
Up and Running
with DAX for
Power BI

A Concise Guide for Non-Technical Users
—
Alison Box

Up and Running with
DAX for Power BI

A Concise Guide for
Non-Technical Users

Alison Box

Up and Running with DAX for Power BI: A Concise Guide for Non-Technical Users

ISBN-13 (pbk): 978-1-4842-8187-1 ISBN-13 (electronic): 978-1-4842-8188-8
https://doi.org/10.1007/978-1-4842-8188-8

Copyright © 2022 by Alison Box

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza,
Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub.

Printed on acid-free paper

Alison Box
Billingshurst, West Sussex, UK

https://doi.org/10.1007/978-1-4842-8188-8

To Madeleine, John, and Alan

v

Chapter 1: Show Me the Data ��� 1

Stars and Snowflakes ��� 4

Fact Tables ��� 4

Dimensions �� 5

The Star Schema ��� 5

Finding Nonmatching Values ��� 7

Chapter 2: DAX Objects, Syntax, and Formatting �� 15

DAX Syntax �� 16

DAX Formatting ��� 19

Chapter 3: Calculated Columns and Measures ��� 23

Calculated Columns �� 23

Creating Simple Calculated Columns �� 24

Looking at the RELATED Function �� 26

DAX Measures ��� 32

Implicit Measures �� 32

Explicit Measures �� 34

Creating a Measures Table �� 35

Creating Simple DAX Measures ��� 35

What Exactly Is a Measure? �� 41

Table of Contents
About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments �� xv

Introduction �� xvii

vi

Chapter 4: Evaluation Context �� 47

The Filter Context �� 47

Evaluations Using a Single Filter ��� 49

Calculation in the Total Row �� 52

Evaluations Using Multiple Filters ��� 53

The Row Context ��� 56

Chapter 5: Iterators �� 59

The SUMX Function (and Other “X” Functions) ��� 61

Total Row Grief �� 66

Chapter 6: The CALCULATE Function ��� 71

Why You Need CALCULATE �� 71

Using Single Filters ��� 77

Using Multiple Filters �� 78

AND and OR Filters �� 79

Complex Filters �� 81

Chapter 7: DAX Table Functions �� 85

Types of DAX Functions ��� 85

Table Functions ��� 87

Examples of Table Expressions ��� 88

Why Do We Need Table Expressions? �� 89

The FILTER Function �� 89

FILTER Used to Reduce Rows �� 90

FILTER as the Filter Argument of CALCULATE �� 91

Column Filters vs� Table Filters ��� 99

Table Filters Are Less Efficient �� 100

Table Filters Return Different Results �� 104

Using the KEEPFILTERS Function ��� 108

Table of ConTenTs

vii

Chapter 8: The ALL Function and All Its Variations �� 109

The ALL Function ��� 110

Applied to the Fact Table ��� 111

Using ALL on Dimension Tables ��� 117

Using ALL on a Column �� 120

The ALLEXCEPT Function �� 127

The ALLSELECTED Function �� 129

ALL as a Modifier to CALCULATE ��� 131

Chapter 9: Calculations on Dates: Using DAX Time Intelligence ��������������������������� 143

Power BI Date Hierarchies �� 144

Creating a Date Table �� 146

Using Time Intelligence Functions �� 149

Previous Month/Year – PREVIOUSMONTH/YEAR �� 153

Same Period Last Year – SAMEPERIODLASTYEAR ��� 153

Values for Any Time Ago – DATEADD ��� 154

Year to Date – DATESYTD �� 154

Total to Date or Cumulative Totals ��� 155

Rolling Annual Totals and Averages ��� 156

Calculating the Last Transaction Date and the Last Transaction Value �������������������������������� 158

Finding the Difference Between Two Dates ��� 162

Chapter 10: Empty Values vs� Zero ��� 165

The BLANK() Function ��� 165

The ISBLANK Function �� 168

Testing for Zero ��� 168

Using Measures to Find Blanks and Zero �� 169

Using the COALESCE Function �� 171

Chapter 11: Using Variables: Making Our Code More Readable ��������������������������� 173

Improved Performance ��� 174

Improved Readability �� 176

Table of ConTenTs

viii

Reduced Complexity ��� 177

Variables As Constants �� 178

Chapter 12: Returning Values in the Current Filter ��� 183

The SELECTEDVALUE Function �� 184

The CONCATENATEX Function ��� 189

Using Parameter Tables �� 195

The Values Function �� 199

A Table or a Scalar Function? �� 200

Replacing “Lost Filters” ��� 205

Converting Columns to Tables ��� 207

Chapter 13: Controlling the Direction of Filter Propagation ��������������������������������� 209

Programming Bidirectional Filters �� 210

Why You Should Never Use Bidirectional Relationships �� 213

Chapter 14: Working with Multiple Relationships Between Tables ���������������������� 217

Activating Inactive Relationships �� 219

Comparing Values in the Same Column �� 221

Chapter 15: Understanding Context Transition ��� 227

Overview of DAX Evaluations Contexts ��� 228

Row Context Revisited ��� 228

Filter Context Revisited�� 229

How Row Context Becomes Filter Context �� 229

How Context Transition Can Return “Surprising Results” ��� 237

Filters Using AVERAGE ��� 238

Filters Using MAX �� 242

Filters Using Measures �� 247

Aggregating Totals Using Context Transition ��� 251

Aggregating in Dimensions ��� 252

Aggregating in Virtual Tables ��� 259

Table of ConTenTs

ix

Chapter 16: Leveraging Context Transition ��� 271

Ranking Data: Looking at RANKX �� 272

Binning Measures into Numeric Ranges ��� 275

Calculating TopN Percent �� 279

Create the Slicers �� 280

Create the Measure to Find the Top or Bottom Percent Selected in Slicers ������������������������ 281

Calculating “Like for Like” Yearly Sales Using SUMMARIZE ��� 285

Using Context Transition in Calculated Columns ��� 293

Calculating Running Totals �� 293

Calculating the Difference from the Value in the Previous Row �� 294

Chapter 17: Virtual Relationships: The LOOKUPVALUE and TREATAS Functions ��� 297

LOOKUPVALUE Function �� 298

The TREATAS Function �� 302

Chapter 18: Table Expansion �� 311

Revisiting Filters ��� 313

Column Filters Revisited �� 313

The ALL Function Revisited ��� 317

Expanded Tables Explained ��� 318

Leveraging Expanded Tables ��� 323

“Reaching” Dimensions��� 324

Table Expansion vs� CROSSFILTER ��� 333

Using Snowflake Schemas �� 337

Chapter 19: The CALCULATETABLE Function ��� 343

CALCULATETABLE vs� FILTER ��� 344

CALCULATETABLE and Table Expansion �� 349

Calculating “New” Entities �� 350

Calculating “Returning” Entities �� 356

 Index ��� 361

Table of ConTenTs

xi

About the Author

Alison Box is a Director of Burningsuit Ltd

(www.burningsuit.co.uk) and an IT trainer and consultant

with over 30 years experience of delivering computer

applications training to all skill levels, from basic users

to advanced technical experts. Currently, she specializes

in delivering training in Microsoft Power BI Service and

Desktop, Data Modeling, DAX (Data Analysis Expressions),

and Excel. Alison also works with organizations as a DAX

and Data Analysis consultant. She was one of the first Excel

trainers to move into delivering courses in Power Pivot and DAX, from where Power BI

was born. Part of her job entails promoting Burningsuit as a knowledge base for Power BI

and includes writing regular blog posts on all aspects of Power BI that are published on

her website.

http://www.burningsuit.co.uk

xiii

About the Technical Reviewer

A native to Northern Indiana, Jake Halsey has over a decade

of experience working with various products, services,

and development tools in the IT industry. Working in the

Fort Wayne and Chicago areas as a senior-level software

developer and application administrator, he regularly

performs complex data analysis and prepares professional

reports. He’s particularly excited about his work on this book

as it has enabled him to add Power BI and

DAX to his own list of tools to prepare effective data

visualizations and has personally found the examples created by Alison Box to be

realistic, practical, and accessible to readers getting started in their journey with

Power BI.

xv

Acknowledgments

Writing a book can often be a lonely experience, but a book can only come to fruition

with help from outside. I would like to acknowledge and thank those people around me,

both professional and personal, that have been instrumental in assisting me in writing

this book. Firstly, many thanks to Jake Halsey, my technical reviewer, for his invaluable

and encouraging comments and his thorough review of the many DAX examples and

listings. I would also like to thank Joan Murray, the Acquisitions Editor at Apress, who, on

receiving the original manuscript of the entire book, agreed on the benefit of publishing

a book on DAX that had a non-technical focus. I’m also grateful to my Coordinating

Editor, Jill Balzano, for her professional approach that makes working with Apress a

pleasurable experience. Last but not least, my heartfelt and enduring thanks to my

family for their consistent support and encouragement, without whom I would have

found it hard to see this book through.

xvii

Introduction

Up and Running with DAX for Power BI is a condensed self-teaching resource for

learning DAX inside Power BI Desktop. DAX (Data Analysis Expressions) is the formula

language of Microsoft Power BI and was first introduced in 2009 as the programming

language of the Excel add-in, Power Pivot, from which Power BI was born. With the

ever-increasing adoption of Power BI as the preferred data analytics platform, the ability

to use DAX is fast becoming a necessary requirement to find and share the important

insights into your data. This book is a concise guide for non-technical users that focuses

on the core concepts that underpin this language, taking you from zero knowledge to

being able to use DAX to write the challenging calculations that are often necessary for

reporting on your data.

If you need to use DAX, there is quite a lot of help out there: books, videos, and

experts with a lot of opinions and copious examples of mind-boggling DAX code that, to

use, you can simply copy and paste without ever understanding how it works. Yet even

with the help of these resources, the DAX mantra continues: “DAX is difficult”! But this

is a misconception, and it’s the first barrier to learning DAX that you will encounter.

Although there is no doubt that DAX can often be challenging to understand, labelling

it “difficult” might appear as an excuse for those people who haven’t made the effort to

understand what goes on under the hood.

