $4,649,285 $1,162,321
Qtr 1| $1,238,163 $1,162,321 2018 | $4,207,871 $1,051,968
Qtr 2 $921,562 $1,162,321 2019 | $4,710,744 $1,177,686
Qtr3| $1,165,083 $1.162,321 2020 | $7,900,864 $1,975,216
Qtr4| $1,324,477 $1,162,321 2021 | $8,263,718 $2,065,930
© 2018 | $4,207,871 $1,051,968 Total | $29,732,482 $7.433,121

Qtr 1 $939,780 $1,051,968

Qtr2| $1,097,410 $1,051,968

Qtr3| $1,072,199 $1,051,968

Qtr4| $1,098482 $1,051,968

© 2019 | $4,710,744 $1,177,686

Qtr 1 $529,926 $1,177,686
Total |$29,732,482 $7,433,121 ~

Figure 15-26. The “Average Quarterly for Each Year” measure works best in a
Matrix visual that only shows years

In the Matrix visuals in Figure 15-26, on the evaluation sales in “2017’, there is a filter
on the YEAR column in the DateTable. We must now generate a virtual one-column table
that retains the filter on the YEAR column but lists all four quarters in that year, and we
can use the ALL function to do that, referencing the QTR column. AVERAGEX can then
iterate this table and using context transition can calculate the total sales for each of the
quarters in “2017’, finding the average of these values. This is the code we have used in
the measure:

Average Quarterly for Each Year =
AVERAGEX (ALL (DateTable[QTR]), [Total Sales])

The virtual table generated by ALL in the evaluation of the “2017” average would
look like Figure 15-27.

262

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

I QTR E total Sales BI

I Qtr1 $1,238,163 I
I a2 s921,562 |
| o o > Average for 2017 = 1,162,321
I Qtr4 51,324,477 I

L__-__-J#

Figure 15-27. The ALL function builds a table containing all the quarters in the
filtered year

The ALL function can also generate virtual tables comprising unique combinations
of columns from the same table to enable you to group by these combinations. For
example, you could generate a virtual table using ALL containing a distinct list of years
and quarters from the DateTable using this table expression:

ALL (DateTable[YEAR], DateTable[QTR])

Such a virtual table generated by ALL is shown in Figure 15-28.

—— -
IYEAR ||| atR [~|

| 2017 a1
| 2018 Qi1
| 2019 atrl
| 2020 a1
| 202 arl
| 2017 Qw2
| 2018 atr2

Ol QT e

Figure 15-28. Using ALL referencing multiple columns from the same table
generates a table containing the distinct combination of those values

Using context transition and the ALL expression that generates the table in Figure 15-28,
you could find the average quarterly total sales across all years as in this measure:

Average Quarterly for All Years =

263

CHAPTER 15

AVERAGEX (

ALL (DateTable[YEAR], DateTable[QTR]),

[Total Sales])

UNDERSTANDING CONTEXT TRANSITION

Here, the ALL function creates an in-memory table that generates a distinct list
combining the YEAR column and the QTR column, and then AVERAGEX, using context
transition, finds the average of the “Total Sales” values; see Figure 15-29.

YEAR Total Sales Average Quarterly for
All Years

= 2017 | $4,649,285 $1,486,624
Qtr 1| $1,238,163 $1,486,624
Qtr 2 $921,562 $1,486,624
Qtr 3 $1,165,083 $1,486,624
Qtrd| $1,324477 $1,486,624

£ 2018 | $4,207,871 $1,486,624
Qtr 1 $939,780 $1,486,624
Qtr2| $1,097,410 $1,486,624
Qtr3| $1,072,199 $1,486,624
Qtr4| $1,098482 $1,486,624

© 2019 | $4,710,744 $1,486,624
Qtr 1 $529,926 $1,486,624
Qtr 2 $969,874 $1,486,624
Qtr3| $1,897917 $1,486,624
Qtr4| $1,313,027 $1,486,624
Total |$29,732,482 $1,486,624

I vear [1] QTR [<]) Total Seles |Z|-;

2017
2017
2017
2017
2018
2018
2018
2018
2019
2019
2019
2019
2020
2020
2020
2020
2021
2021
2021
2021

Qtr4
Qtr2
Qrrl
Qtr3
Qtr3
Qtr2
Qtr4
Qtrl
Qtr2
Qtrl
Qtr4
Qtr 3
Qtr3
Qtrl
Qtr2
Qtr4
Qtr3
Qtr2
Qtré
atrl

T

51,324,477
$921,562
51,238,163 |
$1,165,083 |
51,072,159 ||
$1,097,410 [
$1,098,482
$939,780
$969,874 I
$529,926 |
51,313,027 |
$1,897,917 |
52,220,593 |
51,261,506
52,298,464
$2,120,301
52,169,735
$2,013,615 [
s2,011,618 |
52,068,749 ||

= Average = 1,486,624

Figure 15-29. The ALL function generates a virtual table containing the distinct
combination of values from multiple columns from the same table. Context

transition can be passed to this table to calculate averages

We can appreciate that viewing this measure in a Matrix comprising the YEAR and

QTR columns, where the values returned are repeated, will not do much for people

viewing your report. Just as in the “Max of Totals” measure before, the “Average Quarterly

for All Years” measure works best when you have no filter on the DateTable as in
Figure 15-30.

264

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

SALESPERSON Total Sales Average
Quarterly for All
Years
Denis $5,431,390 $271,570
Abel $5,265,266 $263,263
Charron $5,147,366 $257,368
Blanchet $4,860,044 $243,002
Leblanc $4,792,407 $239,620
Reyer $4,236,009 $211,800
Total $29,732,482 $1,486,624

Figure 15-30. The “Average Quarterly for All Years” measure works well when
analyzing entities other than those from the DateTable

Here, we are analyzing our salespeople’s sales performance by comparing their
average quarterly total sales value.

Using SUMMARIZE to Group Columns from Related Tables

We can normally use ALL or ALLSELECTED to group columns into virtual tables so
we can perform calculations across ad hoc groups using context transition. It’s only
occasionally that you will require another function called SUMMARIZE to do this job,
and that’s when you need to group columns from different tables.

The SUMMARIZE function allows you to retrieve combinations of columns from the
same table or from one or more related tables. As we've seen before, we can usually use
ALL to group columns from the same table, so SUMMARIZE normally need only be used
to group columns from different related tables.

The SUMMARIZE function has the following syntax:

= SUMMARIZE (table, group by columnl, group by column2 etc., name,
expression)

where:

table is the table or table expression containing the columns you want to group by.

group by columns are the columns by which you want to group your data. These can
be columns from the same table or from related tables.

name (optional) is the name of the expression you want to generate in the expression

argument later. This is a nonmandatory argument.
265

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

expression (optional) is an expression that will be calculated for every row in the
virtual table. This is a nonmandatory argument.

Mostly you will use SUMMARIZE only with the first two arguments, specifying a table
and the group by columns as follows:

=SUMMARIZE (Winesales, Wines[WINE], DateTable[YEAR])

This table expression builds a virtual table grouping by the WINE column and then
by the YEAR column and can do this because the Wines table and the DateTable are
related to Winesales.

However, there is one big difference between using ALL to generate ad hoc groups
of columns and using SUMMARIZE, and that is that SUMMARIZE builds a virtual table
comprising the values in the current filter context. Therefore, often, the ALL function is
required, nested inside SUMMARIZE, to remove these filters.

With two of the arguments inside SUMMARIZE (i.e., “name” and “expression”), you
can optionally create calculations in the virtual table, and we will look at an example of
this in the next chapter. However, usually, to create calculations for these groups using
context transition, you can nest the table generated by SUMMARIZE inside functions
such as MAXX and AVERAGEX that will then perform the calculations.

Using SUMMARIZE, you can group columns from related tables. For instance, if
the table you reference inside SUMMARIZE is a fact table, then you can group by any
columns from the dimensions related to the fact table.

If you use the New Table button on the Modeling tab in Power B, you can create
calculated tables using table functions. This is a convenient way to see the output of table
expressions such as those involving SUMMARIZE. You can view calculated tables in Data
view just as you would any tables in your data model. However, when the SUMMARIZE
expression is nested inside a measure, its output will be filtered in memory according
to the filter context, and this is something that you can’t see in the calculated table in
Data view.

We can use SUMMARIZE to group the WINE column from the Wines dimension and
the YEAR column from the DateTable using this table expression:

Wine and Year Table =
SUMMARIZE (Winesales,
Wines[WINE], DateTable[YEAR])

In Figure 15-31, you can see the result of this table expression when used in a
calculated table using the New table button.

266

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

‘ X < |[t Wine and Year Table =
2 SUMMARIZE [(Winesales,
3 | Wines[WINE], DateTable[YEAR])

WINE [~] YEAR [~]

Bordeaux 2017

Champagne 2017 New

Chardonnay 2017 table

Malbec 2017

Grenache 2017

Piesporter 2017

Chianti 2017

Pinot Grigio 2017

Figure 15-31. Using SUMMARIZE to generate a table containing the WINE and
YEAR columns

Let’s look at a scenario where we may need to generate this virtual table using
SUMMARIZE, remembering that such a table will be built in the current filter context.
We want to calculate the yearly average total sales for all our wines and display this in
a Card visual. This is the measure we will author using SUMMARIZE to group by both
WINE and YEAR (note the use of a variable to store the virtual table).

Yearly Average =

VAR SummaryTable = SUMMARIZE (ALL (Winesales), Wines[WINE],
DateTable[YEAR])

RETURN

AVERAGEX (SummaryTable, [Total Sales])

You can see in Figure 15-32 that on average, the yearly sales for our wines is
$457,423. To understand this average, you could create a Clustered Column chart visual
plotting wines sales in each year. If you then display an average analytical line,* this will
show the same value that you have calculated in the measure.

*For information on working with the analytical lines, visit https://docs.microsoft.com/en-us/
power-bi/transform-model/desktop-analytics-pane

267

https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-analytics-pane
https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-analytics-pane

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION
WINE Total Sales Yearly Average *
= Bordeaux | $4,055,250 $457,423 $457K
2017 $461,175 $457,423 RS
2018 $738,675 $457,423 y 9
2019 5668 775 $457 423 Total Sales by YEAR and WINE
2020 $1,066,125 $457.423 [$2OM
2021 $1,120,500 $457,423 |g1.5M
© Champagne | $7,373,700 $457,423
2017 $1,495,650 $457423 ||31OM
2018 $1,091,100 $457,423 |s05m
2019 $1,320,900 $457,423
2020 $1,746,900 $457,423 | S0OM ! ;_«,.;;,_,‘la u!!l : ;x! !. agg!!l Do
2021 $1,719,150 $457,423 R TR PR RS T R Y
S Chardonnay | $4,203,000 $457,423 73 555280555873 85%>8055¢88
2017 $809,200 $457,423 - il e -
s o A 2021 2020
Total 1$29,732,482 $457,423 ° WINE

Figure 15-32. Using SUMMARIZE and context transition to calculate the yearly
average for all wines. This would be the average calculated by the “Analytics”
average line

In the “Yearly Average” measure, the “Total Sales” nested measure uses context

transition to calculate sales for each combination of WINE and YEAR in the virtual table

generated by SUMMARIZE. The AVERAGEX function will find the average of the values

returned by the context transition. Note the use of the ALL function on the Winesales
table to remove the filter coming from the WINE column and the YEAR column in the
Matrix visual. Remember that unless you use ALL, the SUMMARIZE function creates a

summary table of values within the current filter context.
Alternatively, if we put this measure into a table that didn’t use the WINE or YEAR

column, we would not require the ALL function, as you can see in Figure 15-33 where we
are using the REGION column instead. Here, we are analyzing the average of the total

yearly sales of wines in each region.

Yearly Average
VAR SummaryTable = SUMMARIZE (Winesales , Wines[WINE], DateTable[YEAR])
RETURN

AVERAGEX (SummaryTable, [Total Sales])

268

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

REGION Total Sales Yearly Average
Argentina $1,327,724 $29,505
Australia $1,069,007 $27,410
Canada $453,086 $18,123
China $1,841,757 $35,418
Czech Republic $2,465,286 $44,823
England $1,610,288 $35,784
France $795,084 $18,931
Germany $1,216,223 $28,284
India $2,258,602 $39,625
Ireland $115,120 $28,780
Italy $2,354,198 $41,302
Total $29,732,482 $457,423

Figure 15-33. The “Yearly Average” measure calculated for regions

Having calculated the average yearly sales for all wines in all the years, you may want
to calculate the average yearly sales for each wine. Perhaps again, this is to calculate the
variance from the average. If this is the case, this is the code you would require:

Yearly Average Each Wine =
VAR Summarytable =

SUMMARIZE (ALLEXCEPT (Winesales, Wines[WINE]), DateTable[YEAR])
RETURN

AVERAGEX (Summarytable, [Total Sales])

The reason that we can use the ALLEXEPT function in this context will be explained
in Chapter 18 when we explore the concept of table expansion. All we need to note here
is that by using ALLEXCEPT, the filter has been removed from the YEAR column leaving
the filter on the WINE column. Therefore, this enables us to pass the average across sales
in every year for each wine. This measure would then calculate the variance, but only at
the YEAR grain:

Variance from Average Each Yr =
IF (
HASONEVALUE (DateTable[YEAR]),
[Total Sales] - [Yearly Average Each Wine])

269

CHAPTER 15 UNDERSTANDING CONTEXT TRANSITION

You can see the outcomes of the “Yearly Average Each Wine” and “Variance from
Average Each Yr” measures in Figure 15-34.

WINE Total Sales Yearly Average Variance from
Each Wine Average Each Yr
 Bordeaux $4,055,250 $811,050
2017 $461,175 $811,050 ($349,875)
2018 $738,675 $811,050 ($72,375)
2019 $668,775 $811,050 ($142,275)
2020 $1,066,125 $811,050 $255,075
2021 $1,120,500 $811,050 $309,450
“ Champagne | $7,373,700 $1,474,740
2017 $1,495,650 $1,474,740 $20,910
2018 $1,091,100 $1,474,740 ($383,640)
2019 $1,320,900 $1,474,740 ($153,840)
2020 $1,746,900 $1,474,740 $272,160
2021 $1,719,150 $1,474,740 $244,410
= Chardonnay | $4,203,000 $840,600
2017 $809,200 $840,600 ($31,400)
2018 $536,300 $840,600 ($304,300)
2019 $550,300 $840,600 ($290,300)
Total $29,732,482 $5,946,496

Figure 15-34. The “Yearly Average Each Wine” and “Variance from Average Each
Yr” measures

In this chapter, you have learned to use context transition to produce aggregations on
measures as opposed to aggregations on row-level values. You now also appreciate the
importance of dimension tables in these calculations, that they are used to group and
aggregate the data at the dimension granularity. You have also learned that virtual tables
play a significant part in these calculations, enabling you to generate ad hoc summary
groups over which to harness the power of context transition.

270

CHAPTER 16

Leveraging Context
Transition

In the last chapter, you learned how context transition enables you to programmatically

aggregate data into dimensions and virtual tables. You could then author expressions

that grouped and aggregated data at this higher granularity. Once you have learned the

skill of using DAX in this way, the world of DAX opens up to you considerably. You will

now be able to author more complex calculations that enable you to gain deeper data

insights. In this chapter, you will be applying your knowledge of context transition to

solving the following data analysis questions:
Howdol

Rank entities?

Bin measures into numeric ranges?

Calculate top or bottom N percent using dynamic parameters?
Find like for like sales across my customer base?

Calculate running totals in a table using a calculated column?

Calculate differences in values in the previous row in a
calculated column?

In generating these insights, you will learn transferrable skills and techniques that

you can take on board, extend the ideas, and apply them to your own data.

271

© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_16

https://doi.org/10.1007/978-1-4842-8188-8_16

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

Ranking Data: Looking at RANKX

You have learned that by combining iterating functions with measures (which implicitly
call CALCULATE), you can reap the benefits of context transition. Let’s take this
opportunity to look at another iterating function, RANKX.

The RANKX function has the following syntax:

= RANKX (table, expression, value, order, ties)

where:

table is the table that you want to iterate to rank items. This table is often generated
by the ALL function, so ranking is performed on all the rows of the table, not just those in
the current filter.

expression is the measure or expression to be used to rank the items.

value is optional and is used to compare items to be ranked (rarely used).

order is optional - ASC (1 is the lowest rank) or DESC (1 is the highest rank). The
default is DESC.

ties is optional and is either Skip or Dense as follows:

Skip where the next rank value after a tie is the rank value of the
tie plus the count of tied values. For example, if 5 values are tied
with a rank of 11, then the next value will receive a rank of 16 (11 +
5). This is the default value when the ties parameter is omitted.

Dense where the next rank value after a tie is the next rank value.
For example, if 5 values are tied with a rank of 11, then the next
value will receive a rank of 12.

Here is an example of RANKX syntax:
= RANKX (ALL (Wines), [Total Sales] , , ASC)

As its name suggests, we can use this function to rank our entities by a specific
measure, for example, to rank our wines by the “Total Sales” measure; see Figure 16-1.

272

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

WINE Total Sales Rank Wine
Champagne $7,373,700 1
Chardonnay $4,203,000 2
Bordeaux $4,055,250 3
Malbec $2,914,650 4
Sauvignon Blanc ~ $1,896,600 5
Rioja $1,527,795 6
Piesporter $1,384,155 7
Shiraz $1,364,766 8
Chenin Blanc $1,236,950 9
Chianti $1,092,920 10
Grenache $1,078,950 11
Merlot $900,276 12
Pinot Grigio $703,470 13

Figure 16-1. Ranking wines by “Total Sales”

This is DAX code for the “Rank Wine” measure:

Rank Wine =
IF ([Total Sales],
RANKX (ALL (Wines), [Total Sales]))

This measure first checks that there is a value for “Total Sales”; otherwise, items with
blank values will be considered in the evaluation, such as “Lambrusco” wine that has no
sales. If a sales value is present, the measure builds a virtual Wines table containing all
the rows from the table using ALL. It then uses context transition to calculate the “Total
Sales” value, iterating every row. Finally, it ranks the sales value in the current filter
against all the values in the table returned by ALL, returning their rank value.

Let’s take a look at another example of using RANKX. You may, for instance, want to
rank your financial quarters by sales in each year as shown in Figure 16-2.

273

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

YEAR Total Sales Rank by Qtr Rank by Qtr #2
© 2017 | $4,649,285 1
Qtr 1 $1,238,163 2 2
Qtr 2 $921,562 4 4
Qtr3| $1,165,083 3 3
Qtrd4| $1,324,477 1 1
©2018 $4,207,871 1
Qtr 1 $939,780 — -
Qtr2| $1,097.410 1 1
Qtr3| $1,072,199 2 2
Qtr4| $1,098,482 3 3
72019 $4,710,744 1
Qtr 1 $529,926 4 4
Qtr 2 $969,874 3 3
Qtr3| $1,897,917 1 1
Total | $29,732,482 1

Figure 16-2. Using RANKX to rank financial quarters

In the Matrix visual in Figure 16-2, the first ranking evaluation is for “Qtr 1” in “2017’,
filters being applied to the DateTable accordingly. Here, you must use the ALL function
to generate a virtual table containing a column of all four values in the QTR column
of the DateTable (i.e., “Qtr 1”, “Qtr 2, “Qtr 3’, “Qtr 4”) for “2017”. This is so that the sales
values for all four quarters in that year can be ranked using context transition. This is the
measure you can create here:

Rank by Qtr =
RANKX (ALL (DateTable[QTR]), [Total Sales])

However, if you put this measure into a Matrix visual, you will notice that the
YEAR column is ranked as “1” as there is only one subtotal value to rank. To avoid this
irrelevant value, you can use the HASONEVALUE function to return only a value for the
QTR column:

Rank by Qtr #2 =
IF (HASONEVALUE(DateTable[QTR]),
RANKX (ALL (DateTable[QTR]), [Total Cases]))

274

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

Note We are using the ALL function inside RANKX in our examples shown before,
but remember that you may require the ALLSELECTED function instead if you have
slicers on your canvas.

We will be meeting the RANKX function again later in this chapter when we use it
to rank our customers. However, the most important takeaway from this section is how
RANKX, as an iterating function, is used with a measure and, therefore, evokes context

transition.

Binning Measures into Numeric Ranges

A common requirement when analyzing data in Power Bl is binning the results of a
measure into numeric ranges. Consider the visual on the left in Figure 16-3. It is telling us
that we have nine customers whose “Total Sales” values are greater than 800,000. In the
Table visual on the right, we can see who these customers are.

275

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

Range No. of Customers CUSTOMER NAME Total Sales
with these Total ad

Sales Erlangen & Co $1,104,291
- Martinsville Bros $923,865
1-50,000 10 Burningsuit Ltd $893,230
50,001 - 200,000 32 Eilenburg Ltd $891,382
200,001 - 400,000 10 Plattsburgh Ltd $821,556
400,001 - 600,000 c) Castle Rock Ltd $815,730
600,001 - 800,000 18 El Cajon & Sons $813,175
800,001 and > 9 Melbourne Ltd $812,608
Total 83 Rhodes Ltd $809,243
Spokane Ltd $794,764
Lavender Bay Ltd $791,084
Port Hammond Bros $787,172
Clifton Ltd $764,300
Port Orchard & Sons $757,784
Littleton & Sons $729,349
Warrnambool Ltd $726,492
Chandler & Sons $725,413
Total $29,732,482

Figure 16-3. Binning “Total Sales” into numeric ranges

The starting point for this analysis is to generate a parameter table that defines the
ranges you require. You learned how to create parameter tables in Chapter 12 when we
explored the SELECTEDVALUE function. To generate the parameter table, use the Enter
Data button on the Home tab. We've called this table “Bins for Sales’; and you can see
it in Figure 16-4. As with all parameter tables, it’s not related to any other tables in the

data model.

276

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

Range E MinValue B MaxValue El Sort E
1-50,000 1 50000 1
50,001 - 200,000 50001 200000 2
200,001 - 400,000 200001 400000 3
400,001 - 600,000 400001 600000 4
600,001 - 800,000 600001 800000 5
800,001 and > 800001 999999999 6

Figure 16-4. The “Bins for Sales” parameter table

Next, as a calculated column in Data view, in the “Bins for Sales” table, we could
author this expression that will count the number of customers whose sales fall between
the range values:

No. of Customers Column =
COUNTROWS (
FILTER (
Customers,
[Total Sales] »= 'Bins for Sales'[MinValue]
8& [Total Sales] <= 'Bins for Sales'[MaxValue]))

You can see the results of this expression in Figure 16-5.

>< e ‘1 No. of Customers Column = COUNTROWS @

2 FILTER (

3 ' Customers,

4 [Total sales] >= 'Bins for Sales'[Minvalue]

‘5 _ . I && [Total Sales] <= 'Bins for Sales'[MaxValue]) E

Range E MinValue E] MaxValue E‘ Sort El No. of Customers Column E]

1-50,000 1 50000 1 10
50,001 - 200,000 50001 200000 2 32
200,001 - 400,000 200001 400000 3 10
400,001 - 600,000 400001 600000 4 4
600,001 - 800,000 600001 800000 5 18
800,001 and > 800001 999999999 6 9

Figure 16-5. Start by binning the customers into a calculated column

277

CHAPTER 16

LEVERAGING CONTEXT TRANSITION

Let’s take a closer look at the evaluation of “No. of Customers Column”. Because we

are using a calculated column, the “Bins for Sales” table is iterated, and the values for

“MinValue” and “MaxValue” in the current row will be used in the calculation. The “Total

Sales” measure used by the FILTER function evokes context transition in the Customers

table whereby it returns each customer’s total sales value in memory, and it is this value

that is used to compare to the range value sitting in the current row of the “Bins for

Sales” table. The COUNTROWS function then counts the number of rows in the virtual
Customers table generated by FILTER. In Figure 16-6, we step through the evaluation of

this expression.

Bins for Sales table

Range |T MinValue [~ | Ma:(VL/"_

1-50,000 I

50,001 - 200,000
200,001 - 400,000
400,001 - 600,000
600,001 - 800,000
800,001 and >

1 5 0004
50001 200000
200001 400000
400001 600000
600001 800000
800001 999959998

Sort T] No of Customers Column | ~ |

1
2
3
4
5
6

10
32
10
4
18
9

71
73
5.
68
77
79

P

Canoga Park Ltd
Burlington Ltd
Loveland & Co
Victoria Ltd
Liverpool & Sons

St. Leonards Ltd

Virtual Customers table

400
1600
400
700
1000
300

Greater Manchester England United Kingdom

Worcestershire

Glasgow City Scotland
Scottish Borders Scotland
East Lothian Scotland
Edinburgh Scotland

England United Kingdom

United Kingdom

United Kingdom

United Kingdom

United Kingdom

O N——

i2
i1
22
1
22
&

ity [=] NO.OFSTORES [~ Total Sales [~]
d Kingdom 24 £25,542
kd Kingdom 0 £14,835
d Kingdom 18 £27,018 I
d Kingd 23 £48,150]

£37,310
£41,552
£38,008
£24,710 I
£49,813 |
£16,965

10
T

rows

Figure 16-6. The evaluation of the “No. of Customers Column” calculated column

1. The expression iterates the “Bins for Sales” table. FILTER
generates a virtual Customers table that is filtered by using the
range values in the current row of the “Bins for Sales” table.

2. COUNTROWS counts the rows in the virtual Customers table.

3. The value returned by COUNTROWS is calculated in the current
row of the “Bins for Sales” table.

However, we don’t want these values sitting in a calculated column; we want

them in a measure that we can put into a Table visual so we can slice and dice the
data. We learned in Chapter 5 how we can often convert an expression evaluated in
a column into an expression evaluated as a measure. There, we took this expression,

278

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

“Winesales[CASESSOLD] * RELATED (Wines[PRICEPERCASE]))”, and wrapped it
inside SUMX. We can do the same with our calculated column, remembering that it is
the “Bins for Sales” table that must be iterated by SUMX:

No. of Customers with these Total Sales =
SUMX (
'Bins for Sales',
COUNTROWS (
FILTER (
Customers,
[Total Sales] >= 'Bins for Sales'[MinValue]
8& [Total Sales] <= 'Bins for Sales'[MaxValue])))

You can then place a Table visual on your canvas and populate it with the “Range”
column from the “Bins for Sales” table. Next, place the “No. of Customers with these
Total Sales” measure into this table as in Figure 16-3.

Calculating TopN Percent

In this example, you will put into practice all the knowledge of DAX you've learned so far
and author a complex measure.

The challenge is to find a way to dynamically browse your best and worst performing
customers. The requirement is to do this by finding the topN and bottomN percent of
customers by sales, where the “top” and “bottom” and “N” are dynamically selected via
slicers. You would also like to browse customers’ sales by any entities from dimension
tables such as by salespeople or by regions.

You can see in Figure 16-7 that we've solved this scenario. In the Table visual, you can
see that we are looking at the bottom 10% of customers by sales for salesperson “Abel”.

279

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

CUSTOMER NAME Top/Bottom Top or Bottom SALESPERSON
PC Customers [l Bottom B Abel
a
2 Top Blanchet
Back River & Co £0
Charron
Lt.aedsl& Co £3,588 Percent Beariia
Victoria Ltd £4,440 2.00% bbfirene
Saint Germain en Laye & Co £5,499 5.00% Reyer
Beaverton & Co £5700 W 10.00%
Liverpool & Sons £6,123
Yokohama & Co £6,280
Concord Ltd £6,350
Total £37,980

Figure 16-7. Top or bottom percent of customers by sales

The measure “Top/Bottom PC Customers” is a compelling example of using context
transition within a DAX expression to gain insights into your data, and you can now
discover how to re-create this example for yourself.

There are two steps to setting up this analysis:

1. Create the slicers to select which percentage and whether top
or bottom.

2. Create the measure to find the top or bottom percent selected in
the slicers that will also respond to the Salesperson slicer.

Create the Slicers

The “Top or Bottom” and “Percent” slicers use parameter tables. We've called these
tables “Select Percent” and “Select Top or Bottom’, and both tables contain just a single
column, “Top or Bottom” and “Percent’, as shown in Figure 16-8.

280

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

Select Top or Bottom Table Select Percent Table

Top or Bottom |;| Percent E|
Top 2.00%
Bottom 5.00%

10.00%

Figure 16-8. The parameter tables used for top/bottom and percent

Use the columns from these two tables to populate two slicers.

Create the Measure to Find the Top or Bottom Percent
Selected in Slicers

The measure used in the “Top/Bottom PC Customers” uses many skills you have learned

so far in this book. Let’s think through what will be required of you to arrive at the correct

DAX code for this measure.

You will use variables throughout the expression to separate each
part of the evaluation.

You will use the SELECTEDVALUE function to harvest the values
selected in the slicers, either “Top” or “Bottom’, and the percentage to
be calculated.

The percentage selected is used to find the base rank. For example,
if 10% is chosen in the slicer and there are 84 customers who have
sales, you must find customers whose rank is less than 8.4. You will
rank customers descending for top ranked customers (top = 1) and
ascending for bottom ranked customers (bottom = 1). Therefore, you
will be finding a rank less than 8.4 in both cases.

Using context transition and the RANKX function, you will rank the
customers, top or bottom, according to their “Total Sales” value.

Because there are customers with no sales that will be ranked by
default when finding bottom percent, you must filter the Customers
table so only customers who have sales are ranked.

281

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

e Using the FILTER function, you will filter top or bottom customers
whose rank is, for example, less than 8.4, if finding 10%.

e Because the measure must return a scalar value, you must now
calculate the “Total Sales” measure for the filtered customers.

e Lastly, you must write a calculation that returns “Total Sales” for
either the top or the bottom ranked customers depending on the

slicer selection.

This is the measure that you can now author (we have added a comment under each
part of the expression to explain the purpose of the code):

Top/Bottom PC Customers =

VAR PercentToFind =
COUNTROWS (ALL (Customers)) * SELECTEDVALUE ('Select
Percent'[Percent])

-- Harvest the percent using the slicer selection

VAR TopOrBottom =
SELECTEDVALUE ('Select Top or Bottom'[Top or Bottom])
-- Harvest whether top or bottom using the slicer selection

VAR RankCustsTop =
RANKX (ALL (Customers), [Total Sales])
-- Rank the customers descending by Total Sales value (Top = 1)

VAR RankCustsBottom =
RANKX (FILTER(ALL (Customers),NOT(ISBLANK([Total Sales]))), [Total
Sales],, ASC)
-- Rank the customers ascending by Total Sales value (Bottom = 1) but only
if they have sales

VAR FindCustsTop =

FILTER (Customers, RankCustsTop <= PercentToFind)
-- Filter top customers whose rank is less than or equal to the
PerCentToFind

VAR FindCustsBottom =
FILTER (Customers, RankCustsBottom <= PercentToFind)

282

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

-- Filter bottom customers whose rank is less than or equal to the
PerCentToFind

VAR CalcSalesTop =
CALCULATE ([Total Sales], FindCustsTop)
-- Calculate “Total Sales” for top ranked customers

VAR CalcSalesBottom =
CALCULATE ([Total Sales], FindCustsBottom)
-- Calculate “Total Sales” for bottom ranked customers

RETURN

IF (HASONEVALUE (Customers[CUSTOMER NAME]),

-- This tests that the evaluation is not for the Total Row.
IF (TopOrBottom = "top", CalcSalesTop, CalcSalesBottom),
--The calculation for rows not in the Total row

CALCULATE ([Total Sales],
ALLSELECTED (Customers[CUSTOMER NAME])))
--The calculation for the Total Row

Note the “RETURN” expression that executes different code if the calculation is for
the Total row. This is to resolve the problem of users selecting “Bottom” percent and no
value showing in the Total row. This is because the Total row is evaluated in the same
way as the evaluation for each customer. Therefore, the Total row value, which is always
greater than the individual sales values, is given a bottom ranking of 85 (if there are 84
customers with sales), because the bottom ranking is ascending (higher values get a
larger ranked number). The Total row, therefore, fails the ranking bottom test performed
by FILTER, and so there is no data to show in the Total row.

You must, therefore, author a different expression for the Total row to ensure that
the Total row sums the total sales for the customers shown in the visual. To test that the
evaluation is not for the Total row, you can use the HASONEVALUE function. You can
then use the ALLSELECTED function to calculate the “Total Sales” value for just the
customers shown in the visual.

However, we have not yet resolved the problem, because you will note that at this
stage, the Total row shows the total sales for all customers for “Abel”; see Figure 16-9.

283

CHAPTER 16

LEVERAGING CONTEXT TRANSITION

CUSTOMER NAME

Top/Bottom
PC Customers

a
Back River & Co £0
Leeds & Co £3,588
Victoria Ltd £4,440
Saint Germain en Laye & Co £5,499
Beaverton & Co £5,700
Liverpool & Sons £6,123
Yokohama & Co £6,280
Concord Ltd £6,350
Total £5,265,266

Top or Bottom
B Bottom
Top
Percent
2.00%
5.00%
M 10.00%

SALESPERSON

B Abel
Blanchet
Charron
Denis
Leblanc

| Reyer

Figure 16-9. The Total row is not correct

This is because the ALLSELECTED expression calculates the “Total Sales” measure

independently of the ranking calculation, and so there is no filter on the Customers table

for ALLSELECTED to remove. Therefore, to place a filter on the Customers table, you can

use a visual-level filter, populate it with the “Total Sales” measure, and set the filter to

“Show items when the value is not blank”; see Figure 16-10.

Total
L

=i

AT e RE S ————
[CUSTOMERNAME Top/Bottom | ToporBottom ~ SALESPERSON v | [cusTomer NAME
PC Customers | Il Bottom W Abel is (All)
— 1 Top | Blanchet
Back River & Co £0 p— o “l'ehanon Toiflfcilom PC Custo...
Leeds & Co £3588 | [2.00%] Denis i
Victoria Ltd £4,440 _ 5.00% Leblanc Total Sales
Saint Germain en Laye & Co £5499 | W 10.00% | Reyer is not blank
Beaverton & Co £5,700 Show items when the value
Liverpool & Sons £6,123 P o |
Yokohama & Co £6,280
Concord Ltd £6,350 ® And O or
£37,980 =

Apply filter

Figure 16-10. The Total row is correct if you provide a visual-level filter for
ALLSELECTED to remove

284

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

Finally, you can change the slicer selections, and the measure recalculates
accordingly, finding your best and worst customers using our great DAX friend, context
transition.

You may feel that the dynamic ranking of customers that we have achieved here has
been quite a daunting experience. It would appear that once you have “cracked” the
obvious calculation of ranking the customers, there were then unexpected problems that
arose, such as how the Total row must be evaluated. Let me tell you now, this is par for
the course. This is true DAX in action, and you are beginning to appreciate that what you
must do above all else is think it through. Why is my expression returning correct results
most of the time but then odd results only sometimes? Always think through exactly how
your measure is being evaluated and, particularly, the evaluation context in which it has
been placed.

Calculating “Like for Like” Yearly Sales
Using SUMMARIZE

We have been analyzing our customer sales values in a variety of ways throughout this
book. One of the more insightful metrics, however, we have yet to explore is calculating
like for like sales to make more accurate comparisons between our customers.

Let’s start by setting up the scenario. We want to analyze our customers’ sales of
“Chianti” wine in the years 2019, 2020, and 2021. The problem with multiselecting years
in a slicer is that our “Total Sales” measure will filter customers with sales of “Chianti” in
any of the selected years and not sales in all of them; see Figure 16-11.

285

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

e Y. CUSTOMER NAME 2019 2020 2021 Total
Bordeaux
Champagne Ballard & Sons $5,640 $5,640
Chardonnay Barstow Ltd $11,600 $11,600
Chenin Blanc ~ Burningsuit Ltd $12,800 $21,880 $7,840 $42,520
B Chianti Canoga Park Ltd $9,080 $9,080
Grenache Cape Canaveral Ltd $5240 $10,920 $16,160
Lambrusco Castle Rock Ltd $5,560 $4,920 $10,480
Malbec Chandler & Sons $5,880 $5,880
Merlot Charleston Ltd $4,840 $8,960 $13,800
Piesporter Charlottesville & Co $3,800 $3,800
Pinot Grigio Chatou & Co $16,040 $6,120 $22,160
Rioja Cheney & Co $2,880 $2,880
YEAR Clifton Ltd $9,400 $10,840 $17,840 $38,080
2017 Columbus & Sons $5,000 $5,000
2018 East Orange & Co $8,840 $8,840
M 2019 Eilenburg Ltd $4,720 $16,160 $20,880
Il 2020 El Cajon & Sons $8,840 $8,840
W 2021 Total $189,440 $285,800 $341,400 $816,640

Figure 16-11. Multiselecting years returns customers with sales in any of the
selected years, not all the selected years

However, we'd like to select a range of years in a slicer and find out which customers
bought “Chianti” in all the selected years so we can compare like for like on the total. For
instance, in Figure 16-11, we can see that in the years 2019, 2020, and 2021, “Burningsuit
Ltd” had sales in all three years for “Chianti” but “Ballard & Sons” only had sales in 2020
and “Barstow Ltd” in 2021. Therefore, the total sales for those three years would not be
like for like when considering these three customers’ sales of “Chianti”.

The visual that provides the analysis we require is shown in Figure 16-12. Here, we
have selected “Chianti” wine and years 2019, 2020, and 2021 in the slicers, and the table
visual shows sales for only customers who have sales of “Chianti” in all those years.

286

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

WINE w
Bordeaux CUSTOMER NAME 2019 2020 2021 Total
Champagne g mingsuit Ltd $12,800 $21,880 $7,840 $42,520
Chardonnay ¢jigron Ltd $9,400 $10,840 $17,840 $38,080

N E:Z:: B1anC " Erlangen & Co $22,160 $25,040 $5640 $52,840
Grenache La}fender B_ay Ltd $6,200 $4,600 $47,200 $58,000
Lambrusoo Milsons Point Ltd $15920 $3,760 $15520 $35,200
Malbec Port Orchard & Sons| $26,080 $2,920 $7,520 $36,520
Merlot Rhodes Ltd $8,600 $9,720 $9,520 $27,840
Piesporter Townsville Ltd $2,800 $7,840 $6,640 $17,280
Pinot Grigio Total $103,960 $86,600 $117,720 $308,280
Rioja

YEAR v
2017
2018

W 2019

B 2020

B 2021

Figure 16-12. Calculating like for like sales in 2019 to 2021 for “Chianti” wine

To understand the code we must author that calculates such sales, we will pick the
calculation apart into its constituent steps:

1. Identify customers who have sales in the selected years of the
selected wine.

2. Calculate in how many of those years selected in the slicer the
customer has sales.

3. Filter customers who have sales in the same number of years as
the number of years selected in the slicer.

Let’s take step #1 and explore how we identify those customers that have sales in the
selected years. For this, we must digress a little and revisit the SUMMARIZE function
to learn more. In the previous chapter, you learned how you can use SUMMARIZE to
generate a virtual table grouping columns from different tables. However, as one of
the arguments inside SUMMARIZE, you can optionally include an expression to be
evaluated for the rows returned in the virtual table. Therefore, to identify in which of the

287

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

selected years our customers have sales, we could write the following measure where
we have highlighted the two arguments used for calculating the total sales for each
customer in each year:

No. of Years that Customers have Sales =
COUNTROWS (
SUMMARIZE (
Winesales,
Customers[CUSTOMER NAME],
DateTable[Year],
"Sales", [Total Sales]

)

We will now work through the details of the “No. of Years that Customers have Sales”
measure. We are using SUMMARIZE to create the virtual table shown in Figure 16-13. We
don’t see all the years for every customer because this table is evaluated in the current
filter of the Matrix visual that it occupies; for instance, “Ballard & Sons” only has sales in
2020; see Figure 16-14.