When you have shaken off the misconception that DAX is difficult and decided you

want to understand how DAX works, currently, there are two hurdles you will face, both

of which this book tackles. Firstly, many resources have been written specifically with

the DAX developer or other highly skilled technicians in mind. However, the intended

audience for this book is either Excel users or people with no technical or coding

background. In fact, it’s aimed at someone probably just like you who simply wants to get

on with their day job while still becoming a competent user of DAX. In this book, little

technical knowledge is assumed. Difficult concepts are explained with easy-to-follow

examples that everyone can understand, and the content is structured to gradually build

up confidence in working with DAX. The second obstacle you will encounter is that most

books on DAX can be considered as “reference works.” For example,

xviii

The Definitive Guide to DAX1 comprises over 700 pages covering every aspect of DAX in

meticulous detail. You may feel that using such works as “teach yourself” resources is a

daunting prospect because the abundance of information fast becomes overwhelming.

To get up and running with DAX, it’s not necessary to wade through copious pages on

rarefied DAX functions and the technical aspects of the language. There are just a few

mandatory concepts that must be fully understood before DAX can be mastered, and it’s

on these concepts that this book focuses. You will also probably want to learn DAX from

something more easily consumable and less of an investment in your time. This is why I

felt there was a need for a more concise approach to explaining the DAX language.

To get the most from the information contained in this book, being a competent user

of Power BI Desktop will be an advantage. This includes the ability to create data models

and generate reports using Power BI’s data visualizations. However, where specific

knowledge of these areas is required, I have provided links to the relevant information

for you to self-explore. You will find that within each successive chapter, the book builds

on the knowledge gained and the skills learned, and by the final chapters, you will have

acquired the necessary understanding of DAX to author complex calculations.

In Chapters 1 to 3, we cover the precursor knowledge that’s required before you

can begin to author DAX expressions, such as understanding the structure of your data

model and using DAX syntax. You will then be able to create some basic calculated

columns and measures. You will find that up to this point, DAX is definitely easy! It’s

then in Chapter 4 that we broach the first major DAX concept, which is the evaluation

context. Here, we look at the distinct ways in which calculated columns and measures

are calculated. We then move you on in Chapter 5 to the second important concept,

understanding iterators, where calculations are performed on each row of a table, just as

you would copy down on Excel formulas.

You will take a big leap forward in your understanding of DAX in Chapter 6, where

you meet the most important of all DAX functions, CALCULATE. It’s at this juncture

that you will start to use DAX as a programming language, where the outcomes of your

expressions happen in memory. At this point too, DAX veers well away from Excel

conceptionally, and you will begin to author more powerful calculations than the simple

sums and averages of basic measures.

In Chapter 7, we explore the idea of table expressions that are used to generate

in-memory virtual tables. As you move into more advanced areas of DAX, you will start

1 Marco Russo and Alberto Ferrari (2020), The Definitive Guide to DAX, 2nd ed, [Microsoft Press]

InTroduCTIon

xix

to appreciate that most DAX expressions involve generating these virtual tables. These

are typically subsets of real tables and are used to programmatically filter the data in

preparation for aggregations via the DAX measure. At this point, you may feel that

DAX is definitely getting a little more challenging. This is because you can’t see virtual

tables, you just have to imagine them, and the inner workings of expressions are mostly

hidden from us. Once you have completed Chapter 8 where we take a detailed look at

the ALL function that, along with CALCULATE, comprises most DAX expressions, you

are now ready to use DAX to solve a wide variety of data analysis scenarios. For example,

in Chapter 9, you will learn to compare data over time periods, and in Chapter 12, you

are taken through the creation of user-driven calculations using parameter tables. In

Chapter 14, you will discover how to make dynamic comparisons across categories of

data, such as finding which customers who bought product “X” also bought product “Y”.

Chapter 15 will bring you to the most challenging of all DAX concepts to understand.

This is the concept of context transition where you will learn to perform aggregations

at higher granularities. Once you have mastered the use of this concept, the list of data

insights you can now uncover greatly increases. You will be able to rank customers or

products by sales, bin totals into numeric ranges, dynamically find top or bottom percent

by value, and find the average total sales over years, quarters, and months. In fact, most

DAX calculations you author will use context transition in some way.

It may seem odd that it’s not until you are almost at the end of your journey through

DAX that we tell you at last how DAX really works and how it all fits together. The

reason for this is that it’s not until you reach Chapter 18 that you will have the skills

to understand the last DAX concept, that of table expansion. Although this concept is

mostly theoretical, once you know how the data model functions behind the scenes

when your expressions are evaluated, the knowledge you have gained throughout this

book will now all fall into place. In Chapter 18, finally, all the pieces of the DAX jigsaw fit

together, and you are now a fully fledged DAX expert.

Finally, on a personal note, I’ve written the book that I wish had been around when I

was first learning DAX, which was back in the days when Power Pivot was first launched.

There was very little to help me, and I’ve never forgotten the many hours of deciphering

DAX code that it took me to get to the position of thinking “yes, I can do this!” I’m hoping

that, with the help of this book, it will be an easier journey for you and that this book will

be a useful resource as DAX becomes as mainstream as Excel formulas.

InTroduCTIon

xx

Let’s not lose sight either of the objective of learning DAX, which is not an end in

its own right. It’s not so you can impress your colleagues by showing off your skills in

writing copious lines of DAX code. No, the objective of learning DAX is as a means to an

end. It is to enable you to analyze your data in ways that give you those insights that up to

now you’ve been struggling to find.

“The goal is to turn data into information, and information into insight.”2

If you want to follow along with the examples we’ve used in this book, these are the

files you will need:

Chapters 1 to 9 - 1 DAX Sample Data.pbix

Chapter 10 - 2 DAX Blanks & Zeros.pbix

Chapters 11 to 13 - 1 DAX Sample Data.pbix

Chapter 14 - 3 DAX USERELATIONSHIP.pbix

Chapters 15 and 16 - 1 DAX Sample Data.pbix

Chapter 17 - 4 DAX LOOKUPVALUE.pbix

 5 DAX TREATAS.pbix

Chapters 18 and 19 - 6 Expanded Tables.pbix

2 Carly Fiorina, former president and chair of Hewlett-Packard Co, ”Information: the currency of
the digital age,” Oracle OpenWorld, San Francisco, December 6, 2004

InTroduCTIon

1
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_1

CHAPTER 1

Show Me the Data
The key to understanding DAX is getting to grips with the challenging concepts that

underpin the expressions. Most DAX expressions you’ll write will amount to only a few

lines of code, but it’s what goes on under the hood that is the secret to understanding

their evaluation. For example, take this DAX expression:

=MAXX (Customers, [Total Sales])

It comprises a function, a table name, and a measure name. It should be simple

to understand. However, to unravel the calculation behind this expression, you would

need to have a firm grasp of the following concepts: row context, filter context, iterators,

and context transition. With DAX, the devil is definitely in the detail. This is why you

can’t just copy and paste other people’s expressions, hack them around, and hope for

the best that they’ll work. You’ll find it difficult to learn DAX using this approach. You

must concentrate on the core principles of the function language. You’ll find that DAX

becomes less difficult to understand if you simply pay attention to the detail.

However, before we can start writing code, we must begin our journey into the

language of DAX with the mandatory preparatory work.

Note If you would like a detailed explanation of the DAX language and when it
first appeared, its history is here: https://en.wikipedia.org/wiki/Data_
analysis_expressions.

It would, for instance, be impossible to create the correct DAX expressions without

understanding the structure and shape of the data that lies beneath. This is because the

construct of your expressions will depend directly on the arrangement of the tables in

your data model. This is why any DAX expert will say to you “show me the data” before

they attempt to write the relevant DAX code.

https://doi.org/10.1007/978-1-4842-8188-8_1
https://en.wikipedia.org/wiki/Data_analysis_expressions
https://en.wikipedia.org/wiki/Data_analysis_expressions

2

Therefore, in this chapter, you will familiarize yourself with the data we will be using

in our DAX examples throughout this book, and we will pay particular attention to the

structure of this data. You will learn the various terms that are used to describe the

constituent parts and the major precepts that underpin the structure. Only when you

understand these principles can you move on to author DAX code.

Our sample data1 comprises a fictitious sales scenario and what better product

to sell than wine (perhaps a more attractive prospect than selling cycles or electrical

equipment).2 In everything that follows in this book, you must imagine that you’re

engaged in selling this product, and by using DAX to analyze your sales through

the metrics that matter to you, you’ll gain insights into your data that can help drive

successful business results and profitability.

Note I appreciate that your data may not be sales related. However, our wine
sales data is generic data. It comprises the names of entities, numbers, and dates,
and your data will be no different from this.

We’ve imported six tables into Power BI Desktop as follows:

Winesales – Records our sales transactions.

Wines – Records the names and details of the wines we sell.

Customers – Who we sell our wines to.

SalesPeople – The people making the sales.

Regions – Our customers are grouped into these regions.

DateTable – Records every date, starting from the first day of the

month when sales start and ending with the last date in the current

financial year, categorizing these dates into year, quarter, and month.

Note As we’ll discover later, it’s simpler to have single-word table names, and
that’s why we’ve named the tables “Winesales”, “SalesPeople”, and “DateTable”.

1 To follow along with the examples, use the Power BI Desktop file “1 DAX Sample Data.pbix”.
2 This is a reference to the ubiquitous sample data, “AdventureWorks” and “Contoso Corporation”
used by many books on DAX

CHAPTer 1 SHoW Me THe DATA

3

Our tables are related in many-to-one relationships as shown in Figure 1-1.

Figure 1-1. The data model that is used throughout this book

To view these relationships, click on the Model button on the top left of the report

canvas. This view shows the relationships between the tables, and this structure is

known as the data model.
You will observe that the DateTable, SalesPeople, Customers, and Wines tables are

all related to the Winesales table. Notice the “1” and “*” to denote the one side and the

many side, respectively. The columns used to create the relationships have the same

column names in both tables; for example, WINE ID in the Wines table is related to

WINE ID in the Winesales table. The Regions table is the odd one out in that it’s not

directly related to the Winesales table but indirectly via the Customers table.

CHAPTer 1 SHoW Me THe DATA

4

If you would like more information on creating relationships between tables in

Power BI Desktop, follow this link:

https://docs.microsoft.com/en-us/power-bi/desktop-create-and-manage-

relationships

 Stars and Snowflakes
One thing you may notice about our data model is that its structure is simple. As has

already been mentioned, one of the key aspects of DAX, and what newbies to DAX

often overlook, is that the details of your DAX expressions will be inextricably tied

to the structure of the model. The simpler the model, the more straightforward the

calculations. There is nothing more worrying to a DAX expert than coming across an ill-

contrived data model because it probably means they will need to author more complex

DAX expressions. We look later at examples of using DAX to overcome anomalies in the

data model, but why make it difficult for yourself? Perhaps then, we should take a closer

look at the structure of our model and see why I’ve described it as “simple.”

Let’s start by considering the tables that comprise the model. In a Power BI data

model, a table should be either one of two types, either a fact table or a dimension as

described in the following sections.

 Fact Tables
This type of table stores “events.” The term “event” is used loosely here to describe

activities such as sales, orders, or survey results. Fact tables answer the question what?

That is, what are you analyzing in your report? You can identify the fact table by asking

yourself these three questions:

 1. Which table holds the data that you want to analyze in your report?

 2. If you delete this table, will the remaining tables still be related to

other tables in the data model?

 3. Which table sits on the many side of all the other relationships?

Let’s answer these questions using our data. We want to report on our sales that

are recorded in the Winesales table. If we delete the Winesales table, we’ll just have

unrelated tables floating around in Model view. The Winesales table sits on the many

CHAPTer 1 SHoW Me THe DATA

https://docs.microsoft.com/en-us/power-bi/desktop-create-and-manage-relationships
https://docs.microsoft.com/en-us/power-bi/desktop-create-and-manage-relationships

5

side of all the other relationships. Clearly, the Winesales table is our fact table. By

definition, fact tables sit on the many side of a many-to-one relationship. Another

attribute of the fact table is that its data will change frequently and it’ll probably have

many more rows than a dimension.

 Dimensions
These tables store the descriptions of the entities in your model. Dimensions answer the

question how? That is, how do you want to analyze your data? In our data model, we can

analyze our sales by wines, salespeople, customers, regions, and dates using the data in

the columns within these tables. The data in dimensions does not necessarily change

regularly, and dimensions tend to have fewer rows than fact tables.

There’s no table property that you set to configure the table type as a dimension or a

fact table. It’s determined by which side of the relationship the table sits on. Tables that

sit on the “one” side are always dimension-type tables, while tables that are only related

on the “many” side are fact tables.

The reason it’s so important to distinguish between these two different types of

tables is that they support two different types of behavior in the data model, as follows:

• Dimension tables support grouping and filtering.

• Fact tables support summarization.

As we’ll learn later, DAX measures are usually designed to summarize data from the

fact table that’s been grouped and filtered by a dimension table.

 The Star Schema
You’ll notice in Model view that we’ve placed the fact table in the middle of the view

and arranged our dimensions around the fact table. This arrangement can be described

as a star shape, giving a name to the structure, star schema. In a perfect star schema,

all dimensions are directly related to the fact table. There is an imperfection in our

data model because the Regions table is a dimension related to another dimension.

Dimensions that are not directly related to a fact table but are indirectly related via

dimension tables are described as snowflake dimensions. You can imagine that if we had

a number of dimensions related to other dimensions in chains outward from the fact

table, the schema would more resemble a snowflake.

CHAPTer 1 SHoW Me THe DATA

6

Because data is infinitely variable, the tables in your data model may not be arranged

obediently in a perfect star schema. Having multiple fact tables, for instance, isn’t

necessarily a problem. The thing to bear in mind, however, is that the more your model

diverges from a star schema, the more you will need DAX to manage it. We will be

resolving problems inherent in the structure of the data model later in this book when

we explore the CROSSFILTER and TREATAS functions where we will create “virtual”

relationships.

As we’ll discover when we learn to control filters and more specifically calculate

distinct counts, it can be difficult to work with dimensions that are not related directly to

the fact table. Therefore, it sometimes makes sense to integrate a snowflake dimension

into its parent table and therefore tidy up the schema back to a star, a process known as

denormalization. You can find more information on this and star schemas generally here:

https://docs.microsoft.com/en-us/power-bi/guidance/star-schema.

One thing that Power BI prevents is ambiguity in the data model, where there are

multiple paths through which filters can propagate. Therefore, if you attempt to relate a

dimension to two or more other dimensions, this will result in an inactive relationship

being created, indicated by a dotted line. For example, in Figure 1-2, we’ve related the

SalesPeople dimension to both the Customers dimension and the Regions dimension,

and this results in an inactive relationship between SalesPeople and Regions.

CHAPTer 1 SHoW Me THe DATA

https://docs.microsoft.com/en-us/power-bi/guidance/star-schema

7

Figure 1-2. An inactive relationship is created to avoid ambiguity

We look at the concept of ambiguity and working with inactive relationships in later

chapters, but for the moment, let’s just be thankful that we aren’t allowed to do anything

that impedes the normal mechanism of the model.

 Finding Nonmatching Values
A question that is often asked is what happens when there are missing values in the

linking columns used to create relationships. There are two different scenarios here,

taking the Wines dimension as our example:

CHAPTer 1 SHoW Me THe DATA

8

 1. You have values in the WINE ID column in the Wines dimension

that don’t exist in the WINE ID column in the Winesales fact table.

 2. You have values in the WINE ID column in the Winesales fact

table that don’t exist in the WINE ID column of the Wines

dimension.

Let’s take scenario #1 first. Understanding this situation allows us to answer the

following question: Which wines haven’t we sold? When you build a visual that takes a

column from a dimension and summarizes a column from the fact table, you will only

see items where there’s a match for values in the linking columns. By default, all visuals

remove items where there is no value to show.

Note For information on building Power BI visuals, including the Table visual
shown in Figure 1-3, visit

https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-
report-add-visualizations-i

For example, in Figure 1-3, which uses the WINE column from the Wines dimension

and summarizes CASES SOLD from the Winesales table, we only see the wines where

there’s a match for the values in the WINE ID column in both tables. In other words,

we’re only seeing the wines we’ve sold.

CHAPTer 1 SHoW Me THe DATA

https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-report-add-visualizations-i
https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-report-add-visualizations-i

9

How can we see the wines we haven’t sold in this visual? To do this is straightforward

and requires no DAX. In the Visualisations pane, in the Values bucket, click on the drop-

down of the column from the dimension, for example, the WINE column, and select

Show items with no data. You’ll now see a blank value beside items that have no match

in the fact table, in our case, “Lambrusco” wine. This tells us that we haven’t sold this

wine; see Figure 1-4.

Figure 1-3. By default, you only see items where there are matching values in the
linking columns

CHAPTer 1 SHoW Me THe DATA

10

Figure 1-4. Finding the items for which there is no data

If we look at the Wines dimension in Data view (click the button above Model on the

left of the report canvas), we will see that “Lambrusco” has a WINE ID of 14. Examining

the values in the WINE ID column of the Winesales table using the filter shows there is

no WINE ID 14 in this column; see Figure 1-5.

CHAPTer 1 SHoW Me THe DATA

11

Figure 1-5. The fact table does not contain the value from the dimension in the
linking column

As the name of the “Show items with no data” option implies, it can be used

whenever you want to see items where there is no calculation to show, for example,

where a measure doesn’t return a value for an item. It doesn’t mean there is never a

value to show, as in the case of “Lambrusco” wine; rather, it means that the current filters

on the model result in there being no value to show.

Let’s now move on to scenario #2 where there are values in the WINE ID column of

the Winesales fact table that don’t exist in the WINE ID column of the Wines dimension.

Note The sample file does not contain the data described in scenario #2.
However, Figure 1-6 shows you what this data would look like.

You can see in Figure 1-6, we have just this scenario. The wine ID’s shown have no

match in the Wines dimension.

CHAPTer 1 SHoW Me THe DATA

12

When such values occur in your data, you’ll see the outcome in any visual as soon

as you take a column from the dimension and analyze a column from the fact table, as

shown in Figure 1-7, where we have put the data into a Table visual and also a slicer.

Here, we have a “blank” wine name that represents all the WINE ID values in the fact

table for which there are no matches in the dimension. You’ll also see the same outcome

in a slicer even though it doesn’t use the relationship and only shows values from the

dimension.

Figure 1-6. Values in the fact table that are not in the dimension

CHAPTer 1 SHoW Me THe DATA

13

Figure 1-7. The “Blank” entry shows there are values in the fact table that don’t
match to values in the dimension

The “Blank” entry is a result of what we sometimes refer to as “dirty data.” Why are

there values in the fact table for which there is no match in the dimension? How are you

going to resolve this scenario? This is a question that only the data modeler can answer,

and ultimately the solution lies in correcting the data at its source.

We hope you appreciate how important it is to identify nonmatching values in your

data and to understand that you don’t need DAX to do this. Finding out where there’s no

data can be equally as valuable as knowing where there is, and the star schema allows us

to do this.

In this chapter, you have familiarized yourself with the data we will be using

henceforth. You also now understand concepts that underpin the data model and how

it comprises fact tables and dimensions related to many-to-one relationships. The

simplest structured data model is the star schema where dimensions are related directly

to the fact table. However, it is possible to have dimensions indirectly related to the fact

CHAPTer 1 SHoW Me THe DATA

14

table via other dimensions creating snowflake dimensions. This is mandatory precursor

knowledge to understanding DAX because what you will learn as we progress through

this book is that many DAX calculations will involve manipulating the tables in the data

model, and in doing so, the way the tables are structured is paramount.

CHAPTer 1 SHoW Me THe DATA

15
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_2

CHAPTER 2

DAX Objects, Syntax,
and Formatting
Now that you understand the structure of the data we’ll be using throughout this book,

the next step is learning how to construct DAX expressions. In this chapter, we will

compare and contrast DAX expressions to Excel formulas as this will provide context

for your knowledge. You will learn to reference the objects used in DAX expressions, the

syntax of the expressions, and how you can format your DAX code, making it easier to

read and debug.

To follow along with the examples in this chapter, in the Data view of Power BI

desktop, select the Winesales table in the Fields list, and on the Table Tools tab, click the

New Column button. This will display the DAX “formula bar” as shown in Figure 2-1.

https://doi.org/10.1007/978-1-4842-8188-8_2

16

Figure 2-1. To follow along with the examples, use the New Column button

The first similarity to Excel is the “formula bar” that pops up when you create new

columns or measures. We will start to type some expressions into the formula bar

presently. However, at this stage, you don’t need to know what the expressions are

calculating. You are just learning how to type the correct syntax.

 DAX Syntax
Notice on the left, just like Excel, the formula bar has a Cancel button (the cross) and

an Enter button (the tick). However, the formula bar is in effect a code editor and can

extend to many lines if the SHIFT + ENTER key combination is pressed (see the section

below on Formatting). This is why, unlike the Excel formula bar, each line of the DAX

code editor is numbered. You will, for instance, notice that in Figure 2-1, we are on line 1.