CUSTOMER NAME |-1| YEAR [~] sales [-¥]

| |
I Ballard & Sons 2020 5640 :
I Barstow Ltd 2021 11600 I
: Burningsuit Ltd 2021 7840 I
I Burningsuit Ltd 2020 21880 |
I Burningsuit Ltd 2018 12800 |
| Canoga Park Ltd 2021 9080 |
| Cape Canaveral Ltd 2021 10920 |
I Cape Canaveral Ltd 2020 5240 |
| Castle Rock Ltd 2021 4920 |

LCasteBodkitd, o o o 2020 o 5560

Figure 16-13. The virtual table generated by SUMMARIZE in the “No. of Years
that Customers have Sales” measure

288

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

You can see that the SUMMARIZE function includes an expression called “Sales”
which will return the “Total Sales” measure. The name that you give to this column
inside SUMMARIZE (e.g., “Sales”) is purely arbitrary.

We can now put this measure into a Matrix visual with CUSTOMER NAME in rows
and YEAR in columns (Figure 16-14). We are also slicing by “Chianti” wine and years
2019, 2020, and 2021. You can see that it returns “1” for every customer that has sales of
“Chianti” in the selected years.

e Y. CUSTOMER NAME 2019 2020 2021 Total
Bordeaux . , .
Champagne Ballard & Sons 1 1
Chardonnay Barstow Ltd 1 1
Chenin Blanc Burningsuit Ltd 1 1 1 3

B Chianti Canoga Park Ltd 1 1
Grenache Cape Canaveral Ltd 1 1 2
Lambrusco Castle Rock Ltd 1 1 2
Malbec Chandler & Sons 1 1
Merlot Charleston Ltd 1 1 2
Piesporter Charlottesville & Co 1 1
Pinot Grigio Chatou & Co 1 12
Rioja Cheney & Co 1 1

YEAR v Clifton Ltd 1 1 1 3
2017 Columbus & Sons 1 1
2018 East Orange & Co T 1

M 2019 Eilenburg Ltd 1 1 2

Il 2020 El Cajon & Scns 1 1

B 2021 - — - - - -

Total | 15 31 30 76

Figure 16-14. The “No. of Years that Customers have Sales” measure in a
Matrix visual

Now for step #2 where we must calculate in how many of those years selected in the
slicer a customer has sales. Remembering that the columns WINE, CUSTOMER, and
YEAR are providing the filter context, we must remove the filter from YEAR so we can

289

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

look at our customers’ sales of “Chianti” for all the years selected in the slicer. We can use
CALCULATE with ALLSELECTED on the DateTable to do this job and simply nest our
SUMMARIZE expression inside CALCULATE:

No. of Years that Customers have Sales #2=
CALCULATE (
COUNTROWS (
SUMMARIZE (
Winesales,
Customers[CUSTOMER NAME],
DateTable[Year],
"Sales", [Total Sales]

)5
ALLSELECTED (DateTable[Year])

We can see the values this measure returns in Figure 16-15.

290

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

i ¥ CUSTOMER NAME 2019 2020 2021 Total *
Bordeaux
Champagne Ballard & Sons 1 1 1 1
Chardonnay Barstow Ltd 1 1 1 1
Chenin Blanc Burningsuit Ltd 3 3 3 3

B Chianti Canoga Park Ltd 1 1 1 1
Grenache Cape Canaveral Ltd 2 2 2 2
Lambrusco Castle Rock Ltd 2 2 ? 2
Malbec Chandler & Sons 1 1 1 1
Metrlot Charleston Ltd 2 2 2 2
Piesporter Charlottesville & Co 1 1 1 1
Pinot Grigio Chatou & Co 20222
Rioja Cheney & Co '

YEAR v Clifton Ltd 3 3 3 3
2017 Columbus & Sons 1 1 1 1
2018 East Orange & Co 1 1 1 1

M 2019 Eilenburg Ltd g 2 Z @

M 2020 El Cajon & Sons T

W 2021 Total 76 76 76 76

Figure 16-15. The “No. of Years that Customers have Sales #2” measure evaluated
in the Matrix visual

We already know from Figure 16-13 that “Ballard & Sons” has only bought “Chianti”
in 2020 so they only have sales in one of the years selected in the slicer.

To complete the calculation in step #3, we can filter the Customers table to contain
only those customers whose number of years returned by the “No. of Years that
Customers have Sales #2” measure equals the number of years filtered in the slicer
and return the “Total Sales” value for these customers. This is the “Like for Like Sales”
measure that we've used in the visual in Figure 16-14 that returns the result we need:

Like for Like Sales =
CALCULATE (
[Total Sales],
FILTER (
Customers,

291

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

[No. of Years that Customers have Sales #2] =
COUNTROWS (ALLSELECTED (DateTable[Year]))

)
)
Figure 16-16 shows this measure evaluated in a Matrix visual.

WINE w
Bordeaux CUSTOMER NAME 2019 2020 2021 Total
Champagne ' gurningsuit Ltd §12,800 $21880 $7,840 $42,520
C:a“_j"”'l"ay Clifton Ltd $9,400 $10,840 $17,840 $38,080

m Eh?m? Blanc " Erlangen & Co $22,160 $25,040 $5640 $52,840
5 ian |h Lavender Bay Ltd $6,200 $4,600 $47,200 $58,000
L ;;n;z ;0 Milsons Point Ltd $15920 $3,760 $15,520 $35,200
Malbec Port Orchard & Sons| $26,080 $2,920 $7,520 $36,520
Merlot Rhodes Ltd $8,600 $9,720 $9,520 $27,840
Piesporter Townsville Ltd $2,800 $7,840 $6,640 $17,280
Pinot Grigio 1otal $103,960 $86,600 $117,720 $308,280
Rioja

YEAR v
2017
2018

H 2019

B 2020

B 2021

Figure 16-16. The “Like for Like Sales” measure evaluated for “Chianti” wine

In the preceding scenario, where we have calculated like for like sales, you may have
noticed the absence of any reference to context transition when working through the
evaluation of the measures we built using SUMMARIZE. In fact, these measures do not
use context transition. SUMMARIZE is not an iterating function, and in the absence
of an iteration, context transition cannot occur. The method that SUMMARIZE uses to
calculate its “expression” argument is complex, and its explanation is beyond the scope
of this book. However, the behavior of the “Total Sales” measure in the expressions using
SUMMARIZE is indistinguishable from context transition to most DAX users. That is,
we have generated a summary table, and the “Total Sales” measure is calculated at that
granularity. This is why I have included this example in this chapter.

292

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

Using Context Transition in Calculated Columns

Understanding context transition allows you to write more challenging calculated
columns too. What you will learn in this section is that by using CALCULATE in
calculated columns, you are released from the constraints of the row context where you
can only calculate values for the current row. We can now harness the power of context
transition to programmatically create filters on tables and so pass calculations across
these filtered rows in calculated columns.

Calculating Running Totals

You have already learned how to calculate cumulative totals using measures in Chapter 9
(see Figure 9-10) and Chapter 15 (see Figure 15-10). However, we now have a different
cumulative total we would like to find, and that is a running total of the quantity in the
CASES SOLD column; see Figure 16-17. Using variables and context transition makes
this calculation straightforward. This is the DAX calculated column you can create:

CUMULATIVE TOTAL =
VAR MyDate = Winesales[SALE DATE]
VAR MyFilter =
FILTER (Winesales, Winesales[SALE DATE] <= MyDate)
RETURN
CALCULATE (SUM (Winesales[CASES SOLD]), MyFilter)

The variable “MyDate” finds the value in the SALE DATE column sitting in the
current row. The variable “MyFilter” uses the FILTER function to create a virtual
table filtering the rows where the SALE DATE is on or before this date. Using context
transition, CALCULATE can use this new filter generated by the virtual table to sum the
CASES SOLD for these filtered rows.

293

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

SALE DATE |-1]| WINESALES NO |~ | SALESPERSONID [~| CUSTOMERID [~| WINEID [~] casEssoLD [~]| CUMULATIVE TOTAL ;II
01/01/2017 2 6 16 10 213 539
01/01/2017 1 3 16 4 326 539
02/01/2017 3 4 20 5 70 609
03/01/2017 4 1 12 10 264 873
07/01/2017 5 2 17 3 147 1020
08/01/2017 6 3 45 11 155 1175
09/01/2017 7 6 11 7 173 1348
10/01/2017 8 2 75 13 106 1454
12/01/2017 10 4 16 13 136 1738
12/01/2017 9 4 14 13 148 1738
13/01/2017 11 1 22 3 228 1966
14/01/2017 12 = 13 L] 120 1098

Figure 16-17. The “CUMULATIVE TOTAL” in a calculated column

Notice the use of the variable “MyDate” to find the date in the current row. Before
variables were introduced into DAX in 2015, we had to use a function called EARLIER to
do this job, as follows:

CUMULATIVE TOTAL =
CALCULATE (
SUM (Winesales[CASES SOLD]),
FILTER (Winesales, Winesales[SALE DATE] <=
EARLIER (Winesales[SALE DATE]))

I think you'll agree that the calculated column using the variable is a lot easier to
create and understand.

Calculating the Difference from the Value
in the Previous Row

You have learned that calculated columns use the row context in their evaluation where
the values used by the expression are the values sitting in the current row. However, a
common question that is often asked is how to find values in another row. For example,
you may be asked to calculate the number of days between sales transactions as in the
“DAYS DIFFERENCE” calculated column in Figure 16-18.

294

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

SALE DATE |-7|| WINESALESNO [~ || SALESPERSON ID [~ || CUSTOMERID [~ | WINEID [~] CASESSOLD [~ | DAYS DIFFERENCE |~ |
01/01/2017 2 6 16 10 z%
01/01/2017 1 3 16 4 32
02/01/2017 3 4 20 5 70 1
03/01/2017 4 1 12 10 264 1
07/01/2017 5 2 17 3 147 4
08/01/2017 [3 45 11 155 at
09/01/2017 7 6 1 7 173 1
10/01/2017 8 2 75 13 108 1
12/01/2017 10 4 16 13 13 2
12/01/2017 9 4 14 13 14.3 2
13/01/2017 11 1 22 3 22 1
14/01/2017 12 5 13 9 129 1
15/01/2017 14 2 32 3 246]

Figure 16-18. The “DAYS DIFFERENCE" calculated column

To do this calculation, we need to find the SALE DATE that is in the previous row.
This is the expression for the calculated column:

DAYS DIFFERENCE =
VAR MyDate = Winesales[SALE DATE]
VAR PreviousDate =
CALCULATE (
MAX (Winesales[SALE DATE]),
FILTER (WineSales, Winesales[SALE DATE] < MyDate))
RETURN
IF (PreviousDate, MyDate - PreviousDate)

The variable “MyDate” finds the value of SALE DATE sitting in the current row, for
example, 7 January 2017. The variable “PreviousDate” uses CALCULATE and so invokes
context transition that will apply a filter to the rows. Using the FILTER function, a virtual
table is created filtering the rows where the SALE DATE is before “MyDate” (i.e., all the
rows with dates up to and including 6 January 2017). CALCULATE then calculates the
latest date (using the MAX function) in the virtual table (6 January 2017). Therefore, this
date is the date immediately before the date in the current row. The RETURN statement
checks for the presence of a previous date and then subtracts the date in the current row
from the date generated by “PreviousDate”. The value returned is a date, so the last step
is to change the data type to a whole number.

295

CHAPTER 16 LEVERAGING CONTEXT TRANSITION

By working through the examples contained in this and the previous chapter, you
have learned how to use context transition to author more complex and challenging
expressions. However, you are still sitting on the tip of the iceberg of calculations that can
be achieved using context transition. You'll find your own reasons to benefit from using
this aspect of DAX, and you will no longer find the behavior of context transition in any
way “strange” or “surprising,” and that’s because you now understand it.

296

CHAPTER 17

Virtual Relationships:
The LOOKUPVALUE
and TREATAS Functions

Our data model comprises well-defined physical relationships between the tables,
generating a star schema. However, there is another type of relationship we can create,
and that’s a “virtual” relationship. A virtual relationship is a DAX expression that
simulates the behavior of a physical relationship defined in the data model. In this
chapter, you will learn to create virtual relationships that can resolve problems created
by anomalies in the data model. Such anomalies can exist for the following reasons:

e When arelationship does not exist, for example, when using a
lookup table.

o The relationship between tables is not part of a star or
snowflake schema.

e When arelationship cannot be created because there are duplicate
values in both of the columns you want to relate.

Specifically, we will delve into the outcomes of using two functions that create
virtual relationships: LOOKUPVALUE and TREATAS. In fact, these two functions are very
different. LOOKUPVALUE returns a value, usually from a different table, that is looked
up based on search criteria that are provided by the function. TREATAS, on the other
hand, is a table function that returns a virtual table that can be used to filter another
table. However, they’re both used in situations where it’s not possible to use a physical
relationship, and that’s why we’ve consolidated them into this chapter.

297
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_17

https://doi.org/10.1007/978-1-4842-8188-8_17

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

LOOKUPVALUE Function

We've already learned that we can use the RELATED function to pull values through
from the one side of the relationship into the many, just in the same way that the
VLOOKUP function works in Excel. However, RELATED only works if you have a
many-to-one relationship in place. Let’s look at a situation where it would not be
possible to use RELATED.!

The situation is this; currently, our wines have a single price per case, but we now
want our wines to have different prices according to different price bands. We've added
another table to our model that records the price bands of the wines in a table called
“Prices’, shown in Figure 17-1.

WINE ID [~ || PRICE BAND |~ | PRICE PER CASE [~|
1A $63.00
18 $90.00
3|€ $189.00
10D $156.00
1|E $155.00
1F $179.00
2|A $105.00
2B $104.00
2|c $106.00
alo f121 an

Figure 17-1. The Prices table records the price band and price per case for
each wine

Now, when we make a sale of any wine, the price band is also recorded in the
transaction in the Winesales fact table; see Figure 17-2.

! To follow along with the examples, use the Power BI Desktop file “4 DAX LOOKUPVALUE.pbix".

298

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

SALE DATE [-1] wiINESALES NO [~] sALEsPERsONID [~] cusTomERID [~] wine D [~] casessolp [~ price Banp [~]
01,/01/2017 4 & .1.6 10 é!: . c |
01/01/2017 1 3, 16 4 324 C
02/01/2017 3 4 20 5 74D
03/01/2017 4 1 12 10 264 ¢
07/01/2017 5 2 17 3 143 E
08/01/2017 6 3 45 11 154 D
09/01/2017 7 6 11 7 171 A
10/01/2017 8 2 75 13 104 ¢
12/01/2017 9 4 14 13 144 B
12/01/2017 10 4 16 13 134 B
13/01/2017 12 1 e 3 224 B
14/01/2017 12 5 13 9 124 A
15/01/2017 16 5 32 6 71 B

Figure 17-2. Each transaction records the price band

In Figure 17-3, you can see that relating wines to their prices in a many-to-one
relationship using the WINE ID column is straightforward.

Prices oW
PRICE BAND
> PRICE PER CASE
Wines o ; I WINE ID
*
> COST PRICE
SUPPLIER -
TYPE
WINE L
Collapse
WINE COUNTRY
L WINE ID
Collapse ~

Figure 17-3. The Prices table can be related to the Wines table in a many-to-one
relationship

299

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

However, how would you find the price of each transaction in the Winesales table?
You can’t use RELATED because this function can only populate values from the “one”
side of the relationship into the “many” side and the Prices table sits on the “many” side.
But more importantly, the price depends on fwo criteria: the wine and the price band.
In this scenario, the relationship between the tables isn’t going to help you. In fact, you
don’t need the relationship between Wines and Prices at all. What you can do here is
create a “virtual” relationship using LOOKUPVALUE in a calculated column.

The LOOKUPVALUE function has the following syntax:

= LOOKUPVALUE(result column name , search column namel, search valuel,
search column name2, search value2 etc.)

result column name is the column whose value you want to be returned.

search column name is the column where you want to match the first “search
value.” Usually, this is a column from a different table, but it can be in the same table.

search value is the value to search for in “search column name.” This can be a value
in a column or any single value.

The “search column name” and “search value” can be repeated for as many pairs of
matching values as you need.

This is the calculated column we need and you can see the result in Figure 17-4:

WINE PRICE =

LOOKUPVALUE (
Prices[PRICE PER CASE],
Prices[WINE ID], Winesales[WINE ID],
Prices[PRICE BAND], Winesales[PRICE BAND]

This is the same calculated column with comments:

WINE PRICE =
LOOKUPVALUE (
Prices[PRICE PER CASE],
--the price to return into the Winesales table from the prices table
Prices[WINE ID], Winesales[WINE ID],
--look in the WINE ID column of the Prices table to match the WINE ID in
the current row of the Winesales table
Prices[PRICE BAND], Winesales[PRICE BAND]

300

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

-- AND look in the PRICE BAND column of the Prices table to match the PRICE
BAND in the current row of the Winesales table

)
DMERID [~ | WINEID [~] cAsEssoLD [~] PRICEBAND [~ | WINE PRICE [~]|
' 16 10 213/ C - $193.00
16 4 326 C $73.00
20 5 70 D $130.00
12 10 264 C $193.00
17 3 147 E $119.00
45 11 155 D $120.00
11 7 173 A $85.00
75 13 106 C $146.00
14 13 148 B $116.00
16 13 136 B $116.00

Figure 17-4. The WINE PRICE calculated column using LOOKUPVALUE

Notice in the calculated column, we need to match both the WINE ID and the
PRICE BAND, and this is where LOOKUPVALUE becomes particularly useful. The
LOOKUPVALUE function allows you to find values in unrelated tables by matching
values in any number of columns.

At this juncture, we must let you know that the code you have just written using the
LOOKUPVALUE function is now a little outdated. Prior to the introduction of variables,
it was the simplest way to achieve this outcome. However, the following code using
variables and CALCULATE is an alternative approach:

WINE PRICE #2 =

VAR currentwine = Winesales[WINE ID]

VAR priceband = Winesales[PRICE BAND]

RETURN

CALCULATE (VALUES (Prices[PRICE PER CASE]),
Prices[PRICE BAND] = priceband,
Prices[WINE ID] = currentwine)

301

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

There is no discernable difference in the performance of “WINE PRICE #2’) so it is a
personal choice as to which expression you prefer to use.

Finally, let’s give the last word to Alberto Ferrari in his blog on the LOOKUPVALUE
function here: waw.sqlbi.com/articles/introducing-lookupvalue/

“If your search list is made up of only one-column, then LOOKUPVALUE is pretty
much never your best option. Indeed, when searching for a single column, a relationship is
always better: it is faster and provides a clearer structure to the model. When on the other
hand you search for multiple columns, then LOOKUPVALUE comes in handly.

Another scenario where LOOKUPVALUE is preferable over a relationship in the model
is when the condition you set is not a single column, but instead a more complex condition
based on multiple columns. In that case, LOOKUPVALUE provides greater flexibility than
a relationship.”

The TREATAS Function

To understand the requirement for the TREATAS function, we must consider the
following problem that has now arisen in our data model.? We have added a Targets table
to our model that records each salesperson’s yearly targets; see Figure 17-5.

2To follow along with the examples, use the Power BI Desktop file “5 DAX TREATAS.pbix”.

302

http://www.sqlbi.com/articles/introducing-lookupvalue/

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

YEAR |~ | TARGET |~| SALESPERSONID |~ |
2021 $1,458,759
2021 $1,216,703
2021 $1,404,567
2021 51,181,700
2021 $1,611,780
2021 51,284,953
2017 $846,828
2017 51,353,526
2017 $1,424,657
2017 51,350,491
2017 $1,154,295

bR W N Wy N R

217 €1 277 n12

n

Figure 17-5. The Targets table

We would like to compare our salespeople’s yearly sales with their targets, as in
Figure 17-6 where we are looking at sales in 2021.

Target and Total Sales by SALESPERSON S

YEAR EALESPERSON Target Total Sales g1, get @Total Sales e
2021 Abel $1,216,703 $1,358,004 **M 12018
2021 Blanchet $1,404,567 $1,302,675 s15Mm 2019
2021 Charron $1,611,780 $1,334,043 i 2020
2021 Denis $1,181,700 $1,379,104 : W 2021
2021 Leblanc $1,284,953 $1,500,069 s05M
2021 Reyer $1,458,759 $1,389,823 $0.0M

) » =
Total $8,158,462 $8,263,718 po° \ao G@ﬁ oe“

Figure 17-6. Reporting on salespeople’s yearly targets

The Targets table is related to the SalesPeople table (using the SALESPERSON
ID column from both tables) in a many-to-one relationship as shown in Figure 17-7.
Because we will be using the Winesales table and the DateTable, we've also shown how
these are related in the model.

303

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

*
Winesales
SalesPeople o S CASES SOLD
FIRSTNAME CUSTOMER ID
SALESPERSON 1 SALE DATE
[SALESPERSON ID = * SALESPERSON ID
WINE
WINE ID
Collapse “~
- 1 > WINESALES NO
Collapse ~
%k
’ L
| \‘
* 1
Targets o DateTable
| SALESPERSON ID DATEKEY
> TARGET MONTH
YEAR Y MONTH NO.
QiR
YEAR
Collapse ™
Collapse ™~

Figure 17-7. The Targets table is related to the SalesPeople table

We could create a measure to calculate the target values:

Target =
SUM (Targets[TARGET])

and then show the “Target” and “Total Sales” measure in a visual that includes the

SALESPERSON column from the SalesPeople table and the YEAR column. However,

304

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

from which table will we take the YEAR column, from the DateTable or from the Targets

table? It’s here that we meet the problem of how to get both the “Target” value and the

“Total Sales” value in the same visual against each year. We get different calculations

depending on which table the YEAR comes from, as shown in Figure 17-8.

YEAR from the DateTable YEAR from the Targets Table

YEAR iALESPERSON Target Total Sales ~ YEAR iALESPERSON Target Total Sales

2017 Abel $6,006,511 $1,052,606 2017 Abel $1,350,491 $5,265,266
2018 Abel $6,006,511 $497,512 2018 Abel $1,534,256 $5,265,266
2019 Abel $6,006,511 $852,516 2019 Abel $871,904 $5,265,266
2020 Abel $6,006,511 $1,504,628 2020 Abel $1,033,157 $5,265,266
2021 Abel $6,006,511 $1,358,004 2021 Abel $1,216,703 $5,265,266
2017 Blanchet $5,311,862 $562,864 2017 Blanchet $846,828 $4,860,044
2018 Blanchet $5,311,862 $606,390 2018 Blanchet $911,762 $4,860,044
2019 Blanchet $5311,862 $1,185,109 2019 Blanchet $1,168,168 $4,860,044
2020 Blanchet $5,311,862 $1,203,006 2020 Blanchet $980,537 $4,860,044
2021 Blanchet $5311,862 $1,302,675 2021 Blanchet $1,404,567 $4,860,044
2017 Charron $6,418,704 $872,902 2017 Charron $1,424,657 $5,147,366
2018 Charron $6,418,704 $995,058 2018 Charron $1,242,696 $5,147,366
2019 Charron $6,418,704 $792,385 2019 Charron $1,029,944 $5,147,366
Total $36,381,148 $29,732,482 * Total $36,381,148 $29,732,482

Figure 17-8. Taking the YEAR column from either the DateTable or the Targets

table won’t work

If the YEAR column comes from the DateTable, the “Total Sales” measure is

correct but not the “Target” measure. If the YEAR column comes from the Target table,

the targets are correct but not the total sales. If we now consider our data model in

Figure 17-9, we can identify the problem.

305

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

*
Winesales o
= ol
i w . > CASESSOLD
FIRSTNAME CUSTOMER ID
SALESPERSON 1 SALE DATE
-
SALESPERSON 1D * % SALESPERSONID -
WINE
WINE ID
Collapse ™~

> WINESALES NO

Collapse ~

-
*

P

—]

*k
Targets o - DateTable o
SALESPERSON ID DATEKEY
S TARGET MONTH
YEAR > MONTH NO.
QTR
YEAR
Collapse <~
Collapse ™~

Figure 17-9. Filtering YEAR in the DateTable filters the fact table, but filtering
YEAR in the Targets table does not filter any other tables

If we take YEAR from the DateTable, the YEAR filter is propagated to the Winesales
fact table filtering “Total Sales” for each year (shown by the tick), but this filter is not
propagated onward to the Targets table via the SalesPeople table (shown by the crosses)
to filter the targets in each year. If we take YEAR from the Targets table, this filters the
YEAR in the Targets table but won’t propagate to the Winesales table to filter sales
(shown by the crosses).

306

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

One solution would be to create a relationship between the YEAR field in the Targets
table and the YEAR field in the DateTable. If we do this, filtering the YEAR in the Targets
table would filter the YEAR in the DateTable, and this would propagate to the fact table.

The issue, however, is that in both the DateTable and the Targets table, values in
the YEAR column are duplicated, so if we attempt to make this relationship, we will
generate a many-to-many relationship prompting this warning message, as shown in
Figure 17-10.

1 This relationship has cardinality Many-Many. This should only be used if it is expected that neither column (Year
* and Year) contains unique values, and that the significantly different behavior of Many-many relationships is
understood. Learn more

Figure 17-10. You will get a warning if you attempt to create a many-to-many
relationship

We are told that such a relationship will have a “significantly different behavior”
and it should not be used unless you understand the consequences of your actions.
Be that as it may, this would resolve the problem because it would set a bidirectional
filter. However, now is the time to take on board the conclusions at which we arrived
in Chapter 13 regarding bidirectional filtering. Any changes to your data model that
push it further away from the star schema structure are never to be recommended.
Besides, there is another, much simpler approach, and that is to resolve the problem
using DAX and the TREATAS function. This function will take the result of a table
expression and use it to filter a column (or columns) from an unrelated table
and this filter expression can be used in the filter argument of CALCULATE.

TREATAS has the following syntax:

= TREATAS (table expression , columnl, column2 etc.)

table expression is any expression that returns a table.
columnl, column2 etc. is one or more existing columns that must match the
columns in the table expression that will receive the filter from the table expression.

We can now create this measure:

Target #2 =
CALCULATE (
SUM (Targets[TARGET]),
TREATAS (VALUES (DateTable[YEAR]), Targets[YEAR])

307

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

Notice the VALUES function used as a table expression to create a one-column table
(often with only one row) containing the YEAR value from the DateTable in the current
filter context, which is “2017” in the first evaluation. This one-row, one-column table is
used to filter the YEAR column in the Targets table to equal “2017” and this is the filter
used by CALCULATE. In Figure 17-11, you can see how this plays out in memory. The
virtual one-column, one-row table (or multirow table in the evaluation of the Total row)
containing the YEAR from the DateTable in the current filter context is used to filter the
YEAR column in the Targets table. It's important therefore that we use the YEAR column
from the DateTable in the visual.

308

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

%
Winesales o
= o
i . 2 CASESSOLD
FIRSTNAME CUSTOMER 1D
SALESPERSON 1 SALE DATE
e
SALESPERSON 1D %* SALESPERSON ID o
WINE
WINE ID
Collapse ™~

> WINESALES NO

Collapse ~

»

*
Targets /

SALESPERSON |
> TARGET
YEAR
YEAR
Collapse
Collapse ™~

Figure 17-11. The evaluation of the TREATAS function

1. The first argument in TREATAS uses the VALUES function to
create a virtual table containing the YEAR column from the
DateTable in the current filter context, for example, “2017”.

2. The second argument in TREATAS defines the YEAR column in
the Targets table as the column to receive the filter from the virtual
table generated by VALUES.

309

CHAPTER 17 VIRTUAL RELATIONSHIPS: THE LOOKUPVALUE AND TREATAS FUNCTIONS

When putting the “Target #2” measure into a table visual, alongside the YEAR
column from the DateTable, we get the result we've been looking for; see Figure 17-12.

YEAR iALESPERSON Target #2 Total Sales

2017 Abel $1,350,491 $1,052,606
2018 Abel $1,534,256 $497,512
2019 Abel $871,904 $852,516
2020 Abel $1,033,157 $1,504,628
2021 Abel $1,216,703 $1,358,004
2017 Blanchet $846,828 $562,864
2018 Blanchet $911,762 $606,390
2019 Blanchet $1,168,168 $1,185,109
2020 Blanchet $980,537 $1,203,006
2021 Blanchet $1,404,567 $1,302,675
2017 Charron $1,424,657 $872,902
2018 Charron $1,242,696 $995,058
2019 Charron $1,029,944 $792,385
2020 Charron $1.109627 $1152.978
Total $36,381,148 $29,732,482

Figure 17-12. Using TREATAS returns the correct result for the target value

In this chapter, you have learned to manage anomalies in the data model by
implementing virtual relationships using DAX. This is always a better strategy than
using bidirectional filtering and many-to-many relationships. Therefore, you need no
longer be daunted by the fact that you can’t create the recommended many-to-one
relationships in your model. Be aware, however, that virtual relationships using DAX are
never better than “real” many-to-one relationships and should only be used where no
other option is possible.

310

CHAPTER 18

Table Expansion

In this chapter, you will learn how to reference expanded tables in your DAX code and
explore how this knowledge can help you manage the limitations imposed on you by the
structure of your tables within the star schema. The concept of table expansion is the
final piece in the jigsaw of understanding how DAX works.! This implies there is some
precedence in the importance of DAX concepts. However, just as in a jigsaw, it’s only
when all the pieces have been fitted do you see the whole picture, and we can at last
reveal to you the truth about how DAX works, and any misconceptions you currently
hold can now be dispelled.

The starting point in understanding table expansion is to remind you of the DAX
verity; filters only propagate from the one side of a relationship to the many, unless
you use the CROSSFILTER function to programmatically change the filter direction.
Within this verity, you have also probably assumed, although it has never been stated
unequivocally, that relationships between tables use a “primary” and a “foreign” key
to perform a “lookup” from the dimension table to the fact table to enable filtering. For
example, a filter on the Wines dimension will use the WINE ID column in the Wines
table to “lookup” the same value in the WINE ID column of the Winesales table. This is
probably how you think filter propagation works. It’s not that this theory is wrong; it’s just
that it’s not complete, and it’s this misunderstanding that we will resolve in this chapter.

Before we move forward, however, we must take a closer look at the data model in
the companion file for this chapter, “6 DAX Expanded Tables.pbix” You will notice there
is an additional table related to the Regions table called Region Group, and this table will
become important in the following sections; see Figure 18-1.

To follow along with the examples, use the Power BI Desktop file “6 DAX Expanded Tables.pbix”.

311
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_18

https://doi.org/10.1007/978-1-4842-8188-8_18

CHAPTER 18 TABLE EXPANSION

SalesPeople S
FIRSTRAML
1 SALESPERSON
SALESPERSON ID
—
[Collapse ~
*
[E] winesales B
I castssow B customers o
CUSTOMER ID
SALE DATE Ay
SALESPERSON 1D 1, Soumley
a County
i 1 customerio
- 3 I VANESALES MO :
a
s o CUSTOMER NAME
COST PRCE I NO.OF STORES
REGION W0
PRICE PER CASE Cellapse ~
SUPPLIER * * Collapse ~
TVFE . 1]:
WINE : - 2 -
WINE COUNTRY 4 [B] Region Graups e
WINE 12 1 1 REGION GROUP
Coliapse ~ 1 1 REGION GROUP 1D
— [8] Regions ol -
DateTable @l s ‘R S
REGION
DATEKEY
o e REGION GROUP 1D 2
E REGION 10
MONTH NO.
artk Collapie
YEAR

Collapse ~

Figure 18-1. Please note there is an additional table, Region Group, in the data
model that is related to Regions

The importance of understanding table expansion lies in the fact that we can, at last,
explain to you how filters in a data model really work and not an approximation of how
they work. Armed with this knowledge, you will learn how to leverage table expansion
to resolve the inherent problem in the data model of how to “reach” dimension and
snowflake tables to perform aggregations at the larger grain. We will also be explaining
why using functions such as RELATED and CROSSFILTER that can do a similar job is not
always fit for purpose.

However, prior to tackling the challenging ideas behind table expansion, we must
first revisit the knowledge already gained regarding the context in which filters are
evaluated. If we do this, you will discover that there are some details behind filter
propagation that may currently be eluding you.

312

CHAPTER 18 TABLE EXPANSION

Revisiting Filters

Despite rigorous explanations in this book, there remain some aspects of filters
generated by DAX that remain nonsensical. Consider these two questions:

1. How s it possible that you can filter the fact table by using values
in dimensions that don’t exist in the fact table?

2. How can the ALL function inside CALCULATE when it’s applied to
the fact table remove filters that aren’t placed on the fact table?

Let’s start by considering the first of these incongruities; we place filters on columns
in dimensions that don’t exist in the fact table. For this, we need to revisit what we
already know regarding column filters.

Column Filters Revisited

Throughout this book, you have authored measures using CALCULATE similar to this:

Abel's Cases =
CALCULATE ([Total Cases], Salespeople[SALESPERSON] = "abel"

)

Did you ever stop to ask: How can this measure cross-filter the Winesales table
using the SALESPERSON column in the SalesPeople dimension, when Winesales only
contains the SALESPERSON ID? To answer this question, we must delve deeper into the
nature of column filters.

In Chapter 7, you learned that column filters are more efficient than table filters
and should always be used in preference where possible. However, at that stage in your
knowledge of DAX, we weren'’t able to tell you the complete story of column filters and
therefore gave you only an approximation of how column filters work.

Now in this chapter, we do not hide anything from you and state this fact: in DAX,
all filters are table filters. This statement may come as a surprise to you considering that
we took such pains to distinguish between column filters and table filters in that earlier
chapter. Now we are saying that column filters are table filters too!

The complete explanation as to why column filters are more efficient than table
filters is not that you are placing a filter directly on a column, but that the virtual table
generated by a column filter is more efficient than the virtual table generated by an

313

CHAPTER 18 TABLE EXPANSION

explicit filter expression. This is quite a challenging concept, and so we must again dig
more deeply.

Let’s start by considering this measure that generates a filter on the SALESPERSON
column of the SalesPeople table:

Abel's Cases =
CALCULATE ([Total Cases], SalesPeople[SALESPERSON] = "abel")

In the evaluation of this measure, the DAX engine in memory converts this column
filter to this expression:

Abel's Cases Real =
CALCULATE (
[Total Cases],
FILTER (ALL (SalesPeople[SALESPERSON]),
SalesPeople[SALESPERSON] = "abel")

If we look at this code, we can see that DAX, using the ALL function, generates a one-
column table comprising a distinct list of salespeople’s names. This table is then iterated
by FILTER to find the value that equates to “Abel’; and this filtered table is then used to
filter the Winesales table accordingly; see Figure 18-2.

314

CHAPTER 18 TABLE EXPANSION

Salespeople o
FIRSTNAME
SALESPERSON 1 x »)
SALESPERSON ID ¥
Winesales o)
Collapse

7 (CASES SOLD
CUSTOMER ID

r——————-

—— . SALE DATE
In Memory Salespeople 7 : | Apaat
| SALESPERSON ID oy

I SALESPERSON WINE
WINE ID

— - 3 WINESALES NO
== == == | SALESPERSON [~ -
e el B Noof sales

] SALESPERS()

Collapse ~
* %k
Blanchet ‘ ‘

| Leblanc

| Reyer
| Charron

| Denis

Figure 18-2. The “real” evaluation of the “Abel’s Cases Real” measure

1. The DAX engine uses FILTER to generate a one-column table
containing the distinct values in the SALESPERSON column.
FILTER iterates this table to filter “Abel”.

2. The filtered virtual table generated by FILTER is used to filter the
Winesales table.

Let’s look at another example of a column filter by exploring the evaluation of this

measure:

Cases GT 350 =
CALCULATE ([Total Cases], Winesales[CASES SOLD] > 350)

DAX converts this filter to the following:

Cases GT 350 Real =
CALCULATE (

315

CHAPTER 18 TABLE EXPANSION

[Total Cases],
FILTER (ALL (Winesales[CASES SOLD]),
Winesales[CASES SOLD] > 350)

This code generates a virtual table containing a distinct list of the cases sold values
in the Winesales table. In our data, this table will therefore contain 409 rows for FILTER
to iterate. We can see how this expression is always going to produce a more efficient
evaluation than using a table filter as in this measure:

Cases GT 350 =
CALCULATE (
[Total Cases],
FILTER (Winesales, Winesales[CASES SOLD] > 350)

Here, FILTER must iterate all the rows in the fact table, which will be 2,207 iterations
of our Winesales fact table (the fact table often contains millions of rows).

At this juncture, we can also revisit the “Sales for Red or French #1” measure that we
authored in Chapters 6 and 7:

Sales for Red or French #1=
CALCULATE (
[Total Sales],
Wines[TYPE] = "red"
|| Wines[WINE COUNTRY] = "France"

We noticed that the problem with this measure was that if there were filters on either
the TYPE or the WINECOUNTRY column, the filter didn’t work (refer to Figure 6-10). We
can, at last, explain why. It’s because DAX converts the measure internally to this:

Sales for Red or French #1=
CALCULATE (
[Total Sales],
ALL (Wines[TYPE], Wines[WINE COUNTRY]),
FILTER(Wines,
Wines[TYPE] = "red"

316

CHAPTER 18 TABLE EXPANSION

|| Wines[WINE COUNTRY] = "France"

Therefore, filters are always removed from the TYPE or WINECOUNTRY column
because of the presence of ALL.

Now that you understand that column filters are converted to table filters and that all
filters are table filters, we seem no further on in answering the question we posed before.
In the “Abel’s Cases Real” measure, we are filtering the SALESPERSON column in the
SalesPeople table, but the Winesales table only contains the SALESPERSON ID column,
so how can the filter propagate from the SalesPeople table to the Winesales table? We’ll
leave you hanging onto this thought while we explore the second example of nonsensical
filters. How can the ALL function applied to the fact table remove filters that aren’t
placed on the fact table?