The next parallel with Excel is that DAX expressions are constructed in the same

way as Excel formulas. For example, all DAX expressions begin with an equals sign, and

commas separate the arguments of functions. Also, just like Excel, DAX expressions are

case insensitive; it makes no difference in what case you type your DAX code.

Chapter 2 DaX ObjeCts, syntaX, anD FOrmatting

17

However, one of the major differences between DAX and Excel is that in DAX, you

can’t reference “cells.” The only two objects that are referenced in DAX expressions are

tables and columns.

You reference a table by just naming it. For example, to count the rows in the

Winesales table, this would be this expression:

= COUNTROWS (Winesales)

Notice that when you start to type this expression into the DAX editor, just like Excel,

the DAX editor matches what you’re typing in a list of suggestions. This list is referred to

as the DAX IntelliSense; see Figure 2-2. Just click on a suggestion in the IntelliSense list to

place it into your code. You can’t put anything into your expression that isn’t on the list.

Figure 2-2. The DAX IntelliSense list

Also notice in the COUNTROWS expression that spaces have been used before and

after the brackets. Typing spaces is arbitrary as they will be ignored by the DAX editor

and can be used wherever you feel they improve the clarity of the expression (see the

section below on Formatting).

If the table name contains a space, the table name must be surrounded with

single quotes:

= COUNTROWS ('Wine Sales')

To reference a column, you surround the column name with square brackets ([])

and always precede the column name with the table name. For example, to sum the

CASES SOLD column in the Winesales table, this would be the expression:

= SUM (Winesales[CASES SOLD])

Chapter 2 DaX ObjeCts, syntaX, anD FOrmatting

18

As mentioned before, in DAX, there is no such thing as a cell, only tables and

columns.

Table 2-1 shows a comparison of equivalent Excel formulas and DAX expressions,

and you can see how similar the syntax is between the two.

Table 2-1. Comparing Excel formulas and DAX expressions

Excel DAX

=iF (b2 > 50 , “yes” , “no”)

When this formula is copied down, the “B2”
will change relatively to “B3, B4, B5 etc.”

=iF (Winesales[Cases sOLD] > 50 , “yes” , “no”)

Used in a calculated column, this expression is
automatically applied to the entire column.

= sUm (Winesales[Cases sOLD])

This uses Excel Table syntax where the
table is named “Winesales” and the
column is named “CASES SOLD”.

= sUm (Winesales[Cases sOLD])

Used in a measure or in a calculated column to
find total cases in the CASES SOLD column in the
Winesales table.

Another contrast between Excel and DAX is the way you reference “AND” and

“OR”. In Excel, you use the AND() and OR() functions. In DAX, you typically use these

operators instead; AND is && (double ampersand) and OR is || (double pipe).

Note you’ll find the pipe symbol “|” on your keyboard at the bottom left, above
the backslash and to the right of shiFt.

Table 2-2 shows a comparison of using “AND” and “OR” in Excel formulas and DAX

expressions.

Chapter 2 DaX ObjeCts, syntaX, anD FOrmatting

19

Table 2-2. Contrasting AND and OR in Excel and DAX

Excel DAX

anD anD

= iF (anD (Winesales[@Cases sOLD] > 50,

Winesales[@Cases sOLD] < 100), “yes” , “no”)

Using Excel Table syntax where the table is named
“Winesales” and the column is named “CASES SOLD”
Note the use of the “@” to denote “the current row.”

= iF (Winesales[Cases sOLD] > 50

&&

Winesales[Cases sOLD] < 100 ,

“yes” , “no”)

Used in a calculated column.
Using the value in the current row is
implicit in calculated columns.

Or Or

= iF (Or (Winesales[@saLespersOn iD] = 2 ,

Winesales[@saLespersOn iD] = 6),

“yes” , “no”)

Using Excel Table syntax where the table is
named “Winesales” and the column is named
“SALESPERSON ID”

= iF (Winesales[saLespersOn iD] = 2

||

Winesales[saLespersOn iD] = 6 , “yes” ,

“no”)

Used in a calculated column.

Note DaX does have an anD function and an Or function, but in DaX, these
functions only accept two arguments, so it’s usually better to use the operators.

A single ampersand (&) is used in DAX as the concatenation operator, just as it is

in Excel.

 DAX Formatting
Before we start authoring DAX expressions in earnest, let’s get into some good habits

concerning the formatting of our DAX code. Consider the two expressions in Figure 2-3.

They are the same expression but with two different layouts.

Chapter 2 DaX ObjeCts, syntaX, anD FOrmatting

20

Figure 2-3. Comparing unformatted and formatted expressions

Question: Which layout makes the DAX code easier to understand? I think you’ll

agree that it’s the second layout where we have separated the code onto different lines.

In the DAX editor, you can use the keyboard combination SHIFT + ENTER to move onto

a new line and use the TAB key to indent lines. Spaces can be used for clarity. It’s also

recommended that you start nested functions on a new line and close brackets at the

same indent of the function it closes.

To add comments to your code, use the following:

-- – Single line comment (double dash)

// – Single line comment (double forward slash)

/* – Start a multiline comment (forward slash and asterisk)

*/ – End a multiline comment (asterisk and forward slash)

However, there are no hard and fast rules about how to format your DAX code.

Whatever works for you.

If you want to quickly format your untidy DAX code, use the DAX formatter here:

https://www.daxformatter.com/

You can also find more information and guidelines on best practices here:

https://www.sqlbi.com/articles/rules- for- dax- code- formatting/

Chapter 2 DaX ObjeCts, syntaX, anD FOrmatting

https://www.daxformatter.com/
https://www.sqlbi.com/articles/rules-for-dax-code-formatting/

21

You should now be able to type your DAX code correctly. Use square brackets to

reference columns and always precede your column references with the table name

where the column resides. You understand that in DAX, we often use “AND” and “OR”

operators rather than the equivalent functions used in Excel. Using separate lines in

the code editor will greatly improve the clarity of the expression. However, DAX doesn’t

care how your code is formatted. It will execute your code however dire the layout of the

expression looks!

This chapter concludes our preparatory work before we can move on to author DAX

expressions and generate calculations. The next step is to understand that in DAX, we

work with different types of expressions, and this will be the focus of the next chapter.

Chapter 2 DaX ObjeCts, syntaX, anD FOrmatting

23
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_3

CHAPTER 3

Calculated Columns
and Measures
In the previous chapter, you learned the syntax used by the DAX language, and now you’re

ready to write your first DAX expressions. In DAX, there are three types of expression:

calculated columns, measures, and calculated tables. However, in this chapter, we will

only be addressing the first two types (we look briefly at calculated tables in Chapter 15).

Note You already know that DAX is the acronym for “Data Analysis Expressions.”
However, we often refer to “DAX expressions” because it seems clearer to do so.

Firstly, you will learn how to write calculations using the calculated column. This

will be the part of DAX that will be intuitive to you, particularly if you are an Excel user.

Calculated columns will seem no different to you than using Excel formulas. When we

move forward to learn how and why we need DAX measures, however, things may become

a little more challenging. One of the biggest hurdles when learning DAX is understanding

the difference between the calculated column and the measure, and this is something

that we will also be exploring in this chapter. For instance, the same DAX expression that’s

used in a calculated column can’t typically be used in a DAX measure, but perversely,

most DAX expressions used in measures can be put into a calculated column.

 Calculated Columns
When learning DAX, most people understand expressions that are entered into

calculated columns because they are very similar to creating Excel formulas,

particularly if you use formulas in Excel tables. In DAX, you will find many of your

favorite Excel functions, such as IF, TODAY, ROUNDUP, and SUM, that can be used in a

calculated column.

https://doi.org/10.1007/978-1-4842-8188-8_3

24

This is why newbies to DAX mistakenly think that DAX is just like Excel and create a

plethora of calculated columns when they really should be creating measures, which are

more efficient in every way. The thing to understand about the calculated column is that,

just like copying down on an Excel formula, the calculated column is evaluated for every
row in the table and therefore can be process heavy. We will see that this is very different

from how measures are evaluated.

 Creating Simple Calculated Columns
To create our first DAX expression in a calculated column, let’s take a very simple

calculation and multiply the CASES SOLD values in the Winesales table by 10 percent. In

Chapter 2, you learned how to create a new column. Ensuring that the Winesales table

is selected in Data view, you click on the New Column button on the Table Tools tab. In

the DAX editor, enter the following expression:

10 PC of Cases = Winesales[CASES SOLD] * 0.1

When you’ve finished typing, you can press the enter key, or you can click on the tick

to the left of the DAX editor. Your calculated column called “10 PC of Cases” is created

and joins the Fields list; see Figure 3-1.

Figure 3-1. The calculated column joins the Fields list

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

25

Let’s now see how we can use the IF function in DAX in a calculated column. We

could, for instance, add a column in the Winesales table that’s populated with either

“Team A” or “Team B.” This column will group our salespeople as follows: Salespeople

with IDs 1, 3, and 6 are in Team A, and other salespeople are in Team B. We’ll call this

new column “Team”.

In the DAX editor, enter this code noting the use of the double pipe for “OR”:

Team =

IF (

 Winesales[SALESPERSON ID] = 1

 || Winesales[SALESPERSON ID] = 3

 || Winesales[SALESPERSON ID] = 6,

 "Team A",

 "Team B"

)

Similarly, you could group the values in the CASES SOLD column into “High” and

“Low” volume where high volume is any sales where CASES SOLD is between 50 and 400

by using this DAX expression, noting the use of the double ampersand for “AND”:

Volume =

IF (

 Winesales[CASES SOLD] >= 50

 && Winesales[CASES SOLD] <= 400,

 "High",

 "Low"

)

Creating these calculated columns has been an easy introduction to DAX because,

as we’ve seen, the expressions are very similar to formulas in Excel. The reason we’ve

included these calculated columns here is because they’re simple examples that teach

you DAX syntax and that every Excel user can do.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

26

However, we wouldn’t recommend you do such calculations here.1 There’s a more

efficient way to create these columns, and that’s to generate them in Power Query using

Power Query's conditional column.

 Looking at the RELATED Function
So we’ve established that there are common functions to both Excel and DAX such as

the IF function. However, if using calculated columns isn’t always the most efficient way

to generate data, why would we need to use them? There are some functions that are

specific to DAX and give us reasons to author our DAX expressions in the context of a

calculated column. One of these functions is the RELATED function.