The ALL Function Revisited

In Figure 18-3, on the evaluation of the “Total Cases” measure, we know filters have been
placed on the WINE and SALESPERSON columns, propagating filters from the Wines
and the SalesPeople dimensions to the Winesales fact table, respectively. We've then
used the “All Winesales” measure to remove these filters:

All Winesales =
CALCULATE ([Total Cases], ALL (Winesales))

317

CHAPTER 18 TABLE EXPANSION

WINE Total Cases ALL Winesales SALESPERSON

Bordeaux 8,531 123204 W Abel
Blanchet

Champagne 10,993 423,224 CHatGH

Chardonnay 8,099 423,224 Bénis

Chenin Blanc 2,769 423,224 LakiliiE

Chianti 3,699 423,224 Reyer

Grenache 6,123 423,224

Lambrusco 423,224

Malbec 4738 423,224

Merlot 4,520 423,224

Piesporter 2,064 423,224

Pinot Grigio 4,211 423,224

Rioja 5,669 423,224

Sauvignon Blanc 5318 423,224

Shiraz 3,137 423,224

Total 69,871 423,224

Figure 18-3. Filters have been placed on the WINE and SALESPERSON columns,
not on the fact table. The ALL function remouves filters from the fact table

We learned in Chapter 8 that the ALL function, when nested inside CALCULATE,
removes filters. But there are no filters on the Winesales fact table to remove, only cross-
filters. The filters have been placed on columns in the dimensions, so how can ALL
remove filters from the Winesales table when there are no filters to remove?

Expanded Tables Explained

To answer these probing questions and to truly grasp the behaviors of DAX filters,

you must understand table expansion. When a measure is evaluated, many-to-one
relationships allow table expansion to take place. Table expansion results in the creation
of virtual tables by the DAX engine that include the columns of the base table and then
expand into all the columns from related tables on the one side of the relationship. The
DAX engine then uses the expanded table to group by values in the expanded table’s
columns and apply filters accordingly. Therefore, every table has a matching expanded
version of itself that is generated in memory that contains all its own columns plus any

318

CHAPTER 18 TABLE EXPANSION

columns from tables that are related to it, which are on the one side of the relationship
either directly or indirectly. Relationships only exist to generate expanded tables.
Therefore, we can now talk about both base tables and expanded tables in our
data model. Base tables are just our tables. Expanded tables are our base tables that
also contain all the columns from tables that are related to them. In our model, for
example, we have three tables that will expand: Winesales, Customers, and Regions. The
Winesales expanded table will contain all the columns from all the tables in the model.
The Customers expanded table will include all the columns from the Regions dimension
and the Region Groups dimension. The Regions expanded table will include all the
columns from the Region Groups dimension. In Figure 18-4, we have redesigned our
data model to show what it might look like in memory on the evaluation of a measure.
Notice there are no relationships between the tables because relationships only exist to
generate expanded tables.

319

CHAPTER 18 TABLE EXPANSION

E DateTable

9

[DaTekeY
MONTH

3 MONTH NO.
amr
YEAR

Collapse ~

E Salespecple

oo

FIRSTNAME
SALESPERSON
T SALESPERSON ID

Collapse ~

Data Model Showing Expanded and Base Tables

@Winualts ool
3 1CASESSOLD
Z 1 CUSTOMERID
[T 1 SALE DATE
T 1SALESPERSON ID
I TWINEID E Customers o)
T IWINESALESNO
."za,nT,-"-"-—'i 1 Country
| 2cusoMeRID J | T 1customeRiD
| 2CUSTOMER NAME 1 1 CUSTOMER NAME
1 2no.of stores 1 |Z 1wo.orstores
1 2recioni I smegono
.................................. s e b g
: 3 REGION | 2R
i 3 REGION GROUP ID 1] 2resionGrouPD
Jo BREOND 11 2meono I
| “RecoNGRou 01" 3 Region GRolp 1
4 REGICN GROUP ID Il recioncroveio 1
!Eﬂsmnm e e e e e e e
1 j Colapse
] sMoNH 1
] £ 5moNTHNG. 1
: . 1 [E] wines B
I SYEAR 1
'S 6 costerice I | T costerce
s 6romcepercase I | T PRICEPERCASE
: 6 SUPPLIER 1 SUPPLIER
T | e
| svme 1 WINE
l 6 WINE COUNTRY : WINE COUNTRY
)2 6WINEID I T WINEID
l T FAIRSTNAME l Collapse ~
| 7SALESPERSON 1
| & 7saespersoniD 1

Collapse ~

Expanded table E
Base table |

‘ [BE] Regions

D)

1 REGION
1 REGION GROUP ID

| —— ———— -
I ZREGION GROUP
I 2REGIONGROUPID

| Collapse ~

: [E] Region Groups &

REGION GROUP
REGION GROUP ID

i Collapse A~

Figure 18-4. The Winesales, Customers, and Regions tables all expand on the
evaluation of measures

Once a filter is applied to a column, all the expanded tables containing that column

are also filtered. Consider Figure 18-5, which shows the virtual expanded tables and base
tables in Model view. We're looking at what happens when we filter the SALESPERSON

column from the SalesPeople base table or the REGION GROUP column from the Region
Groups base table.

320

DateTable

1 oatekey
MONTH

¥ MONTH NO.
QTR
YEAR

Collapse ~

|8 | Salespeople

u u FETHAME o
w SALESPERSON

- EEEEEAER
3 “SALESPLRSON I
Collapse ~

CHAPTER 18 TABLE EXPANSION

Data Model Showmg Expanded and Base Tables

o

. Winesales

7 1CASESSOLD

Z 1 CUSTOMERID
1 SALE DATE

T 1 SALESPERSON ID
5 1WINEID

T 1 WINESALES NO
— -
2 CUSTOMER 1D

2 CUSTOMER NAME

2 NO. OF STORES
BT o) e e
3 REGION

3 REGION GROUP ID

ll;F‘qWQDclnulln_llIl
. I. 4 REGION GROUP

!Ilihﬁmmhllll-lll
|E SDATEKEY

] SMONTH

] T 5MONIHNO.

1 sor

13 sve
e
1 Z 6 PRICE PER CASE

6 SUPPLIER

6 TYPE

6 WINE

6 WINE COUNTRY

9

-

Rl
UIUUH‘IIJIFESINW- II.@
| 7smEsPeRsON =

IIIII'r?M{PMd‘III-

aﬂm———————ﬂ

|

Collapse ~

1
1
L
1
P

Expanded table |________|

Base table
ECustnmels Ly
1 Counlry
T 1 CUSTOMER ID
1 CUSTOMER NAME
Z 1 NO. OF STORES E Regions o
1 REGICN ID
- ey
2 REGION 1 REGION
2 REGION GROUP ID 1 REGION GROUP ID Region Groups
IIZJ;:GLO#FI.IIIIII-I* y“l"n'ccﬂa""‘ulllllllllllll%
3 REGION GROUP 2 REGION GROUP REGION GROUP -
" EIRASGRARDT TR TR T CAEAONGRALPB N T R R R S RAMNGROS BT "
---------- L8 ¢ & R 8 § B} '}
Collapge-"- Callapse #~ Collapse ™~
Ew:nes o
2 COSTPRICE

T PRICE PER CASE
SUPPLIER
TYFE
WINE
WINE COUNTRY

T OWINEID

Collapse ~

Figure 18-5. How tables are expanded in the data model

Filtering SALESPERSON from the SalesPeople base table filters
the Winesales expanded table.

Filtering REGION GROUP from the Region Groups base table
filters the Regions expanded table, the Customers expanded table,

and the Winesales expanded table.

So now we can answer the first of the questions we posed. How can a value in
the SALESPERSON column in the SalesPeople dimension filter the Winesales fact
table when that value doesn’t exist in the Winesales table? Now you understand that

it does exist in the Winesales table. It exists in the Winesales expanded table. When
we place a filter on the SALESPERSON column, both the SalesPeople base table and
the Winesales expanded table are filtered accordingly. Another example would be a

321

CHAPTER 18 TABLE EXPANSION

filter on the REGION GROUP column in the Region Groups base table. Notice that this
filters the REGION GROUP column in the Regions, the Customers, and the Winesales
expanded tables.

Relationships only exist to expand tables; they are not used to filter tables. Any
reference to a table in a DAX expression is always a reference to the expanded table,
where applicable.

Now let’s answer the second question. How can filters be removed from the
Winesales table when it has no direct filters on it? When we use ALL inside CALCULATE
to remove filters from a table, it removes filters from the expanded table, if applicable.
This includes any columns from dimensions related to the expanded table and therefore
includes columns where the filter was originally generated. So the expression “ALL (
Winesales)” will remove any filters from any of the base tables related to Winesales,
which includes the entire data model.

Understanding table expansion means we can now clarify certain behaviors in DAX
that we’ve explored but at the time have not been able to fully explain. For example, we
can now truly describe how the RELATED function works.

RELATED doesn’t “lookup” values in related tables but instead allows you to find
columns that already exist in the expanded table. When you use RELATED on the fact
table, for instance, you are shown all the columns from the expanded fact table in the
IntelliSense list; see Figure 18-6.

1 Column = RELATED(|
B8 Customers B
WINESALES NO [~] sAL B Customers[Area]
2219 @ Customers[CUSTOMER ID]
2219 [E Customers[CUSTOMER NAME
2219 iz} Customer'sECountr‘y]] SOl from e
&) customerns oy > expanded Winesales
i table
[E Customers[NO. OF STORES]
i [E Customers[REGION ID]
2208 E DateTable
2182 [DateTable[DATEKEY] =
22132 FE |}:|tq ab[nlM{]MlH [l |

Figure 18-6. The RELATED function allows you to reference columns from
expanded tables

322

CHAPTER 18 TABLE EXPANSION

Like RELATED, the ALLEXCEPT and SUMMARIZE functions also allow you to use
the columns in expanded tables. When constructing an expression using these functions,
if you reference a fact table or a snowflake dimension, you are again presented with all
the columns from the expanded table in the IntelliSense list; see Figure 18-7.

1 Table = SUMMARIZE(Winesales,
Customers o
Customers[Area]

Customers[CUSTOMER ID]

Customers[CUSTOMER NAME]
Customers[Country] Columns from the

Customers[County] = cxpanded Winesales
Customers[NO. OF STORES] table
Customers[REGION ID]
DateTable
DateTable[DATEKEY]

HEEEEDEREEEH

e

%

Figure 18-7. SUMMARIZE will also reference expanded tables

You may be thinking that knowledge of table expansion is purely theoretical. It
explains certain behaviors regarding filter propagation but doesn’t lead you forward in
constructing more complex DAX expressions. Now is the time to change that perception
of table expansion and to learn how to put your knowledge of expanded tables to
beneficial use.

Leveraging Expanded Tables

For the most part, the reason you will use table expansion in your expressions is to
“reach” dimensions to perform aggregations on columns within them. You may think
that we’ve already covered this scenario when we looked at the CROSSFILTER function
that enabled you to reverse the direction of filter propagation. The RELATED function
also allows you to pull values from dimensions and snowflake tables into the fact table
to enable such aggregations. However, both these approaches are not best practices for
reasons we will elucidate as you read on.

323

CHAPTER 18 TABLE EXPANSION

“Reaching” Dimensions

Let’s see how table expansion can allow you to break free from the limitations imposed
on you by star and snowflake schemas. For this, as we've often done before, we’ll work
through a scenario.

You have been asked to calculate in how many different regions you've sold each
wine. The Regions table is a snowflake dimension. It is related to the Customers table
that’s in turn related to Winesales. Currently, the only way you can deduce in which
region a transaction was made is through the Customers table; see Figure 18-8.

Customers o
— Regions ot
REGION
1
:
k—J
Fllapse
Winesales o

Q CASES SOLD [
CUSTOMER ID

L) =k
SALE DATE *
* SALESPERSON ID
WINE ID

> WINESALES NO

Collapse <~

>k
|

Figure 18-8. The region in which a transaction was made can only be found
through the Customers table

324

CHAPTER 18 TABLE EXPANSION

You now know, however, that all the columns in the Regions table are in the
expanded Winesales table. Therefore, one approach would be to create a calculated
column in the Winesales base table using RELATED to find the REGION column from
the expanded Winesales table as shown in Figure 18-9.

1 REGION = RELATED(Regions[REGION]))

| WINESALES NO [~] SALESPERSONID [~] cusTOMERID [~] WINEID [~] casessolp [~| " "REGION" | - |
2219 6 25 5 168 India
2219 6 25 5 168 India
2219 6 25 5 168 India
2216 6 36 7 123 Nigeria
2209 6 80 13 115 Argentina
2208 6 24 10 331 United States
2182 6 7 11 150 United States
2212 6 11 175 India
2153 6 5 10 313 Nigeria
2150 6 29 4 236 China

Figure 18-9. You can use RELATED in the fact table to show the region name

You could then write the measure “Distinct Regions” using DISTINCTCOUNT on this
calculated column, as shown in the following:

Distinct Regions =
DISTINCTCOUNT (Winesales[REGION])

However, all that’s happening here is that you are accessing the REGION column in
the expanded Winesales table. You also know that calculated columns should be avoided
if possible. There is a better way to calculate the distinct number of regions, and that is
to use CALCULATE with a table filter that will filter the Regions table. To do this, we first
must remind ourselves how we construct the filter arguments in CALCULATE.

You've learned that the filter arguments inside CALCULATE can contain a table
expression. But the filter argument doesn’t have to be a table expression; it can just be a
reference to a table. If you reference a table in the filter argument of CALCULATE, this
will always be the expanded table, where applicable.

325

CHAPTER 18 TABLE EXPANSION

Returning to calculating the number of different regions in which you've sold your wines,
you can use the expanded Winesales table that contains the REGION column as the filter
for CALCULATE. If you do this, you can then use a measure to count the rows of the Regions
table that have been filtered via the Winesales expanded table. This would be the measure:

Distinct Regions =
CALCULATE (COUNTROWS (Regions), Winesales)

You must note the simplicity of this expression but the complexity of the concept that
lies behind it and also remember something we stated earlier; with DAX, the devil is in
the detail.

We can see the evaluation of this measure in Figure 18-10.

WINE Distinct Regions
Bordeaux 18
Champagne 19
Chardonnay 19
Chenin Blanc 19
Chianti 18
Grenache 17
Malbec 20
Merlot 18
Piesporter 18
Pinot Grigio 17
Rioja 17
Sauvignon Blanc 20
Shiraz 18
Total 20

Figure 18-10. The evaluation of “Distinct Regions” using the expanded
Winesales table

The “Distinct Regions” measure uses the expanded Winesales table in the filter
argument of CALCULATE to filter the Regions base table. In the evaluation of this
measure, we know that the filter on the WINE column in the Wines table will filter

326

CHAPTER 18 TABLE EXPANSION

the WINE column in the expanded Winesales table. We also know that the expanded
Winesales table contains all the columns in the Regions table. Therefore, the regions
where we've sold each wine in the current filter context will also be filtered. The
expanded Winesales table, filtered for each wine in the current filter context, is used

to filter the Regions table accordingly. The Regions table now contains only regions
where the wine in the current filter context was sold and the rows of the filtered Regions
dimension are counted; see Figure 18-11.

Data Model Showing Expanded and Base Tables

EWinmles ot
P —— - 1
1 ES SOLD
= T Expanded table |_ i
Z 1 CUSTOMER ID —————— -
1 SALE DATE Base table
¥ 1 SALESPERSOM ID
I 1wANEID ECuslamers o
T 1 WINESALES NO
—————— —-—— -y
1 2 Country 1 Country
1 2asioverio Z 1 CUSTOMERID
1 2cusiomeR MAME 1 1 CUSTOMER NAME
I 2no.0rstoRES | | I 1NO.0FSTORES 5] Regions &
a A ARELREFANERNRNN! | LR R NN NN ENNNNNNN,
1, aneaum b a3 2 By ar arana va ae A
l: 3 REGION || 2 REGICN 1 REGION :
I: 3 REGION GROUP ID ll 2 REGICN GROUP ID I 1 REGION GROUP ID : E Rnglon Gfoups -
:- 3 REGION ID 1 2 REGION I 7 1REGIOMID 1
JEFCECETTEFCETIETITETAE EEAEEENEEEEEEEEEREN e R SR S S o
B oaterable @ : I 4 REGION GROUP 3 REGION GROUP |r' 2 REGION GROUP] REGION GROUP
i 4 REGIOM GROUP ID 11 skeconcroveo 11 2recionGROUPID 1 REGION GROUP ID
O R i e e e e e]
@ oaTexey | (@ soaexer | Colspsen Collapse A~ Collapse ~
MONTH l 5 MONTH l
T MONTH NO. | £ 5SMONTHNO. 1
an ' Sam l Wines o
vers RS ciiiiisiiiie)
T IS scosterice | | = costemce
- lZ 6 PRICE PER CASE 1 | £ PRICEPERCASE
: 6 SUPPLIER 1 SUPPLI
1259 %saancansanranas I....W.,
L
6 WINE WINE =
:------------------- EEEm L]
I
2 6 WINE COUNTRY Wil country
Ehlespeopl’t L
|.L 6wmnen 1 I WINEID
FIRSTNAME | 7FRSTNAME | Colapsen
SALESPERSON | 7 SALESPERSON 1
T SALESPERSOM ID I & 7saLespersoniD 1
Cr F F ¥ F & 7 ¥ §F J7 T}]
Collapse ~ Callapse <~

Figure 18-11. Base tables and expanded tables used in filter propagation

1. The WINE column in the Wines table filters the WINE column in
the expanded Winesales table.

2. The expanded Winesales table contains all the columns in the
Regions table. The filter in the expanded Winesales fact table is
used to filter the Regions table whose rows are then counted.

327

CHAPTER 18 TABLE EXPANSION

What we can conclude from this measure is that with CALCULATE, you can use an
expanded table to filter a base table.

Let’s look at another example of using expanded tables in our code but this time to
author a more challenging calculation. We are going to repeat the scenario before, in
that you've been asked to find the number of different regions where you've sold wines,
but this time, you must consider only high-volume regions. You've identified that high-
volume regions are any regions where transactions of CASES SOLD are greater than 325.
To do this calculation, rather than using the entire expanded Winesales table as in the
“Distinct Regions” expression, you can use FILTER to filter the expanded Winesales table
(highlighted):

Distinct High Volume Regions=
CALCULATE (
COUNTROWS (Regions),
FILTER (Winesales, Winesales[CASES SOLD] »325)

When you put this measure into a Table visual, you will find that for “Bordeaux’,
there are 18 regions where there are transactions of CASES SOLD greater than 325 but
when selling “Grenache’, there are only 7 regions; see Figure 18-12.

WINE Distinct High
Volume Regions
Bordeaux 18
Champagne 18
Grenache 7
Malbec 1
Sauvignon Blanc 15
Total 20

Figure 18-12. The “Distinct High Volume Regions” measure evaluated in a
Table visual

If we examine the evaluation of the “Distinct High Volume Regions” measure, in
Figure 18-13, you can see that it varies from the “Distinct Regions” measure only in the
additional step where the Winesales base table is filtered. The measure filters the WINE

328

CHAPTER 18 TABLE EXPANSION

column in the Wines dimension and also filters the expanded Winesales table. The
FILTER function further filters the Winesales base table to rows where CASES SOLD is
greater than 325. The columns from the Regions table are in the expanded Winesales

table and so are also filtered. Counting the number of rows in the Regions table reflects

only the regions filtered in the expanded Winesales table.

[B] pateTable & 3 |

B oatekey
MONTH

T MONTH NO.
ak
YEAR

Collapse ~

ESElespenple Gl 1

FIRSTNAME
SALESPERSON
T SALESPERSOM ID

Collapse

Data Model Showing Expanded and Base Tables

WinEsaTes o .
-IIIIIIIIII.
53 1casessop

hsensasnes s Expanded tablel_ _ _ _ __ __ i
G0 1 SALE DATE Base table
T 1SALESPERSON ID
Z TWINEID Customers Ll
T 1 WINESALES NO
l--:amm--------l 1 Country
] 2CusTOMERID 1 Z 1CUSTOMER ID
| 2 cusToMer MAME 1 1 CUSTOMER NAME
1 2no.oFsiores I | T 1no.cFsTORE 5] Regions g
| o RV n 0.0 m 0.0 m 0.0 m 0 bbb By ar s sa arali sesssssssasasasal
I- 3 REGION 1 2 REGION 1REGION 1
- = i __
l: 3 REGION GROUP ID I] zrecionGaourin 1 REGION GROUP ID u Region Groups 7@ :
= 3REGIONID 1 } 2 REGION 1D ¥ 1REGIONID 3
Qe S0ESIERIEIVEFVEXTEPRAARERSLAA NS AN ANES e ey
4 REGION GROUP 3 REGION GROUP ' 2 REGION GROUP l REGION GROUP
4 REGION GROUP ID 11 srecioncroveo 11 2reGionGROUPID 1 REGION GROUP ID
| @ s oavexey Collapse ~ Collapse ~ Collapse A~

l 5 MONTH
| I 5MONTHNO.
I som
I3 svear
IS scostemce
T 6 PRICE PER CASE
& SUPPLIER

l:l‘Wlllllllllllllll

m GWINE

¥ COST PRICE
¥ PRICE PER CASE

SUPFLIR
I. - @

WINE =

n
l-lz\,ﬂ:li-...-....EIIIGJN{COUNIH\’
]I 6WINEID i I WINEID
1 T FRSTNAME | Collapse~
l 7 SALESPERSOM l
1 & 7saesperson i 1
[———

Collapse

Figure 18-13. Base tables and expanded tables used in filter propagation

1. The WINE column filters the WINE column in the expanded
Winesales table.

2. The CASES SOLD column in the Winesales base table is filtered
for greater than 325.

3. The expanded Winesales table contains all the columns in the

Regions table. The filter in the expanded Winesales fact table is

used to filter the Regions table.

329

CHAPTER 18 TABLE EXPANSION

Knowledge of table expansion also helps to clarify a premise that we have explored
a number of times throughout this book, and that is the difference between table filters
and column filters. Now that we know that table filters will often involve expanded
tables, let’s take the measure we have just authored and compare it with another
measure that looks almost identical. However, one uses a table filter, using an expanded
table, and the other uses a column filter, as shown in the following:

Distinct High Volume Regions Table Filter =
CALCULATE (
COUNTROWS (Regions),
FILTER (Winesales, Winesales[CASES SOLD] > 325)

)

Distinct High Volume Regions Column Filter =
CALCULATE (
COUNTROWS (Regions), Winesales[CASES SOLD] > 325)

You can see in Figure 18-14 that we get different values being returned by similar
measures. The reason for this is that the first measure filters the Winesales expanded
table and the second measure filters only the CASES SOLD column in the Winesales
base table.

330

CHAPTER 18 TABLE EXPANSION

WINE Distinct High Distinct High

Volume Regions Volume Regions

Table Filter Column Filter

v
Bordeaux 18 21
Champagne 18 21
Sauvighon Blanc 15 &
Grenache i 21
Malbec 1 21
Chardonnay 21
Chenin Blanc 21
Chianti 21
Lambrusco 21
Merlot 21
Diackartar i X |
Total 20 21

Figure 18-14. Similar measures can return different results

The correct calculation, “Distinct High Volume Regions Table Filter’, uses the table
filter generated by the FILTER function that filters the expanded Winesales table, filtering
the CASES SOLD column. This also filters the regions in the expanded table, and this is
used to filter the Regions dimension. This measure then counts the rows in the Regions
base table that have been filtered by the Winesales expanded table; see Figure 18-13.

The measure “Distinct High Volume Regions Column Filter” generates a filter only
on the CASES SOLD column in the Winesales base table, and no filters are propagated in
the model. It, therefore, counts all the rows in the Regions table irrespective of any filters
in the Winesales table; see Figure 18-15.

331

CHAPTER 18 TABLE EXPANSION

1 CUSTOMER 1D
[1 SALE DATE Base table
T 1SALESPERSON ID
E TMINE) E Customers o
T 1 WINESALES NO
1 2customerio i Z 1CUSTOMER ID
] 2CUSTOMER NAME I 1 CUSTOMER NAME
1 2no.oFsioRes [| T 1NO.OFsIORES 5] Regions g
1 recionin J I 1REGIONID
— - - - -
1 3aesion 1 | 2REcioN 1 1 REGION
: 3 REGION GROUP 1D l ' 2 REGION GROUP 1D l 1 REGION GROUF ID Region Gmups B
1 3 REGION 1D I] 2recionn [w.&c,wn D
lommsie ;| *FEGONGROR IN s hicion Grove 1 RN = REGION GROUP
e 4 REGION GROUP 1D Il skesonerovr o 11 2REGIONGROUPID 1 REGION GROUP ID
! I-----------——--—-_——
D oatexev] @ 5 DATEKEY | Colesen Collapse ™~ Collapse ~
MONTH] sMonmH i
T MONTH NO.] Z 5MONTHNO. i
am : 5QIR I [5] wines o
YEAR Z 5YEAR I
I 5 6costeaice | I cosTPRCE
r ~
i 5 6omcerncase | | T PRICE PER CASE
b g suppuen | SUPPLI
1
I-iq“lllllllllllll-l IIIW‘II
1
|: 6 WINE WINE =
salesmoople /@ ¢] SWNECOUNTRY" # TR RS B = SR Countre
il “ J I swneD 5 WINEID
FIRSTNAME | 7FIRSTNAME | Colopsen
SALESPERSON | 7 SALESPERSON i

T SALESPERSON ID

Collapse ~

Data Model Showing Expanded and Base Tables

E Winesales

o
-IIIIIIIIII.
3% tcasEssoD =

I T 7 SALESPERSON IO

Expanded table |_ [

Collapse <~

Figure 18-15. Base tables and expanded tables used in filter propagation

1. The WINE column is filtered in both the expanded and base
Wines table.

2. Filtering a column in the Winesales base table does not propagate
filters to dimension tables.

The takeaway from these examples is that using an expanded table in the filter
argument of CALCULATE enables you to pass filters into dimension and snowflake
tables, in effect reversing the direction of filter propagation. This is because the
expanded table contains the columns from these dimensions that can then be grouped
and filtered. However, a question that must now be answered is the following: What

332

CHAPTER 18 TABLE EXPANSION

is the difference between using expanded tables and using CROSSFILTER. Isn’t the
end result of using these different methods the same? For instance, we can author this
expression using an expanded table:

Distinct Regions #1 =
CALCULATE (COUNTROWS (Regions), Winesales)

Or we can author this measure using CROSSFILTER that we might assume would
return the same result:

Distinct Regions #2 =
CALCULATE (COUNTROWS (Regions),
CROSSFILTER(Winesales[CUSTOMER ID],
Customers[CUSTOMER ID],both),
CROSSFILTER(Customers[REGION ID],
Regions[REGION ID],both))

Both these measures will “reach” the Regions table. Clearly, the second measure is a
great deal clumsier than the first, but is there a difference in the evaluation? The answer
is yes, there is, and we will now explain why.

Table Expansion vs. CROSSFILTER

In Chapter 13, when we explored the CROSSFILTER function, we authored a measure
to sum the NO. OF STORES column in the Customers table to calculate the number

of stores in which we’d sold our wines. Just to remind you, the problem was that filters
don’t flow from the Wines dimension through to the Customers dimension so we
used the CROSSFILTER function to programmatically change the direction of the filter
propagation to a bidirectional filter:

Total Stores =

CALCULATE (
SUM (Customers[NO. OF STORES]),
CROSSFILTER (Winesales[CUSTOMER ID],
Customers[CUSTOMER ID], BOTH)

333

CHAPTER 18 TABLE EXPANSION

However, we didn’t tell you at the time, and neither would you have noticed, but this
measure returns an incorrect value on the Total row; see Figure 18-16.

WINE Total Stores
Bordeaux 728
Champagne 709
Chardonnay 805
Chenin Blanc 757
Chianti 626
Grenache 685
Malbec 736
Merlot 749
Piesporter 563
Pinot Grigio 696
Rioja 832
Sauvignon Blanc T
Shiraz 727
Total 1,181

Figure 18-16. The “Total Stores” measure is not correct in the Total row

Many of the same customers will have bought each wine, so we know that the total of
1,181 will not be the sum of the total values for each wine. However, you might think this
value looks about right and so believe it. The value in the Total row should be the total
number of stores in which we’ve sold all our wines. This value is not correct because in
the Customers table, we have five customers to whom we’ve sold no wines. If we “show
items with no data” in a Table visual where we calculate the “Total Sales” measure, we
can see who they are; see Figure 18-17.

334

CHAPTER 18 TABLE EXPANSION

CUSTOMER NAME Total Sales
Acme & Sons

Bloxon Bros.

Jones Ltd

Sainsbury's

Smith & Co

Back River & Co $0
Palo Alto Ltd $14,836
St. Leonards Ltd $16,965
Victoria Ltd $24-71D.|-.
Brown & Co $25,542
Brooklyn Ltd $27,018
Canoga Park Ltd $37,310
Loveland & Co $38,098
Burlington Ltd $41,552
Total $29,732,482

Figure 18-17. There are five customers that have no sales

The value of 1,181 shown in the Total row includes the stores for these customers.
We can see these values in the Customers table in the NO. OF STORES column; see
Figure 18-18.

CUSTOMER NAME [~] REGION 1D~ | county [~] Area [~] country [~] NO.OF STORES [~]
Bloxon Bros. 2000 11
Acme & Sons 2000 4
Jones Ltd 100 5
Sainsbury's 100 24
Smith & Co 100 25

Figure 18-18. Customers with no sales have values in the NO. OF STORES column

We haven'’t sold any wine to these customers, so clearly their stores shouldn’t
be included in the total number of stores in which we've sold our wines. Our total is
out by 69.

What'’s happening here is that the “Total Stores” measure uses a bidirectional filter.
When it arrives at the evaluation of the Total row, the filters are removed from the
WINE column of the Wines dimension, and therefore, there is no filter to propagate

335

CHAPTER 18 TABLE EXPANSION

to the Customers dimension. With no filters propagated, it sums all the values in the
NO. OF STORES column. In other words, bidirectional filters are only active if filters
are active.

So how do you calculate the correct value of 1,112 in the Total row?

What you must do here is use the expanded Winesales fact table as the filter for the
Customers table. This is because, unlike bidirectional filtering, filters from expanded
tables are always active. When the Total row is evaluated, the expanded Winesales fact
table contains only those customers who have bought wines, and so this will filter the
Customers dimension accordingly.

This is the measure that will give you the correct total:

Total Stores #2 =
CALCULATE (
SUM (Customers[NO. OF STORES]),

Winesales
)
You can now see in Figure 18-19 that the Total row now shows 1,112.
WINE Total Stores #2
Bordeaux 728
Champagne 709
Chardonnay 805
Chenin Blanc 757
Chianti 626
Grenache 685
Malbec 736
Merlot 749
Piesporter 563
Pinot Grigio 696
Rioja 832
Sauvignon Blanc 777
Shiraz 727
Total 1,112

Figure 18-19. Using table expansion returns the correct value in the Total row

When working with DAX, not only must you have to have an eye for detail and a
suspicious mind, but you must also understand table expansion.

336

CHAPTER 18 TABLE EXPANSION

Using Snowflake Schemas

Understanding table expansion also explains how we can have problems with
“snowflake”-type schemas. This is where there may be a chain of several tables all
related in one-to-many relationships through to the fact table. In our data model,
we've extended our Regions snowflake by adding another table, Region Groups, which
is related to Regions via the REGION GROUP ID. We can see in Figure 18-20 how

the Region Groups table is related to the Regions table through the REGION GROUP
ID, the Regions table is related to the Customers table through the REGION ID, and the
Customers table is related to Winesales through the CUSTOMER ID.

9

Custorners

P Regions [Region Groups o
Country

—1 3 e 1 REGION GROUP

EL |meousc *

/ CUSTOMER NAME REGIONID W& Colizgfe ~
b Collapsgr™~

)

Winesales

i LD
SALE DATE
* SALESPERSON 1D
WINE ID
2 WINESALES NO
E]l Moofsales
@ Total Cases

Collapse ™

* K
1 1

Figure 18-20. A snowflake schema comprising Region Groups, Regions, and
Customers

In Figure 18-21, we've filtered “South West” Region Group in a slicer and are
showing customers in that Region Group in the Table visual. We've attempted to
calculate the total sales for these customers (3,512,539) so that we can use this value

337

CHAPTER 18 TABLE EXPANSION

as a denominator to calculate the percentage each customer’s sales are of the total for
the “South West” region group. This is the measure we have authored using ALL on the
Customers table:

Total Sales for All Customers in Region Group wrong =
CALCULATE ([Total Sales], ALL (Customers))

As you can see in Figure 18-21, it does not return the correct result, which should
be $3,512,539. You will also notice that because we are removing all the filters from the
Customers table, the Table visual now shows all our customers, not just those in the
“South West” region group.

REGIONGROUP > CUSTOMER NAME Total Sales Total Sales for Al
East Customers in Region
North Group wrong
North East .

South Littleton & Sons $729,349 $29,732,482
South East Chandler & Sons $725,413 $29,732,482

M South West Milsons Point Ltd $710,720 $29,732,482

West Fort Atkinson & Co $703,529 $29,732,482
Fremont & Sons $349,302 $29,732,482
Leeds & Co $112,178 $29,732,482
Miyagi & Co $63,635 $29,732,482
Liverpool & Sons $49,843 $29,732,482
Burlington Ltd $41,552 $29,732,482
Brooklyn Ltd $27,018 $29,732,482
Acme & Sons $29,732,482
Back River & Co $29,732,482
Ballard & Sons $29,732,482
Total $3,512,539 $29,732,482

Figure 18-21. Calculation of the the total sales for all customers in the region

group is not correct

338

CHAPTER 18 TABLE EXPANSION

Let’s now explain why we get the wrong calculation. When we use ALL inside
CALCULATE to remove filters from a table, it removes filters from the expanded table, if
applicable. This measure, therefore, removes filters from the expanded Customers table
and so also removes filters from both the Regions table and the Region Groups table. It,
therefore, calculates a total for all region groups. The Region Groups table is at the end of
the snowflake of tables, so this is the same value as the grand total sales.

Figure 18-22 shows how removing filters from the expanded Customers table will
also remove filters from Regions and Region Groups.

Data Model Showing Expanded and Base Tables

EWinesa!es L
P ———— — 1
€ VD Expanded table|_ i
Z 1CUSTOMER ID -—— - = - -
1 SALE DATE Base table
T 1SALESPERSON ID
Z 1WINEID E Customers o
¥ 1 WINESALES NO
N
l 2 Country l 1 Country
1 2cusiomERiD T 1CUSTOMERID
1 2customer Name 1 1 CUSTOMER NAME
1 zno.oFsToRes | | 1NO.OFSTORES [B] Regions @t
lZREGlONID lhzn_ip-;qlq-’u&l-ll_ll_l;l;lllllllllllnlllllllllllllllllllllll.
1" 3 reion 1y recion 1 1 REGION u
-
: 3 REGION GROUP 1D I, 2 REGION GROUP 1D 1 REGION GROUF ID Ryl G o
spgiono 1§ areGoni 11> _1resionio. .
[E] patetable & : 4 REGION GROUP Iy shigioncrote” T T T REGION GROUP - — 3L REGION GROUP ¢
L)
ateTable 1 4 REGION GROUP 10 : 3 REGION GROUP ID 11 2RecONGROUPID REGION GROUP I H
e SN EEENNEEAEENEE NN LR _ & & 0§ § %]
DNIEKEV lmsml[fva lh&&mHH“ﬂ"H.t I:pge./\.....-....-.ta'!pb“..-.-.....
MONTH] SMONTH 1
T MONTH NO.] £ 5MONTHNO. 1
amr I sam I [5] wines &
veAR 13 svem 1
1 Z 6COSTPRICE] I COSTPRICE
Colspueic b5 gemce pncase | | I PRICEPER CASE
: 6 SUPPLIER 1 SUPPLIER
6 TYPE I o
: 6 WINE : WINE
= ; WINE COUNTRY
Satespsaple @ 2 [} 6 WINE COUNTRY 1
] £ 6WINED I 2 WINEID
FIRSTNAME | 7FIRSTNAME | Collspsen
SALESPERSON 1 7 SALESPERSON 1
T SALESPERSON ID I £ 7SALESPERSON ID 1
B -
Collapse ~ Collapse ~

Figure 18-22. Removing filters from the Customers expanded table removes filters
Jfrom Regions and Region Groups

To calculate the correct denominator, there are several ways to modify the original
measure to reapply the filter “lost” on the Customers table. We could, for example, use
ALLEXCEPT to remove the filter on the expanded Customers table except for the filter on

339

CHAPTER 18 TABLE EXPANSION

the REGION GROUP column (because REGION GROUP is contained in the Customers
expanded table):

Total Sales for All Customers in Region Group #1=
CALCULATE (

[Total Sales],

ALLEXCEPT (Customers, 'Region Groups'[REGION GROUP]))

Another approach is to use the filter currently on the Region Groups table that has
been generated by the slicer, which currently is “South West”. This measure will also give
us the denominator we require:

Total Sales for All Customers in Region Group #2 =
CALCULATE (

[Total Sales],

ALL (Customers),

'Region Groups')

In the “Total Sales for All Customers in Region Group #2” measure, the ALL function
removes all the filters from the expanded Customers table, but by using Region Groups
as a table filter in the second filter argument in CALCULATE, this reapplies the “South
West” filter on the expanded Customers table and therefore also filters the Regions table
and the Region Groups table.

Note To remove the customers with no “Total Sales” value from the Table visual,
use a visual-level filter, filtering “Total Sales” is not blank.

We now get the correct denominator; see Figure 18-23.

340

CHAPTER 18 TABLE EXPANSION

REOEA ORI ¥ CUSTOMER NAME Total Sales Total Sales for All

East Customers in
North Region Group #1
North East >
South Littleton & Sons $729,349 $3,512,539
" | South East Chandler & Sons $725,413 $3,512,539
B South West Milsons Point Ltd $710,720 $3,512,539
West Fort Atkinson & Co $703,529 $3,512,539
Fremont & Sons $349,302 $3,512,539
Leeds & Co $112,178 $3,512,539
Miyagi & Co $63,635 $3,512,539
Liverpool & Sons $49,843 $3,512,539
Burlington Ltd $41,552 $3.512.539
Brooklyn Ltd $27,018 $3,512,539
Total $3,512,539 $3,512,539

Figure 18-23. You need to reapply “lost” filters when removing filters from
expanded tables

It would also be possible to use this simpler measure using ALLSELECTED.

Total Sales for All Customers in Region Group #3 =
CALCULATE ([Total Sales], ALLSELECTED (Customers))

What you are seeing in these examples is the perennial problem with “snowflake”-
type schemas. Where you have a chain of tables in many-to-one relationships outward
from the fact table, when you remove filters from tables nearer the fact table by using
ALL inside CALCULATE, you will also remove all the filters up the chain.