This function returns a value from a related table and is similar in purpose to the

VLOOKUP function in Excel. However, RELATED will only return values from the one

side of the relationship to the many side. For example, if you want to show the customer

names related to the CUSTOMER ID’s in the Winesales table, you could use this DAX

expression in a calculated column in the Winesales table:

Customer Name from Customers Table =

 RELATED (Customers[CUSTOMER NAME])

You will now see the names associated with each CUSTOMER ID in the calculated

column; see Figure 3-2.

Figure 3-2. The RELATED function returns values from related tables

1 The reason for this is that calculated columns have to be recalculated whenever the data is
refreshed. This can have a big impact on the efficiency and performance of the report. You can
find more information on this topic here: https://docs.microsoft.com/en-us/power-bi/
guidance/import-modeling-data-reduction

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

https://docs.microsoft.com/en-us/power-bi/guidance/import-modeling-data-reduction
https://docs.microsoft.com/en-us/power-bi/guidance/import-modeling-data-reduction

27

Often, the generation of the calculated column using RELATED where you populate

values from related tables is used solely for ad hoc reasons. Once you have the customer

names alongside their transactions, you’ll find it’s often easier to cross-check your data

analysis. Once the column has served its purpose, it can be removed.

Note If these were Excel tables and we wanted to populate the Winesales Excel
table with the customer names in the Customers Excel table, we would use the
VlooKup function in the Winesales Excel table like this:

=VlooKup ([@CustomEr ID] , Customers, 2, 0)

the “@” symbol means “use the value in the current row of the Excel table.” using
the value from the current row is implicit in DAX calculated columns.

You can also use RELATED to pull through values from indirectly related tables into

the fact table. For example, the Regions table is related to the Customers table that is in

turn related to the Winesales table as shown in Figure 3-3.

Figure 3-3. The Regions table has an indirect relationship to the Winesales table

Therefore, we could populate each REGION name alongside each sales transaction

in the Winesales table by using this code (see Figure 3-4):

REGION NAME = RELATED (Regions[REGION])

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

28

Figure 3-4. Using RELATED to return the Region names

Notice that we’ve named this column REGION NAME to distinguish it from the

REGION column in the Regions table.

Let’s look more closely at the RELATED function. You should understand that you

can only use this function in the following two circumstances:

 1. The tables must be related.

 2. Only values from tables on the one side of a relationship can be

returned to tables on the many side.

The act of populating values from tables that sit on the one side of a relationship into

tables that sit on the many is called denormalization. For instance, in the example in

Figure 3-4, we’ve denormalized the Regions table by extracting the values in the REGION

column into the Winesales table using RELATED. There are at least three advantages in

doing this:

 1. You now know in which Region each sales transaction was made.

 2. If you need to use the region names in a visual, you can use

the calculated column in the Winesales table. Therefore, you

no longer need to see the Regions table in Report view. If this

is the case, you can hide the Regions table. To hide a table in

Report view, right-click the table name in the Fields list in either

Data view or Model view, and select Hide in report view; see

Figure 3-5.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

29

 3. You can perform a distinct count on the REGION NAME

column in the Winesales table to calculate how many different

Regions we’ve sold our wines in. We’ll do this calculation later,

but because the sales transactions must be directly associated

with the regions in which they were made, this would be a difficult

expression if we left the REGION values in the Regions table.

Figure 3-5. Hiding tables in Report view

Understanding the RELATED function allows us to do another mandatory

calculation in our data model. Perhaps you’ve noticed that although we have a Winesales

table, we have no sales values. However, we can now calculate them. We can multiply the

CASES SOLD column in the Winesales table with the PRICE PER CASE column in the

Wines table, and because the Winesales table is related to the Wines table in a many-to-

one relationship, we can use RELATED to do this.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

30

We’re going to look at two different methods of using RELATED to calculate the Sales

revenue values.

For method #1, we could create two calculated columns. The first column, called

“PRICE”, uses RELATED to populate the PRICE PER CASE values into the Winesales

table. The second column multiplies the “PRICE” column by the CASES SOLD column

and is called “Sales”:

PRICE =

RELATED (Wines[PRICE PER CASE])

SALES =

Winesales[CASES SOLD] * Winesales[PRICE]

Method #2 requires just one calculated column. You can use RELATED to find the

PRICE PER CASE values from the Wines table for each row in the Winesales table in

memory and then multiply by CASES SOLD. In other words, you don’t need to see the

price of each wine before you multiply it by the CASES SOLD values:

SALES =

Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

What many people who are new to DAX would now think is that the SALES

calculated column has solved the problem of calculating total sales values in a visual on

the report canvas. For instance, we can now use this column in the Values bucket of a

visual to find the total sales for each wine; see Figure 3-6.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

31

Figure 3-6. Using the SALES calculated column in the Values bucket to sum
the sales

However, this is probably not such a great idea. Think about it; firstly, the calculated

column will be evaluated for every row in the Winesales fact table and recalculated

whenever the data is refreshed. That’s a lot of processing if you have millions of rows in

your fact table.

Secondly, when you put this column into a visual containing items from dimensions,

it performs another calculation to sum these values for each item from the dimensions.

Does this sound a very efficient way of doing this calculation? Probably not. The upshot

of inefficient data models is that reports built on the top of them become slow to refresh

and render (refer to Footnote 1 where there is a link for more information on this topic).

Therefore, the question now is the following: If you shouldn’t use a calculated

column for the sales calculation, what should you use?

This is where measures can help us. We will revisit our sales calculation in Chapter 5,

and rather than using a calculated column to perform the evaluation, we will be using a

measure. But for now, we’re going to leave calculated columns behind us (we will revisit

the calculated column later in this book when we explore some complex expressions

that require their use). If you’re an Excel user, you’ll feel quite at home creating

calculated columns using the DAX functions that have a replica in Excel. Nevertheless,

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

32

you probably won’t have the same comfortable feeling when you come to writing DAX

measures. This is where DAX becomes a little more challenging, so let’s move forward

and learn how to author DAX measures.

 DAX Measures
We’re now ready to look at the second type of DAX expression, the measure. There

are two types of measures that you can use in visuals: implicit measures and explicit

measures (however, we don’t normally call them “explicit measures,” just “measures” but

implicit measures are always named accordingly). What’s the difference between

implicit and explicit measures? Well, let’s start with the implicit measure first.

 Implicit Measures
If you’ve created any Power BI visual, you’ve created an implicit measure. Have you

ever wondered what the sigma symbol (∑) beside a numeric column in the Fields list

means? It has a more precise purpose than signaling a column containing numbers.

The sigma indicates that when you put this column into the Values bucket of a visual,

the data in this column will automatically be aggregated. This is what we mean by an

implicit measure.

The sigma normally indicates that the column will be summed, but you can

perform other aggregations such as averages or find the maximum or minimum value

by changing the function on an ad hoc basis. To do this, use the drop-down beside the

column name in the Values bucket and, for example, change this to “Average” as shown

in Figure 3-7 where the steps to generate an implicit measure have been numbered.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

33

Figure 3-7. Creating an implicit measure

 1. The column CASES SOLD has a sigma beside it – ∑.

 2. When this column is put into the Values bucket, it defaults to

SUM, but you can change the function to AVERAGE by using the

drop-down.

 3. The implicit measure has calculated the average CASES SOLD

for the items displayed in the visual, in this case, each wine.

However, there are several drawbacks to using implicit measures. Consider these

scenarios:

• You may want to rename the implicit measure “Average of CASES

SOLD” to something more concise. You can do this by double-

clicking on the entry in the Values bucket, but you would have to

repeat this every time you use an implicit measure and then want to

rename it.

• If you rename the implicit measure, the name of a measure in the

visual won’t match the column name in the Fields list.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

34

• Although you normally want to use the SUM function, you often

want to use AVERAGE as well. You would have to keep changing the

function to AVERAGE.

• In some visuals, you might like to format an implicit measure with

two decimal places and sometimes with no decimal places. You

would not be able to have different numeric formatting for the

implicit measure in different visuals.

• What if you want to calculate 10 percent of the sum of the CASES

SOLD values for each wine, or indeed, any calculation on the total

values? You can't do this using an implicit measure.

This is the trouble with implicit measures; they just don’t make the grade. So let’s

move the focus of this chapter to what we’re really here for, and that’s to learn how to

create our own explicit measures using DAX.

 Explicit Measures
If you create your own measures rather than relying on implicit measures, these are

some of the benefits:

• You’ll have more control over the aggregation performed by the

measure and be able to name it accordingly.

• You’ll be able to use different numeric formatting for different

measures.

• Explicit measures will become a constituent part of the data model.

Your measures will join the Fields list, and you, or people using your

data, can use and reuse the measures whenever you need to visualize

a particular calculation.

• By using DAX, you can go far beyond just simple aggregations of your

data. You can perform complex calculations to get to the insights you

really need.

So let’s bite the bullet and create our first DAX measures. Once we’ve done this, we

can then answer the pressing question that has yet to be answered, and that is what

exactly is a measure?

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

35

Before we start, however, we need to find a place to store our measures. Explicit

measures are table agnostic and can be stored in any table. However, it makes sense to

create a table that will hold only measures.

 Creating a Measures Table
To do this, on the Home tab, click on the Enter Data button. In the Create Table pane,

give your table a name, for example, “Measures Table” (you can’t name the table

“Measures” because this is a reserved word), and load the table.

When you put a measure into this table and delete the column that’s there, a

“measures” icon will display beside the table in the Fields list, and the table will move to

the top of the list; see Figure 3-8.

Figure 3-8. The Measures table will sit at the top of the Fields list

However, it’s not mandatory to store your measures in a separate table. Some data

modelers prefer to store measures in the fact table or in the table from where the data is

being used by the measure.

 Creating Simple DAX Measures
The first measure we’re going to construct will replace the implicit measure that

calculates the sum of the CASES SOLD. To create this measure, in Report view, right-

click on your Measures table in the Fields list and select New measure from the shortcut

menu. You could instead click on the New Measure button on the Home tab. However, if

you use this method, ensure that the table you have selected in the Fields list is the table

where you want to put your measure.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

36

Tip If your measure is accidentally stored in the wrong table (or you just want to
move it), use the Fields list in Model view where you can drag and drop measures
between tables.

Once you have selected New measure, the DAX editor will appear at the top of the

screen as it did when we created calculated columns. In the DAX editor, in front of the

equals sign (=), name your measure, for example, “Total Cases”, and type the following

DAX expression:

Total Cases =

SUM (Winesales[CASES SOLD])

You can see this expression in the DAX editor in Figure 3-9.