In this chapter, we have delved into the final major concept that underpins DAX,
that of table expansion. You have learned that relationships in the data model only
serve to generate expanded tables and that filter propagation works by filtering columns
inside expanded tables, not by performing lookups from dimensions into the fact table.
Knowing about table expansion enables you to author expressions that can use the filter
currently placed on the expanded table and therefore pass filters back to dimension
tables, in effect reversing the direction of filter propagation.

341

CHAPTER 18 TABLE EXPANSION

You are now about to move on to the last chapter in this book. Congratulations on
getting this far! It hasn’t always been an easy journey, and some DAX expressions we
have investigated together would be demanding to any DAX user. However, you now
understand the four major concepts that underpin DAX:

o Evaluation context
e [terators

¢ Context transition
e Table expansion

According to Alberto Ferrari in his blog “7 reasons DAX is not easy,” you are now a
DAX guru!?

However, regarding these concepts, Alberto goes on to say “The thing is: you need to
master them, not only have some basic knowledge of what they are. Moreover, these are
foundational concepts: they have nothing to do with specific functions.”

Let this be the best advice. On the completion of this book, you will not be at the
end of your journey through learning DAX, but only at the end of the beginning. You
must now assimilate your knowledge, work with it, and have the confidence to tackle
challenging calculations that will furnish you with the insights into your data that
truly inform.

However, you still have one chapter to go. In the next chapter, we will be taking
your expert knowledge of DAX to the next level. You will be learning the purpose of the
function CALCULATETABLE.

2SQLBI.com. 7 reasons DAX is not easy, June 2020. [Online]. Available from www.sqlbi.com/
blog/alberto/2020/06/20/7-reasons-dax-is-not-easy/

342

http://sqlbi.com
http://www.sqlbi.com/blog/alberto/2020/06/20/7-reasons-dax-is-not-easy/
http://www.sqlbi.com/blog/alberto/2020/06/20/7-reasons-dax-is-not-easy/

CHAPTER 19

The CALCULATETABLE
Function

Now that you are officially a DAX expert, you are ready to confront DAX expressions that
will truly test your knowledge and understanding of DAX. One of the DAX functions that
can only be understood with a clear grasp of how DAX works is CALCULATETABLE, and
this rather obscure function is the last function we will investigate in this book.

CALCULATETABLE operates in all the same ways as CALCULATE except that it
returns a table rather than a scalar value. In other words, it returns a table or table
expression where the filter on the table has been modified in some way. On the face of
it, therefore, CALCULATETABLE should be straightforward to understand. However,
because it returns a table, the question that is often asked is the following: How would
it be used inside measures? The reason we’ve left this function till last is because inside
measures, it becomes particularly useful when used in conjunction with expanded
tables.!

The syntax for CALCULATETABLE is

= CALCULATETABLE (table or table expression, filterl, filter2 etc.)

where:

table or table expression is the table you want to be returned by CALCULATETABLE.

filter1, 2 etc. provides the filter for the table returned by table.

You may think that this function seems remarkably similar to the FILTER function,
and indeed, you can often use CALCULATETABLE in place of FILTER.

To follow along with the examples, use the Power BI Desktop file “6 DAX Expanded Tables.pbix”.

343
© Alison Box 2022

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_19

https://doi.org/10.1007/978-1-4842-8188-8_19

CHAPTER 19 THE CALCULATETABLE FUNCTION

CALCULATETABLE vs. FILTER

However, CALCULATETABLE, unlike FILTER, modifies the filter context, and this is the
first behavior of this function that we will explore. Let’s compare these two measures:

Sales of Red Wines Filter =
CALCULATE ([Total Sales],
FILTER (Wines, Wines[TYPE] = "red")

)

Sales of Red Wines CalculateTable =
CALCULATE ([Total Sales],
CALCULATETABLE (Wines, Wines[TYPE] = "red")

Both these expressions are building a table filter for CALCULATE. The first uses
FILTER to build the table containing red wines, and the second uses CALCULATE
to build a similar table. These two measures return the same values. However,
CALCULATETABLE will modify the filter context. Therefore, if the TYPE column
from the Wines dimension is providing the filter context, it will replace the filter on
TYPE. Therefore, if “White” is the filter, it will be replaced with “Red” FILTER can only
filter what's already in the filter context and so returns no value if “White” is the current
filter; see Figure 19-1.

SALESPERSON Sa.les of.Red Sales of Red Wines TYPE Sales of Red Sales of Red Wines
WiGeaEe ERYRiae Wines Filter CalculateTable
Abel $2,050,276 $2,050,276
Blanchet $1,734,279 $1,734,279 REd’ $12,934,607 $12,934,607
Charron $2,029,616 $2,029,616 | White $12,934,607
Denis $2’7‘| 1,085 $2’71 1,085 Total $12,934,507 512,934,607
Leblanc $2,232,097 $2,232,097
Reyer $2,177,254 $2,177,254
Total $12,934,607 $12,934,607

Figure 19-1. CALCULATETABLE will modify the filter context, but FILTER can
only filter within the current filter context

344

CHAPTER 19 THE CALCULATETABLE FUNCTION

The CALCULATETABLE function, therefore, becomes useful when you must
generate an in-memory table where the filter context must be modified. In reality,
FILTER and CALCULATETABLE are very different functions even if their output is
sometimes the same. The former creates a virtual table by iterating another table within
the current filter context. The latter also generates a virtual table but uses a new filter
context to build the virtual table.

To illustrate this, let’s build a measure named “Current No. of Sales” that will
calculate the number of sales generated in each region up to the end of the prior month,
the year and month being selected in a slicer; see Figure 19-2.

YERR REGION Current No. of Sales
2017 CalculateTable
2018
2019 Argentina 61
2020 Australia 74
M 2021 Canada 29
China il
MONTH v :
o Czech Republic 138
Feb England o7
Kar France 7
Apr Germany 81
BNy India 150
Jun Ireland 3
Jul Italy 150
Aug Japan 86
Sep New Zealand 112
Oct Northern Ireland 18
Nov Russia 3
Dec ot -
Total 1,782

Figure 19-2. Calculating the number of sales up to the end of the prior month

345

CHAPTER 19 THE CALCULATETABLE FUNCTION

There are three steps to this calculation:

1. First, we must filter the DateTable for all the dates up to the end of
the prior month selected in the slicer e.g., up to but not including
the 1st May 2021.

2. The filtered DateTable can then be used to filter the Winesales
table to contain only the sales up to the end of the prior month.

3. We can then use COUNTROWS to count how many sales there are
in the filtered Winesales table.

The question will be the following: Which filter function are we going to use for
step 2 that will generate the DateTable that will filter the Winesales table for the dates
we need? Are we going to use FILTER or CALCULATETABLE? We've constructed two
versions of the measure, the first using CALCULATETABLE and the second using FILTER
(highlighted) where we will then have a second inner FILTER function:

Current No. of Sales CalculateTable =
COUNTROWS (
CALCULATETABLE (
Winesales,
FILTER (ALL (DateTable), DateTable[DATEKEY] < MIN (
DateTable[DATEKEY]))

Current No. of Sales Filter =
COUNTROWS (
FILTER (
Winesales,
FILTER (ALL (DateTable), DateTable[DATEKEY] < MIN (
DateTable[DATEKEY]))

346

CHAPTER 19 THE CALCULATETABLE FUNCTION

The measure using CALCULATETABLE would be the correct measure because if you
attempt to use the measure using FILTER, you get an error, as shown in Figure 19-3.

X / |[t current No. of Sales Filter =
2 COUNTROWS (]

3 FILTER (

Winesales,

YEAR FILTER (ALL (DateTable), DateTable[DATEKEY] < MIN (DateTable[DateKey]))

| 2017
| 20187 D)
2019/ ¢ The expression refers to multiple columns. Multiple columns cannot be converted to a scalar value.
2020 Canada
W 2021 | cChina

Czech Republic

)

~N o o1 A

MONTH
& England
| Feb France
Mar i Germany 0
| Apr India
W May Ireland
[Jun ltaly

Figure 19-3. Using FILTER to filter the DateTable returns an error

If we consider that these functions are interchangeable, why does
CALCULATETABLE work, but FILTER does not? To understand the error when using
FILTER, we must look more closely at what the inner FILTER expression is generating
in memory.

1. The inner FILTER iterates over the DateTable to find all dates up to
the end of the prior month.

2. Theinner FILTER creates a new virtual DateTable containing just
these dates.

3. The outer FILTER then uses the virtual DateTable to filter the rows
of the Winesales table, iterating each row in the Winesales table
accordingly.

What is the criterion by which each row in the Winesales table will be filtered in
step 3? You can't filter a row by values in an entire table, and so we get this error:

“The expression refers to multiple columns. Multiple columns cannot be converted to a
scalar value.”

347

CHAPTER 19 THE CALCULATETABLE FUNCTION

The table generated by FILTER is the “multiple columns” alluded to in the error
message, and it tells us that if using FILTER, we can only return scalar values for the
criterion to filter rows. It’s not possible to use a table expression in the filter expression of
FILTER, only predicates.

How does the CALCULATETABLE measure differ? In the correct measure:

1. The inner FILTER iterates over the DateTable to find all dates up to
the end of the prior month.

2. The inner FILTER then generates a virtual DateTable containing
just these dates.

3. CALCULATETABLE generates a virtual Winesales table that can
be filtered by the virtual DateTable generated by FILTER. This is
simply a table filter and therefore is used in the same way as any
table filter that would normally be placed inside CALCULATE.

In other words, the virtual table generated by FILTER provides the new filter context
for CALCULATETABLE by which the virtual Winesales table can be filtered. The rows of
the virtual Winesales table can then be counted.

At this stage of exploring CALCULATETABLE, hopefully, you have worked out
that if you want to calculate the “Current No. of Sales’, the following measure, using
CALCULATE, would be much simpler to write and not return an error:

Current No. of Sales =

CALCULATE (
COUNTROWS (Winesales),
FILTER (ALL (DateTable), DateTable[DATEKEY]
< MIN (DateTable[DATEKEY])))

However, we are exploring the difference between CALCULATETABLE and FILTER,
and this measure does not illustrate this. But more than this, make a mental note of the
expression using CALCULATETABLE as it will be a “building block” in more complex
expressions that follow later in this chapter. Here is the expression again that calculates
how many sales in each region there have been up to the end of the prior month:

Current No. of Sales CalculateTable =
COUNTROWS (
CALCULATETABLE (

348

CHAPTER 19 THE CALCULATETABLE FUNCTION

Winesales,
FILTER (ALL (DateTable), DateTable[DATEKEY] < MIN (
DateTable[DATEKEY]))

Specifically, we will be using this expression as a constituent part of the calculations
for “New Regions” and “Returning Regions” later.

We've established that CALCULATETABLE will modify the filter context when
generating a virtual table, but we haven’t yet found a useful application for this function.
Where CALCULATETABLE really comes into its own is when you reference an expanded
table in this function’s filter argument so that it can then be used as a table filter.

CALCULATETABLE and Table Expansion

Just as with CALCULATE, you can use expanded tables as filter expressions to modify the
filter context inside CALCULATETABLE. So, for instance, the following table expression

=CALCULATETABLE (Regions, Winesales)

will return a virtual Regions table containing only the rows of this table that are in the
current filter in the expanded Winesales table. If we count the rows of the Regions table
generated by CALCULATETABLE, this would be an alternative way of finding how many
distinct regions we have sales within the current filter context. So these two measures,
both using the expanded Winesales table, return the same values:

Distinct Regions #1 =
CALCULATE (
COUNTROWS (Regions), Winesales)

Distinct Regions #2=
COUNTROWS (
CALCULATETABLE (Regions, Winesales)

By understanding that a table filter inside CALCULATETABLE will use an expanded table
where applicable, we can now use this knowledge to resolve more challenging calculations.
One of these more challenging calculations is finding “new” and/or “returning” entities, such
as new and returning customers or new and returning sales regions.

349

CHAPTER 19 THE CALCULATETABLE FUNCTION

Calculating “New” Entities

Typically, this would involve discovering how many new customers or new sales regions
there are within a specific month, quarter, or year, perhaps further refined by considering
only sales for a specific salesperson.

For example, you have been asked to show in how many new regions your
salespeople have made sales in any given month. You do this by using the following
“New Regions” measure that uses CALCULATETABLE:

New Regions =
VAR CurrentRegions =
CALCULATETABLE (Regions, Winesales)

VAR PreviousRegions =
CALCULATETABLE (
Regions,
CALCULATETABLE (Winesales,
FILTER (ALL (DateTable), DateTable[DATEKEY]
< MIN (DateTable[DATEKEY]))))

RETURN
COUNTROWS (EXCEPT (CurrentRegions, PreviousRegions))

You can see the result of this measure in the Table visual in Figure 19-4.

Note You could substitute “Customers” for “Regions” if you want to find new
customers.

350

CHAPTER 19 THE CALCULATETABLE FUNCTION

YEAR MONTH SALESPERSON New Regions
2017 Jan Abel 5
2017 Jan Blanchet 4
2017 Jan Charron 2
2017 Jan Denis 4
2017 Jan Leblanc 3
2017 Jan Reyer 3
2017 Feb Abel 2
2017 Feb Blanchet 4
2017 Feb Charron 6
2017 Feb Denis 3
2017 Feb Leblanc 2
Total 20

Figure 19-4. Calculating the number of new regions for each salesperson in
each month

We can appreciate that the “New Regions” measure is quite a challenge to
understand, so let’s separate the three component expressions within the measure as
follows:

1. The “CurrentRegions” variable
2. The “PreviousRegions variable
3. The Return statement

By taking the measure apart, piece by piece like this, we can now explain each
component.

1. The “CurrentRegions” variable
This variable uses this expression:
CALCULATETABLE (Regions, Winesales)

Here, CALCULATETABLE uses the expanded Winesales table as
the filter for Regions, therefore generating a Regions table that
contains only the regions in which the salesperson (in the current

351

CHAPTER 19 THE CALCULATETABLE FUNCTION

filter context) has made sales in the current month (the month in
the current filter context). Let’s take the evaluation for salesperson
“Abel” in “February 2017, which returns 2, as our example; see
Figure 19-5.

Expanded Winesales Table contains Regions

:-SAI.E DATE [¥] winesALes No [~]| satesperson 1D [¥] customer 10 [~] wineiD [~]| casessowo [-] Reaion !
| 07/02/2017 43 LZ) 30 1 266 Japan

| 11/02/2017 49 1 17 9 116 United Arab Emiratés

| 11/02/2017 47 1 27 2 289 Czech Republic
7 61 1 4 9 183 Czech Republic

I resionn [+]| Recion
1700 United Arab Emirates

1 1000 Japan
1 500 Czech Republic
e e e —]

Figure 19-5. The evaluation of the “CurrentRegions” variable for “Abel” in
“February 2017" 1. The expanded Winesales table contains columns from the
Regions table. 2. The Winesales table is filtered for “Abel” 3. The Winesales table
is filtered for “February 2017” 4. The expanded Winesales table is used to filter
the Regions table that now only contains regions where “Abel” has made sales in
“February 2017.” 5. CALCULATETABLE generates a virtual table from the filtered
Regions table

352

CHAPTER 19 THE CALCULATETABLE FUNCTION

Let’s now move on to look at the second component.
The “PreviousRegions” variable

This variable uses this expression:

CALCULATETABLE (Regions,
CALCULATETABLE (Winesales,
FILTER (ALL (DateTable), DateTable[DATEKEY]
< MIN (DateTable[DATEKEY]))))

Remember that we used the nested CALCULATETABLE
expression (highlighted) when we calculated the “Current No. of
Sales” measure (see Figure 19-2).

Here, CALCULATETABLE also uses the expanded Winesales table
as the filter for Regions, but this time the expanded Winesales
table has been filtered (using FILTER) to contain only sales up to
the last date of the prior month. This filter is applied on top of the
filters from the SalesPeople table. CALCULATETABLE uses the
filtered expanded Winesales table to generate a Regions table that
contains the regions in which the salesperson has made sales up
to the end of the prior month; see Figure 19-6.

353

CHAPTER 19 THE CALCULATETABLE FUNCTION

MMoarexer E:EREEETR-E]I_MOEH No. B MONTH E|

2017 Qurl

| 31Jenuary 2017
I 30 Jenuary 2017
29 January 2017
28 January 2017
27 January 2017
| 260nv0ry 2017
| 25January 2017
I 24 January 2017
23 Jonuary 2017

2017
2017
2017
2017
2017
2017
2017

Qtr1
Qtr1
Qerl
Qtr1
Qerl
Qtr1
Qtr1

2017 Qirl

- 03, DI.:’ZOI?
13/01/2017
18/01/2017
15/01/2017
15/01/2017
20/01/2017
22/01/2017
27/01/2017

ESA

,_

[i PR T P T R BT Y

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

Jan

Expanded Winesales Table contains Regions

E| SALESPERSON ID_[-Y]| CUSTOMER ID E“ wine D [~]| casessoup [~]|

11
18
21
22
23
25
28

(O I O O T

12
22
12
15
1s
13
15
26

] REGloNID [~] ReGioN

1800 United Kingdom
1700 United Arab Emirates

1400 South Africa
900 ltaly
400 China

10 264
3 228
1 327

12 111
1 386
3 206
2 347
1 401

The Regions table receives the filter from the expanded Winesales

REGION |
China I

South Africa l
China I
Italy I
Italy |
United Kingdom |
Italy 1
United Arab Emirates |

Figure 19-6. The evaluation of the “PreviousRegions” variable for “Abel” in
“February 2017" 1. The expanded Winesales table contains columns from the
Regions table. 2. The Winesales table is filtered for “Abel” 3. FILTER inside
CALCULATETABLE generates a filtered DateTable containing dates up to and
including “31 January 2017 4. The DateTable table generated by FILTER is used
to filter the expanded Winesales table. 5. The expanded Winesales table is used to
filter the Regions table that now only contains regions where “Abel” has made sales
up to “31 January 2017” 6. CALCULATETABLE generates a virtual table from the

filtered Regions table

354

CHAPTER 19 THE CALCULATETABLE FUNCTION

So the variables have generated two in-memory tables using
CALCULATETABLE as follows:

CurrentRegions - Holds the regions in which the salesperson has
made sales in the month in the current filter context

PreviousRegions - Holds the regions in which the salesperson
has made sales up to the last date of the prior month in the current
filter context

3. The RETURN statement

The RETURN statement uses the EXCEPT function to return a
table that contains only the rows of the table in the first argument
that are not in the table of the second argument; see Figure 19-7.

CurrentRegions

| recionn [<] resion I

| 1700 United Arab Emirates

| 1000 Japan

| 500 Czech Republic | In CurrentRegions but not in

b o o -] PreviousRegions
PreviousRegions ! reciono L] sesion !

JRRESIOND El REGION I | 500 Czech Republic 1

| 1800 United Kingdom I | P e ———— |

1 1700 United Arab Emirates I

1 1400 South Africa I

1 900 Italy I

1 400 China

— O O O O l‘

Figure 19-7. The EXCEPT function returns all the rows in the first table that are
not in the second table

COUNTROWS then counts the rows in the virtual table generated by EXCEPT and
returns 2 rows for “Abel” in “February 2017,

355

CHAPTER 19 THE CALCULATETABLE FUNCTION

Calculating “Returning” Entities

To find “Returning Regions’, which is the regions where salespeople have previously
made sales in any month, we can use the function INTERSECT in place of EXCEPT as
follows:

Returning Regions =
VAR CurrentRegions =
CALCULATETABLE (Regions, Winesales)

VAR PreviousRegions =
CALCULATETABLE (
Regions,
CALCULATETABLE (Winesales,
FILTER (ALL (DateTable), DateTable[DATEKEY]
< MIN (DateTable[DATEKEY]))))

RETURN
COUNTROWS (INTERSECT (CurrentRegions, PreviousRegions))

The table generated by INTERSECT contains all the rows in the first table that are
also in the second table.