Figure 3-9. Your first DAX measure in the DAX editor

Press the Enter key and your measure will display in the Measures table. You can

now delete “Column1” from this table.

Note DAX measure names are not case sensitive and can contain any
characters. However, we would recommend restricting your measure names to
containing just letters and/or numbers and spaces. We would also recommend that
you keep the names of tables, columns, and measures simple and straightforward.
I particularly like Chris Webb’s blog on this topic: https://blog.crossjoin.
co.uk/2020/06/28/naming- tables- columns- and- measures- in-
power- bi/

DAX measures are only calculated when they are used, so you must put the measure

into the Values bucket of a visual before you can see the calculation. For example, in

Figure 3-10, in a Table visual, we’ve used the WINE column from the Wines dimension

and then dragged the “Total Cases” measure into the Values bucket of the visual.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

https://blog.crossjoin.co.uk/2020/06/28/naming-tables-columns-and-measures-in-power-bi/
https://blog.crossjoin.co.uk/2020/06/28/naming-tables-columns-and-measures-in-power-bi/
https://blog.crossjoin.co.uk/2020/06/28/naming-tables-columns-and-measures-in-power-bi/

37

Figure 3-10. Measures are calculated when they are used

One of the great advantages of using explicit measures is that the numeric formatting

is stored with the measure. To format a measure, select the measure by clicking on it

in the Fields list, and the measure expression shows in the DAX editor. Then, on the

Measures tools tab, in the Formatting group of commands, you can select the numeric

formatting you require, for example, a thousands separator; see Figure 3-11.

Figure 3-11. Use the Formatting group of commands on the Measures tools tab to
format your measure

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

38

Let’s create our second measure, this time to calculate the average cases sold as

follows:

Avg Cases =

AVERAGE (Winesales[CASES SOLD])

Another analysis you may need to perform on your data is calculating “how many,”

for example, the number of sales for each different wine. In other words, we need to

count the number of rows in the Winesales table for each wine shown in the visual.

The implicit measure that we could use here uses the DAX COUNT function that counts

the number of values in the column you reference (for more information on the COUNT

function, visit https://docs.microsoft.com/en- us/dax/count- function- dax).

However, we want to count the number of rows, and therefore, only an explicit measure

will do the job we want. The DAX function we need is the COUNTROWS function whose

name describes its purpose. This function accepts a table as its only argument which is

the table whose rows you want to count, so this would be the expression:

No. of Sales =

COUNTROWS (Winesales)

One of the benefits of creating these simple measures is that you can use them

to analyze any items from any dimension. As you generate visuals, taking items from

different dimensions, the measures will consistently recalculate accordingly. For

example, in Figure 3-12, we’re using our measures in three Table visuals showing data

from the following dimensions:

• WINE from the Wines dimension

• SALESPERSON from the SalesPeople dimension

• REGION from the Regions dimension

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

https://docs.microsoft.com/en-us/dax/count-function-dax

39

Figure 3-12. Measures are calculated according to the data comprising the visual

Our final example of a simple DAX measure will accomplish an insightful calculation

that would be difficult to repeat in Excel, that of the distinct count. In DAX, we have

an aggregate function for this job. Its name is DISTINCTCOUNT, and we can simply

reference the column required for the analysis. Let’s discover how many different

customers we sold our wines to by authoring this measure:

Distinct Customers =

DISTINCTCOUNT (Winesales[CUSTOMER ID])

While we’re focusing on the DISTINCTCOUNT function, remember that we created

this calculated column in the Winesales table:

REGION NAME =

RELATED (Regions[REGION NAME])

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

40

We can use this calculated column to create a measure to calculate in how many

different regions we’ve sold our wines:

Distinct Regions =

DISTINCTCOUNT (Winesales[REGION NAME])

Figure 3-13. Using the DISTINCTCOUNT function

You will observe in Figure 3-13 that we’ve sold “Bordeaux” to 57 different customers

and “Champagne” to 53 different customers. We’ve sold “Rioja” in 17 different regions.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

41

 What Exactly Is a Measure?
We’ve created a few simple explicit measures, but we still haven’t answered the

following question: What is a measure? The answer, like measures themselves, is not

a straightforward one. A measure is a DAX expression that is used in a Power BI visual

to return a scalar value and is evaluated in a specific filter context. In other words, DAX

measures filter the rows of tables and typically perform an aggregation on the filtered

data to return a scalar value (which is a single value) that is visualized in the report.

Note not all DAX measures perform aggregations. As we will see later, some DAX
measures can return text values. nevertheless, they will be scalar in nature in that
they will return a single value.

For example, a typical DAX measure might sum the values in a column containing

quantities (e.g., the “Total Cases” measure) where the rows in the fact table are filtered

for each year, and this analysis is visualized in a column chart where each year's totals

(e.g., 2021) can be seen; see Figure 3-14.

Figure 3-14. Measures typically aggregate filtered data

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

42

Let’s take a closer look at these three aspects of the measure:

 1. All visuals on the report canvas use measures.

 2. Measures return scalar (single) values.

 3. Measures are calculated where a filter has been placed on the

data model. This is known as the filter context and is the subject of

the next chapter.

 All Report Visuals Use Measures

When we authored our calculated columns, these are seen in Data view and

they returned a value for every row in the table. A measure, on the other hand, is used

in Report view and is placed in the Values bucket of a visual. All visuals use measures in

the Values bucket even if they are implicit measures (which, as already described, is a

numeric column that you’ve dragged into the Values bucket).

Note there is an exception to this rule. the Key Influencers visual is best used
with a non-aggregated column, rather than a measure. For more information
on the Key Influencers visual, visit my blog: www.burningsuit.co.uk/
blog/2020/01/the- key- influencers- visual- versus- strictly-
come- dancing/

Another way to think of measures is that they are report-level calculations as opposed

to the row-level calculations that you create in calculated columns.

 Measures Return Scalar Values

All Power BI visuals are reporting tools that group and aggregate your data, just like an

Excel pivot table or pivot chart. Therefore, to understand this aspect of the measure, let’s

put our Excel hats on and remind ourselves that in Power BI, Table and Matrix visuals are

the equivalents of Excel pivot tables. For instance, consider the values in the Table visual

in Figure 3-15.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

http://www.burningsuit.co.uk/blog/2020/01/the-key-influencers-visual-versus-strictly-come-dancing/
http://www.burningsuit.co.uk/blog/2020/01/the-key-influencers-visual-versus-strictly-come-dancing/
http://www.burningsuit.co.uk/blog/2020/01/the-key-influencers-visual-versus-strictly-come-dancing/

43

Figure 3-15. The value identified sits in the equivalent of the “Values” area of an
Excel pivot table and would be in a “cell”

If this were an Excel pivot table, the “Total Cases” values would be sitting in the

“Values” area of the pivot table, and every value returned by the calculation would be

sitting in a “cell.” We’ve identified the “cell” for “Bordeaux” wine that holds the value of

54,070 being returned by this measure:

Total Cases =

SUM (Winesales[Cases Sold])

What does this value represent? It represents the sum of the values in the CASES

SOLD column for all the rows in the Winesales table that equate to “Bordeaux” wines.

If the same data were sitting in an Excel pivot table, we could double-click on

this value and drill through to display these rows on a separate sheet, as shown in

Figure 3-16.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

44

Figure 3-16. In an Excel pivot table, you can drill through

We can’t drill through on the value in the Power BI Table visual, but nevertheless,

the measure in memory does the same. It filters a set of specific rows from a table. In our

example, it filters the rows in the Winesales table for “Bordeaux” wines. However, the

result of the measure must sit in the “cell” of the Table visual just as it sits in the cell of

the pivot table. Therefore, the measure must return a scalar value. Typically, this would

mean that the measure must aggregate the data; for example, sum the cases sold for

“Bordeaux” wines.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

45

Note normally, a scalar value would be a single numeric value, but measures
can return single text values as well, so here, the term “scalar” is used in a more
general sense to mean a single value of any data type.

We’ve established that measures must return scalar or single values, a concept that

we’re sure you think is straightforward and easy to understand, but at some point, you’ll

attempt to create measures that return errors that look like that shown in Figure 3-17.

Figure 3-17. This error message displays when there is no aggregation

The error message in Figure 3-17 reads:

“A single value for column ‘CASES SOLD’ in table ‘Winesales’ cannot be determined.

This can happen when a measure formula refers to a column that contains many values

without specifying an aggregation such as min, max, count, or sum to get a single result.”

What is the reason for this error message? There is no aggregation in the measure; it’s

just multiplying two values.

Another example of where a measure does not return a scalar value is shown in

Figure 3-18. Here, the VALUES function is being used in a Table visual (we look at the

VALUES function in a later chapter). The measure should return a scalar value, which it

does when evaluating individual rows in the Table visual, but when calculating the Total

row of the visual, it returns multiple values, and so an error message is displayed when

the measure is put into a Table visual that has the Total row turned on.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

46

Figure 3-18. Some measures return a table of values

The error message reads:

“A table of multiple values was supplied where a single value was expected.”

Even the most hardened DAX experts can be caught out by creating measures that

don’t return scalars!

In this chapter we have explored the difference between calculated columns and

measures. You understand that calculated columns are row level calculations while

measures are used in all visuals and are calculations that are performed at report

level. However, we’re still missing an explanation of the third and most important

ingredient of the DAX measure, that all measures are evaluated in a specific filter context.

To understand what is meant by this, you will need to move forward to the next chapter

where we will focus on the context in which our expressions are evaluated and why this

is so important in understanding DAX measures.

CHAptEr 3 CAlCulAtED Columns AnD mEAsurEs

47
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_4

CHAPTER 4

Evaluation Context
You have learned to author simple calculated columns and measures, but one of the

most fundamental questions for DAX users is how these two types of expression differ.

At this stage, you understand that calculated columns are row-level calculations and

that measures are calculations that are performed at the report level. However, we need

to be more specific regarding this differentiation, and you need to understand that

the definitive difference lies in the context in which the expressions are evaluated. In

calculated columns, expressions are evaluated in the row context; in measures, they are

evaluated in the filter context. It is the latter of these that will be the main focus in this

chapter. Once you understand the implications of the filter context, the implications of

the row context are more readily understood.