You can see the output of the two measures in Figure 19-8. Note how the Total row
has been removed from the Table visual. The Total values calculated (or the absence
of a value) are correct, but ambiguous. Remember that on the evaluation of the Total
row, filters on YEAR, MONTH, and SALESPERSON will have been removed so the “New

Regions” measure, for example, would calculate how many new regions there were for all

salespeople in all months of all years, which is the same as the total number of regions.

356

CHAPTER 19 THE CALCULATETABLE FUNCTION

YEAR MONTH SALESPERSON New Returning
Regions Regions

2017 Jan Abel 5

2017 Jan Blanchet 4

2017 Jan Charron 2

2017 Jan Denis 4

2017 Jan Leblanc 3

2017 Jan Reyer 3

2017 Feb Abel 2 1
2017 Feb Blanchet 4

2017 Feb Charron 6

2017 Feb Denis 3 2
2017 Feb Leblanc 2 1
2017 Feb Reyer 2 1
2017 Mar Abel 1

Figure 19-8. The “New Regions” and “Returning Regions” measures in a Table
visual. Note the absence of the Total row

What lies at the root of these expressions is using CALCULATETABLE to create two
sets of data for comparisons. You can then use EXCEPT and INTERSECT to find either
values that are the same or values that are different respectively; see Figure 19-9.

357

CHAPTER 19 THE CALCULATETABLE FUNCTION

INTERSECT EXCEPT

Figure 19-9. You can use the INTERSECT and EXCEPT functions to return sets
of values

The benefit of understanding these expressions using CALCULATETABLE is that
they can be repurposed for many different scenarios. For example, rather than finding
new regions in the current month for each salesperson, you could analyze the number of

new customers there are for each wine compared to the previous month, as follows:

New Customers from Previous Month =
VAR CurrentCustomers =
CALCULATETABLE (Customers, Winesales)
VAR PreviousMthsCustomers =
CALCULATETABLE (
Customers,
CALCULATETABLE (Winesales,
PREVIOUSMONTH(DateTable[DATEKEY])))

RETURN
COUNTROWS (EXCEPT (CurrentCustomers, PreviousMthsCustomers))

This measure tells us that for “Bordeaux” wine, in “December 2021’ there were
4 new customers compared to the customers in “November 2021”; see Figure 19-10.
Again, note the evaluation of the Total row, which, although not summing the values for
each wine, is correct because it tells us that there were 13 new customers for all wines in
“December 2021” compared to the previous month. Renaming the Total may make this
value less ambiguous.

358

CHAPTER 19 THE CALCULATETABLE FUNCTION

WINE New Customers
from Previous
Month
MONTH YEAR ~
Bordeaux 4 Jan 2017
Champagne 1 Feb 12018
Chardonnay 2 Mar 2019
Chenin Blanc 3 Apr 2020
Chianti 1 May [l 2021
Grenache 4 dun
Jul
Malbec 3
: T Aug
Pinot Grigio 2
T Sep
Rioja 5 Oct
Sauvignon Blanc 5 Nov
Total 13

Figure 19-10. The evaluation of the “New Customers from Previous Month”
measure, repurposing the “New Regions” measure

I think you'll agree that the DAX expressions you've authored in this chapter using
CALCULATETABLE and expanded tables bear no comparison in their complexity to the
simple measures using SUM and AVERAGE with which you started out. Throughout this
book, we've paid particular attention to how the DAX expressions work, understanding
the detail beneath and getting to grips with the difficult concepts that underpin the DAX
language.

Now all that remains is for you to put your newfound knowledge to good use. Spend
your day finding data to analyze using DAX. Don’t give up if at first things don’t go
your way. Persevere and keep with it. There is no silver bullet; everyone who has ever
mastered DAX has worked hard to get where they are.

But nothing replaces that glowing feeling of finding a solution to a calculation that
you initially thought was impossible to solve.

Happy DAXing!

359

Index

A

Active/inactive relationships
comparison dimension
data table, 224
edit relationship dialog, 222, 223
fact table, 222
measures, 225
slicers, 221, 223
USERELATIONSHIP function, 226
wines dimension, 224
DateTable filters, 219
measures, 218
table relationship, 218
USERELATIONSHIP function, 219
ALLEXCEPT function, 127, 128
ALL function
aggregating totals, 259-265
table expansion, 318
ALL function/variations
ALLEXCEPT function, 127, 128
ALLSELECTED function, 129-131
CALCULATE, 115, 133-143
calculating percentages, 123
data modifier, 110
description, 109
dimensions, 113
dimension table, 117-119
fact tables, 111-117
grand total cases, 116
multiple columns, 126
SUPPLIER column, 120-126
syntaxes, 110

© Alison Box 2022

tables/remove filters, 111
TYPE column, 125
ALLSELECTED function, 129-131

B

Bidirectional relationships, 214
BLANK() function, 165-167

C

Calculated columns
AND (&), 25
context transition, 293-296
Excel formulas, 23
expression, 24
fields list, 24
OR (||}, 25
RELATED function (see RELATED

function)

CALCULATE function, 71, 133
AND/OR filters, 79-81
complex filters, 81-84
DateTable dimension, 71-73
details, 136
DIVIDE function, 77
error message, 82
evaluation, 137, 138, 140
expressions, 134
FILTER function, 139
filters, 74, 75
in-memory virtual tables, 84
measures, 80

A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8

361

https://doi.org/10.1007/978-1-4842-8188-8

INDEX

CALCULATE function (cont.) parameter tables, 195-198
modification, 136 problem scenarios, 192, 193
multiple filter, 78 SELECTEDVALUE function, 195
OR expression, 83 TOPN expression, 194
return different results, 132 value returns, 190
similar expressions, 135 VALUES function, 194
single filters, 77, 78 WINE column, 191
square bracket, 76 Constants, 178-181
SUPPLIER column, 131 Context transition
syntax, 75 aggregated values, 227
table function, 132 aggregating totals
total cases, 73, 74 ALL function, 259-265
virtual table, 84 dimensions, 252-258
WINE column, 133 matrix visuals, 262
Wines dimension, 132 row-level calculation, 253

CALCULATETABLE function SUMMARIZE function, 265-270
FILTER function virtual tables, 259

calculation, 346 attributes, 229, 230
DateTable returns, 347 calculated columns, 231, 234,
error message, 348 277,278,293
expression, 347 CUMULATIVE TOTAL, 294
filter context, 344 cumulative totals, 293
modification, 344 DAYS DIFFERENCE, 295
virtual table, 345 FILTER function, 293
syntax, 343 RETURN statement, 295
table expansion row context, 294
component expressions, 351, 353 CALCULATE function, 232
entities, 350-355 data analysis, 271
evaluation, 352, 354, 355 definition, 229
EXCEPT function, 355 description, 227
expression, 349 expressions, 228, 230, 234
INTERSECT/EXCEPT filter context, 229
expressions, 356-359 numeric ranges, 275-279

COALESCE function, 171, 172 parameter table, 277

CONCATENATEX function RANKX function, 272-275
arguments, 190 row context, 228
COUNTROWS function, 193 SUMMARIZE, 285-292
multiple selections, 192 surprising results

362

AVERAGE function, 238-242

calculated columns, 237
cumulative totals, 243
MAX function, 242-247
measures, 247-251
SUMX expression, 249
total cases, 251
TopN percent
analysis, 280
dynamic ranking, 285
parameter tables, 281
requirements, 279
row selection, 283, 284
slicers, 280
top/bottom percent
selection, 280, 281
Wines dimension, 235, 236

COUNTROWS function, 278
CROSSFILTER function, 212, 213, 216, 311

table expansion, 333-336

Current filter context, 183

Data analysis expression (DAX)

concepts, 1

data model, 3

expression, 1

formula bar, 16

functions, 86-88
many-to-one relationships, 3
table tools tab, 15

Denormalization, 28

Empty values vs. Zero, 165

BLANK() function, 165-167
COALESCE function, 171, 172

ISBLANK function, 168
measures, 169, 170
testing, 169, 170
Excel formulas, calculated
columns, 23

F,G

Filter context
evaluation, 47
factors, 48
fact table, 50

in-memory dimension, 49

measures, 47

multiple filters, 53-56
fact table, 55
in-memory tables, 54
propagation, 54
roles, 56

slicer/page-level filter, 53

propagation, 50

total row, 52

WINE column, 51

FILTER function, 278

CALCULATE
AVERAGE/MAX, 99
calculation, 93
error messages, 97
incorrect results, 92
iterators, 94
measure, 92
profit wines, 97
propagate filters, 94
requirement, 91
requirements, 97
scenario, 96
source code, 98

step-by-step guide, 93, 95

INDEX

363

INDEX

FILTER function (cont.)
COUNTROWS, 90
row expression, 90, 91
syntax, 89
Filter propagation
bidirectional filters, 210-213
cross filter, 214-216
CROSSFILTER function, 210, 212
customers table, 210
fact tables, 209
model view, 209
Formatting/unformatting expression, 19, 20

H

HASONEVALUE function, 274

1, J
Implicit measures, 32-34
ISBLANK function, 168
Iterators, 59
aggregating iterators, 59
SUMX function (see SUMX function)
total row
constituent expressions, 68
evaluation, 68
incorrect result, 66, 68
SUM function, 69

K

KEEPFILTERS function, 108

L

LOOKUPVALUE function
approaches, 301
calculated column, 300, 301
definition, 302

364

many-to-one relationship, 299
syntax, 300

table records, 298

transaction records, 299

Measures, 32
benefits, 38
CALCULATE function, 80
COUNTROWS function, 38
definition, 41, 42
dimensions, 38, 39
DISTINCTCOUNT function, 39, 40
editor, 36
error message, 45
Excel pivot table, 44
explicit measure, 34
filtered data, 41
formatting group, 37
implicit measure, 32-34
reporting tools, 42
return scalar values, 42-46
table creation, 35
visuals, 42
visual table, 36, 37

N, O

Non matching values
blank entry, 12, 13
linking columns, 8, 9
scenarios, 7
visualisations pane, 9, 10
Wines dimension, 11

P,Q

Power BI Desktop, 2

R

RANKX function, 272-275

RELATED function, 26
advantages, 28
CUSTOMERID, 26
denormalization, 28
description, 28
hiding tables, 29
regions table, 27, 28
Sales revenue values, 30-33
VLOOKUP function, 27
Winesales table, 26

Row context, 56, 57

S

SELECTEDVALUE function, 276, 281
current filter, 188, 189
evaluation, 185
expression, 187
multiple items, 187
parameter table, 184
results, 188
slicer filters, 186
syntax, 184
user selections, 186
VALUES function, 204

Start/snowflakes
data model, 4
dimensions, 5
fact tables, 4
inactive relationship, 7
star schema, 5

SUMMARIZE function
calculation steps, 287
context transition

ALLEXEPT function, 269
analytics, 268

INDEX

calculated column, 269
calculated tables, 266
DateTable, 266
description, 265
measures, 270
syntax, 265
table creation, 267
like/like sales calculation, 287
matrix visual, 289, 292
measure returns, 290
multiselection, 286
virtual table, 288

SUMX function

average price, 66

calculated column, 61, 62

implicit measure, 62

maximum/average sales, 64

RELATED function, 63

row-level calculation, 60

SUMX, AVERAGEX, and
MAXX, 65

syntax, 61

X aggregators, 61

Syntax

AND/OR expression, 19

column name, 17

Excel formulas, 16

Excel formulas/DAX expressions, 18
formula bar, 16

IntelliSense list, 17

Table expansion

ALLEXCEPT/SUMMARIZE
functions, 323

ALL function, 318, 319

ALLSELECTED, 341

365

INDEX

Table expansion (cont.)
base tables, 319
CROSSFILTER function, 333-336
data model, 312, 320, 321
description, 311
expanded tables, 319, 320
expansion results, 318-323
filters

code generation, 316

column information, 313-317
description, 313

real evaluation, 315
WINECOUNTRY column, 316

leverage tables

approaches, 323

base/expanded tables, 327, 329, 332
CALCULATE, 325, 326
CROSSFILTER function, 333
customers table, 324

distinct regions, 326

measures, 331

RELATED function, 325

snowflake dimensions, 324

table visuals, 328

RELATED function, 322

removes filters, 339

snowflake schemas, 337-342
Table functions

column filters

366

Bordeaux, 107
CALCULATE, 106
description, 99
difference, 100
difference results, 106
less efficient, 100-104
measures return, 101
table filters, 104-108
technical terms, 104

FILTER (see FILTER function)

KEEPFILTERS, 108

scalar functions, 87

table expressions
CALCULATE, 89
calculated tables, 87, 88
filter arguments, 89
VALUES, 88

types, 86-88

Tables, see Active/inactive relationships
Time intelligence functions

annual totals and averages, 156-158
base date, 149, 150
consecutive transactions, 160
cumulative totals, 155, 156
DATEADD, 154
date dimension
built-in option, 145
column option, 149
DATEKEY column, 147
hierarchies, 144-146
options pane, 145
table creation, 146-149
table tools tab, 147
DATESINPERIOD function, 157
DATESYTD function, 154
description, 143
differences (dates), 162, 163
FIRSTNONBLANK/LASTNONBLANK
functions, 158-161
LASTDATE option, 152
LASTNONBLANK/
LASTNONBLANKVALUE
expressions, 161
PREVIOUSMONTH/YEAR, 153
return value, 151
SAMEPERIODLASTYEAR, 153
scalar value, 152

INDEX

unique dates, 150 error message, 202
VALUES function, 158 lost filters, 205-207
TREATAS function references, 199
DateTable/Targets table, 305 requirements, 199
evaluation, 309 scalar function, 201
fact table, 306 table function/
many-to-many relationship, 307 virtual table, 199
reporting targets, 303 table/scalar function, 200-204
results, 310 total row selection, 202
SalesPeople table, 304 Variables
syntax, 307 advantages, 173
targets table, 302, 303 calculated columns, 174
VALUES function, 308 constants, 178-181
declarations, 174
U nested measures/

expressions, 176
performance, 174-176
readability, 176, 177

USERELATIONSHIP function, 219

Vs W, X; Y, Y4 reduce complexity, 177, 178
VALUES function VAR/RETURN keywords, 173
converting columns, 207, 208 Virtual relationships, 297
edit interactions, 205 VLOOKUP function, 298

367

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Show Me the Data
	Stars and Snowflakes
	Fact Tables
	Dimensions
	The Star Schema

	Finding Nonmatching Values

	Chapter 2: DAX Objects, Syntax, and Formatting
	DAX Syntax
	DAX Formatting

	Chapter 3: Calculated Columns and Measures
	Calculated Columns
	Creating Simple Calculated Columns
	Looking at the RELATED Function

	DAX Measures
	Implicit Measures
	Explicit Measures
	Creating a Measures Table
	Creating Simple DAX Measures
	What Exactly Is a Measure?
	All Report Visuals Use Measures
	Measures Return Scalar Values

	Chapter 4: Evaluation Context
	The Filter Context
	Evaluations Using a Single Filter
	Calculation in the Total Row
	Evaluations Using Multiple Filters

	The Row Context

	Chapter 5: Iterators
	The SUMX Function (and Other “X” Functions)
	Total Row Grief

	Chapter 6: The CALCULATE Function
	Why You Need CALCULATE
	Using Single Filters
	Using Multiple Filters
	AND and OR Filters
	Complex Filters

	Chapter 7: DAX Table Functions
	Types of DAX Functions
	Table Functions
	Examples of Table Expressions
	Why Do We Need Table Expressions?

	The FILTER Function
	FILTER Used to Reduce Rows
	FILTER as the Filter Argument of CALCULATE

	Column Filters vs. Table Filters
	Table Filters Are Less Efficient
	Table Filters Return Different Results
	Using the KEEPFILTERS Function

	Chapter 8: The ALL Function and All Its Variations
	The ALL Function
	Applied to the Fact Table
	Using ALL on Dimension Tables
	Using ALL on a Column

	The ALLEXCEPT Function
	The ALLSELECTED Function
	ALL as a Modifier to CALCULATE

	Chapter 9: Calculations on Dates: Using DAX Time Intelligence
	Power BI Date Hierarchies
	Creating a Date Table
	Using Time Intelligence Functions
	Previous Month/Year – PREVIOUSMONTH/YEAR
	Same Period Last Year – SAMEPERIODLASTYEAR
	Values for Any Time Ago – DATEADD
	Year to Date – DATESYTD
	Total to Date or Cumulative Totals
	Rolling Annual Totals and Averages
	Calculating the Last Transaction Date and the Last Transaction Value
	Finding the Difference Between Two Dates

	Chapter 10: Empty Values vs. Zero
	The BLANK() Function
	The ISBLANK Function
	Testing for Zero
	Using Measures to Find Blanks and Zero
	Using the COALESCE Function

	Chapter 11: Using Variables: Making Our Code More Readable
	Improved Performance
	Improved Readability
	Reduced Complexity
	Variables As Constants

	Chapter 12: Returning Values in the Current Filter
	The SELECTEDVALUE Function
	The CONCATENATEX Function
	Using Parameter Tables
	The Values Function
	A Table or a Scalar Function?
	Replacing “Lost Filters”
	Converting Columns to Tables

	Chapter 13: Controlling the Direction of Filter Propagation
	Programming Bidirectional Filters
	Why You Should Never Use Bidirectional Relationships

	Chapter 14: Working with Multiple Relationships Between Tables
	Activating Inactive Relationships
	Comparing Values in the Same Column

	Chapter 15: Understanding Context Transition
	Overview of DAX Evaluations Contexts
	Row Context Revisited
	Filter Context Revisited

	How Row Context Becomes Filter Context
	How Context Transition Can Return “Surprising Results”
	Filters Using AVERAGE
	Filters Using MAX
	Filters Using Measures

	Aggregating Totals Using Context Transition
	Aggregating in Dimensions
	Aggregating in Virtual Tables
	Using ALL to Group Columns in the Same Table
	Using SUMMARIZE to Group Columns from Related Tables

	Chapter 16: Leveraging Context Transition
	Ranking Data: Looking at RANKX
	Binning Measures into Numeric Ranges
	Calculating TopN Percent
	Create the Slicers
	Create the Measure to Find the Top or Bottom Percent Selected in Slicers

	Calculating “Like for Like” Yearly Sales Using SUMMARIZE
	Using Context Transition in Calculated Columns
	Calculating Running Totals
	Calculating the Difference from the Value in the Previous Row

	Chapter 17: Virtual Relationships: The LOOKUPVALUE and TREATAS Functions
	LOOKUPVALUE Function
	The TREATAS Function

	Chapter 18: Table Expansion
	Revisiting Filters
	Column Filters Revisited
	The ALL Function Revisited

	Expanded Tables Explained
	Leveraging Expanded Tables
	“Reaching” Dimensions
	Table Expansion vs. CROSSFILTER
	Using Snowflake Schemas

	Chapter 19: The CALCULATETABLE Function
	CALCULATETABLE vs. FILTER
	CALCULATETABLE and Table Expansion
	Calculating “New” Entities
	Calculating “Returning” Entities

	Index