 The Filter Context
In the last chapter, you learned that measures are report-level calculations and that they

must return a scalar value. This brings us to the third and most important aspect of the

measure, and that is that all DAX measures are evaluated in a specific filter context. To

understand what is meant by a “specific filter context,” let’s compare these two different

measures:

Total Cases =

SUM (Winesales[CASES SOLD])

Total Stores =

SUM (Customers[NO. OF STORES])

You can see the evaluation of these measures in Figure 4-1, but why does the first

measure return different values for each wine but the second measure return the

same value? The reason is the filter context that’s active when both these measures are

evaluated.

https://doi.org/10.1007/978-1-4842-8188-8_4

48

Figure 4-1. Measures will return different values or the same value because of the
filter context that is active

When a measure is placed into any visual, before the measure is evaluated, the DAX

engine in memory places filters on tables in the data model depending on three factors:

 1. The column or columns placed in the visual that group and

categorize the data

 2. The columns in slicers that are filtering the data in the visual

 3. Any columns placed in the Filters pane that are filtering the data in

the visual

These three factors come together to generate the filter context for the evaluation of

the measure. We can’t see these filters on the data model. We just have to imagine them.

Chapter 4 evaluation Context

49

Note the filtering of the data model happens in memory and is hidden from us.
therefore, in the Figures below and throughout this book, where we’re simulating
what happens in memory, the in-memory tables have a dashed border to
distinguish them from the tables you can see in Data view.

In our Table visual in Figure 4-1, only factor #1 is relevant (there are no slicers or

other filters).

 Evaluations Using a Single Filter
The column in the visual that’s grouping the data is the WINE column from the

Wines dimension. The first value in this column to be calculated is the total cases for

“Bordeaux” wine.

Before the “Total Cases” measure calculates the value for “Bordeaux,” a filter is

placed in memory on the Wines dimension to filter “Bordeaux” wines. If we could see

the filter on this table, it might look something like Figure 4-2.

Figure 4-2. The in-memory Wines dimension that has been filtered to one row

If we examine the data model (Figure 4-3), we can see that the Wines dimension

is related to the Winesales fact table in a many-to-one relationship. The arrow tells us

that if the Wines dimension is filtered, this filter is propagated onward to the Winesales

fact table.

Chapter 4 evaluation Context

50

Figure 4-3. Filters propagate from the Wines dimension to the Winesales fact table

Therefore, the Winesales fact table is now cross-filtered to only contain sales for

“Bordeaux” wine that has the WINE ID that equals 1; see Figure 4-4. Notice there is no

filter in the WINE ID column in the Winesales table because the filter on the Winesales

table is a cross-filter that is generated only through filter propagation.

Figure 4-4. The fact table is cross-filtered via the dimension

Chapter 4 evaluation Context

51

This is the only filter affecting this visual, so the measure now sums the CASES SOLD

column for “Bordeaux” wines and returns 54,070.

The evaluation of the measure then moves on to “Champagne” and repeats

the process of filtering the Wines dimension and cross-filtering the Winesales fact

table using a different filter context each time. In the next evaluation, for instance,

the WINE column from the Wines dimension now equals “Champagne” and so now

returns 49,158.

Note experienced Dax users will know that this explanation of the filter context
in action is a close approximation of what happens in memory and not exactly
what happens. however, this explanation is easily understood at this stage of your
knowledge and will serve you well for the time being. We will reveal what really
happens under the hood later in this book.

And so on for all the wines in the WINE column of the Table visual. Every evaluation

of the “Total Cases” measure is evaluated in a different filter context.

There is a way that we can prove that our Wines dimension, in memory, is filtered

to one row on the evaluation of a measure that analyzes each wine. We can create this

measure that counts the rows of the Wines dimension:

No. of Wines = COUNTROWS (Wines)

If we put this measure into a Table visual containing the WINE column from

the Wines dimension, the measure will return 1 for the evaluation of each wine; see

Figure 4-5.

Chapter 4 evaluation Context

52

Figure 4-5. The “No. of Wines” measure returns 1 because the Wines dimension
has been filtered down to one row for each evaluation

Notice too how “Lambrusco” wine returns a value because this measure filters only

the Wines dimension and no other tables are involved.

 Calculation in the Total Row
This now brings us to the calculation for the Total row of the visual, which returns

423,224; see Figure 4-6.

Figure 4-6. The Total row is evaluated in a different filter context

Chapter 4 evaluation Context

53

This value is not the sum of the total values for each wine shown in the visual. When

the measure is evaluated for the Total row, the filter is removed from the WINE column

of the Wines dimension, so the expression is evaluated for all wines. In other words, it’s

our expression “= SUM (Winesales[CASES SOLD])” calculated in yet another different

filter context.

 Evaluations Using Multiple Filters
Let’s create some more filters that affect the Table visual. For instance, we could include

a slicer using the SALESPERSON column from the SalesPeople dimension1 and also have

the REGION column from the Regions dimension in a page-level filter2; see Figure 4-7.

Figure 4-7. Filters are now placed on the Table visual from the slicer and the page-
level filter

1 For information on working with slicers, visit https://docs.microsoft.com/en-us/power-bi/
visuals/power-bi-visualization-slicers
2 For information on working with the Filters pane, visit https://docs.microsoft.com/en-us/
power-bi/create-reports/power-bi-report-filter?tabs=powerbi-desktop

Chapter 4 evaluation Context

https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-slicers
https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-slicers
https://docs.microsoft.com/en-us/power-bi/create-reports/power-bi-report-filter?tabs=powerbi-desktop
https://docs.microsoft.com/en-us/power-bi/create-reports/power-bi-report-filter?tabs=powerbi-desktop

54

We’ve filtered salesperson “Abel” and region “Argentina”. You can see that the Total

Cases value for “Bordeaux” is now 265 because the filter context has changed; WINE

equals “Bordeaux”, SALESPERSON equals “Abel”, and REGION equals “Argentina”. Again,

we can imagine how these tables might look in memory; see Figure 4-8.

Figure 4-8. The in-memory tables filtering the Table visual

You will notice, however, that the Total Stores measure is still returning the same

value for every wine (i.e., 79). We will explain why presently.

Again, we can examine the data model (Figure 4-9) and can see how these filters

propagate through the model and always arrive at the Winesales fact table, which is then

cross-filtered accordingly.

Figure 4-9. Filters propagate through the data model and always arrive on the
fact table

Chapter 4 evaluation Context

55

Notice how the Regions table creates a “snowflake” in the schema because it’s

indirectly related to the fact table via the Customers dimension. You can see how this

arrangement of tables works; if the Regions table is filtered, for example, for “Argentina”,

this filter is propagated through to the Customers dimension, so customers in Argentina

are now filtered in memory. This filter is then propagated onward to the fact table.

Depending on how the visual is constructed and what filters affect the visual will

determine the outcome of the measure. This now brings us to the “Total Stores” measure

shown in Figure 4-1. Notice it returns the same value of 1,181 for every wine and also in

the Total row. This measure is summing the NO. OF STORES column in the Customers

dimension. The Customers dimension has no filter on it when this measure is evaluated. The

only filter is on the Wines dimension. Therefore, for the evaluation of every wine, the measure

sums the values in the NO. OF STORES column in the Customers table for all the customers.

Looking again at the data model (Figure 4-10), we can see that if the Wines

dimension is filtered, this filter is propagated to the fact table (shown by the tick), but the

filter is not propagated onward to the Customers dimension (shown by the cross), as the

arrow always points from the one side of the relationship into the many.

Figure 4-10. Filters do not flow from the fact table to dimensions

Note Well, how do you correctly calculate the number of stores in which
each wine has been sold? one thing not to do, tempting though it is, is to edit
the relationship to a “bidirectional” filter. instead, you can use the Dax function
CroSSFilter to programmatically reverse the direction of the filter propagation.
We look at the CroSSFilter function later in this book.

Chapter 4 evaluation Context

56

The filter context underpins all DAX measures and is the reason why it’s so

important to distinguish between the two different types of table, dimension tables and

fact tables, because they play two different roles in the evaluation of the measure:

• The role of dimension tables is to group the data and to propagate

filters through the data model into the fact table.

• The role of fact tables is to summarize subsets of data that have been

cross-filtered from dimensions.

DAX measures typically summarize data in the fact table that’s been cross-filtered by

dimension tables.

So next time you’re wondering “why is my measure returning incorrect values,”

it’s probably not the expression that’s at fault; it’s more likely because you haven’t

understood the current filter context in which the measure has been evaluated.

 The Row Context
The filter context is not the only evaluation context that DAX uses. There is another

evaluation context called the row context. Row context is applicable in any DAX

expression that iterates the rows of a table where the expression is bound to the values in

the current row. All calculated columns are evaluated in the row context and this is how

they differ from measures, which are always evaluated in the filter context. However, just

to make life difficult, some measures will use both the filter context and the row context

in their evaluation. Also, there are some calculated columns whose row context can

be turned into a filter context. We will be exploring these ideas as we move forward in

this book.

To understand the row context, let’s again refer to what we know about Excel

formulas. In an Excel table, the formula is “copied down” where it is calculated for every

row in the column. An “@” character is used in the formula to denote using the values in

the current row. This is essentially what the row context is in DAX. When using the row

context, the DAX expression iterates over every row in the table, and the values used in

the expression are the values sitting in the current row; see Figure 4-11.

Chapter 4 evaluation Context

57

Figure 4-11. Both Excel table formulas and DAX calculated columns use values
from the current row, known as the “row context” in DAX

We can understand that calculated columns would normally use the row context,

but measures can also use the row context in their evaluation. But surely the nature of all

DAX measures is to group and summarize data, not to perform row-level calculations.

Well, measures can perform row-level calculations too, and this is where the behavior of

iterators comes in, a concept we will explore in the next chapter.

However, let’s now summarize what you have learned in this chapter, and that is that all

measures use the filter context in their evaluation. The filter context refers to filters that will

be placed on the data model by the evaluation of the measure and depends on the construct

of the visual in which the measure will be calculated and on any filters that impact on the

visual. You now know also that there is a second evaluation context, the row context, where

the DAX expression scans a table and performs row-level calculations as in the case of the

calculated column. Understanding the two evaluation contexts that differentiate measures

from calculated columns is the first major DAX concept that you have learned. Some people

who have been using DAX, perhaps for some length of time, are often not able to explain

this fundamental difference between measures and calculated columns.

Chapter 4 evaluation Context

59
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_5

CHAPTER 5

Iterators
There is a group of functions in DAX that are referred to as iterators, and from their

name, we can infer that these functions iterate tables in the evaluation of a DAX

expression. Any DAX function that ends in an “X” is an iterator, such as the “X”

aggregators: SUMX, AVERAGEX, MAXX, MINX, COUNTAX. There are also “X” iterating

functions that aren’t aggregators such as CONCATENATEX and RANKX. Just to make life

even more confusing, there are iterating functions that don’t end in “X” such as FILTER

and ADDCOLUMNS.

We will explore the FILTER, CONCATENATEX, and RANKX functions later. The

ADDCOLUMNS function is beyond the remit of the book, but hopefully it will be

something you self-explore as your knowledge of DAX increases. The focus of this

chapter will be the aggregating iterators: SUMX, AVERAGEX, MAXX, MINX, and

COUNTAX.

Aggregating iterators have two arguments: the table to be iterated and the expression

that is to be evaluated for each row of the table, the result of which will then be

aggregated. These functions create a row context inside the measure by iterating the

table referenced by the function, and each row in the table is “visited” in memory by the

measure. Remember that the measure will have generated a filter context first, so the

table being iterated may have a filter or cross-filter on it.

https://doi.org/10.1007/978-1-4842-8188-8_5

60

Figure 5-1. The SUMX function iterates the cross-filtered fact table and performs a
row-level calculation that is then summed by the measure

For example, consider the measure “10 PC Increase Total” being evaluated in

Figure 5-1. Here, we are using the aggregating iterator SUMX in the measure to multiply

in memory the CASES SOLD value in each row of the fact table by 1.1. The results of

these row-level calculations are then aggregated to return a scalar value returned by the

measure, for example, 59,477.00 for “Bordeaux” wine. In a similar way, we could have

used AVERAGEX or MAXX or any of the iterating aggregators.

Measures that include iterating functions use the row context in their iteration and

then use the filter context to generate the scalar value.

Let’s move forward now and explore these aggregating iterators in more detail,

starting with SUMX.

Chapter 5 Iterators

61

 The SUMX Function (and Other “X” Functions)
Now that you understand the purpose of DAX iterating aggregators, let’s get to know

one of the major iterating functions in DAX, and that’s the SUMX function. We can then

move on to explore other “X” aggregators.

SUMX returns the sum of an expression evaluated for each row in a table and has the

following syntax:

= SUMX (table, expression)

where:

table is the table where you want to perform the calculation.

expression is the calculation you want to be performed for each row in that table.

Here’s an example of the SUMX syntax:

= SUMX (Winesales, Winesales[CASES SOLD] * 0.1)

To illustrate the use of SUMX, let’s start with this rather unrealistic but easy-to-

understand scenario. We have been asked to find any CASES SOLD value that is greater

than 100 and increase this value by 20%; otherwise, we only increase the value by 10%.

Perhaps this is some strange way of predicting next year’s volume of cases sold, so

we’ll call this calculation “Next Yr Cases”. We then want to see what the “Next Yr Cases”

value would be for each of our wines.

If we didn’t know how to use SUMX, we would probably do this calculation in a

clumsy way using both a calculated column and an implicit measure. We might create

this calculated column using the IF function as shown in the following and then use an

implicit measure by dragging the calculated column into the Values bucket of a Table

visual; see Figure 5-2.

Chapter 5 Iterators

62

Figure 5-2. Creating a calculated column to be used as in implicit measure isn’t
efficient

But let’s think this through. We don’t need to first create a calculated column to see

the increased value for each row and then in another step sum this value for each wine,

using an implicit measure. We can do it all in one go using SUMX. If we do this, the

requirement for the calculated column is redundant; we can just use the measure. This is

the real benefit because measures are always more efficient than calculated columns.

This is the explicit measure using SUMX that we can use instead of the calculated

column/implicit measure combination:

Next Yr Cases Measure =

Chapter 5 Iterators

63

SUMX (

 Winesales,

 IF (Winesales[CASES SOLD] > 100,

 Winesales[CASES SOLD] * 1.2,

 Winesales[CASES SOLD] * 1.1

)

)

How does the SUMX measure work?

We know that SUMX sums the expression evaluated for each row in the table. The

first argument in SUMX references the table where the calculation will be performed,

in our case, Winesales. The second argument is the calculation you want to be done in

memory for each row in this table. This is our expression using IF that SUMX calculates

in memory by iterating every row. It then sums the results of this calculation, in this case,

for each wine (because that’s the current filter context for the evaluation of the measure).

Now that we have discovered the SUMX function, we can revisit a calculation we

learned to author in Chapter 3, and that’s the “Sales” calculation that’s currently sitting in

a calculated column; see Figure 3- 6. Do you remember we created this column using the

RELATED function?

Sales =

Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

We then used this column in an implicit measure to find the total sales, but this

wasn’t the most efficient way of accomplishing this task. Well, now we can write a

measure that will be our definitive “Total Sales” calculation using SUMX, as follows:

Total Sales =

SUMX (

 Winesales,

 Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

)

This is a much cleaner way to calculate our Total Sales. The SUMX function iterates

the Winesales table, and for every row in the current filter context, it multiplies the value

in the CASES SOLD column with value in the PRICE PER CASE column of the Wines

table (using RELATED to find the price of the wine in the current row context). It then

sums the results of these row-level calculations for each wine.

Chapter 5 Iterators

64

Tip select a measure and use the Measure tools tab and the Formatting group to
format your measures in the currency of your choice.

In a similar way, if you want to find the maximum sales or the average sales, the DAX

measures would be these respectively:

Max Sales =

MAXX (

 Winesales,

 Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

)

Avg Sales =

AVERAGEX (

 Winesales,

 Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

)

You can see the results of these measures in Figure 5-3.

Chapter 5 Iterators

65

Figure 5-3. Measures using SUMX, AVERAGEX, and MAXX

Let’s explore another example of using AVERAGEX by calculating the average price

that our customers have paid for their wines. We need to first find the price of every

transaction (in the current filter context) in the Winesales table and then calculate the

average of these prices, so the measure would look like this:

Average Price =

AVERAGEX (

 Winesales,

 RELATED (Wines[PRICE PER CASE])

)

The “Average Price” measure uses the RELATED function to calculate the price of

each transaction in memory, and AVERAGEX then averages these prices. You can see the

results of this measure in Figure 5-4.

Chapter 5 Iterators

66

Figure 5-4. Calculating the average price that customers paid for their wines

This may seem a simple measure, but even some experienced DAX users struggle

to get it right, so let’s explain its evaluation. We can see in Figure 5-4 that the filter

context is on the CUSTOMER NAME column of the Customers dimension and “Black

River & Co” is the first instance. The Winesales fact table is cross-filtered to contain only

this customer’s sales. The RELATED function, nested inside AVERAGEX, in memory

calculates the PRICE PER CASE value from the Wines dimension for each row in the

Winesales table for “Black River & Co.” The AVERAGEX function then finds the average of

these prices (it sums the prices and divides by the number of rows in the Winesales table

for this customer).

 Total Row Grief
This brings us to another common problem for people who are new to DAX:

understanding the calculation on the Total row of a Table or Matrix visual. People often

complain that it’s not correct. This is probably because they’ve used the SUM function

when they should have used SUMX.

Chapter 5 Iterators

67

Consider the measures in Figure 5-5 that compare the “Total Sales” measure to

the “Total Sales Wrong” measure. You can see that for each wine, the “Total Sales” and

the “Total Sales Wrong” measures both return correct results. But when the measures

evaluate the Total row, the “Total Sales Wrong” measure shows an incorrect result.

Figure 5-5. The Total row calculation is incorrect for the “Total Sales
Wrong” measure

Chapter 5 Iterators

68

So what is the problem with “Total Sales Wrong” when it evaluates the Total row?

The problem, as is often the case, will be found within the filter context. Remember what

we learned earlier; the Total row calculation is not the sum of the total values you see in

the visual. In the Total row, the measure is evaluated in a different filter context where

the filter has been removed from the WINE column. So let’s look at how things can easily

go awry. This is the measure for “Total Sales Wrong”:

Total Sales Wrong =

SUM (Winesales[CASES SOLD]) * SUM (Wines[PRICE PER CASE])

Let’s also extract the two constituent expressions into their own separate measures:

Total Cases =

SUM (Winesales[CASES SOLD])

Sum Price =

SUM (Wines[PRICE PER CASE])

Our “Total Sales Wrong” measure is multiplying the results of these two expressions;

refer to Figure 5-5.

You can see that the problem lies in using SUM, particularly in trying to sum the

PRICE PER CASE values. What is the sum of these values? It’s the sum of the price in the

current filter context. So for the evaluation of each wine, it’s simply the price of the wine,

for example, $75 for “Bordeaux”; see Figure 5-6.

Figure 5-6. The sum of the price on the evaluation of each wine is the price of
the wine

Multiplying this value by the sum of the cases sold for each wine gives the correct total

sales value when evaluating each wine. But for the evaluation of the Total row, the filter

has been released from the WINE column, so the “SUM (Wines[PRICE PER CASE])”

 expression sums the prices for all the wines and returns $917, see Figure 5-7. It is this

value that is multiplied by the sum of the cases sold.

Chapter 5 Iterators

69

Figure 5-7. The sum of the prices on the evaluation of each Total row

So in the “Total Sales Wrong” measure, the Total row calculation is the sum of the

prices for all the wines multiplied by the sum of cases for all the wines: 917 x 423,224 =

388,096,408.

The incorrect expression using SUM sums and then multiplies. The correct

expression using SUMX multiplies and then sums.

The SUM function should only be used in the simplest of measures to sum the values

in a single column and never when you want to sum the results of multiplications or

other calculations. In fact, even when you use the SUM function in a DAX expression,

this is converted internally by the DAX engine into SUMX.

So for instance, this expression

=SUM (Winesales[CASES SOLD])

is converted internally to this:

=SUMX (Winesales, Winesales[CASES SOLD])

In learning about iterators and how to use SUMX and the other “X” iterating

functions, we’re progressing well into more difficult areas of DAX. We’ve also shed light

on other challenging areas of DAX, such as the filter context and the nature of measures.

You’ve learned some other important concepts too, understanding the role of fact

tables and dimensions within the data model, but we’re still only starting out.

The real power behind DAX is still waiting in the wings for us to discover, and that’s

the use of the function called CALCULATE.

Chapter 5 Iterators

71
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_6

CHAPTER 6

The CALCULATE Function
CALCULATE is the most important function in DAX. Quite a sweeping statement you

might think but as soon as you get to grips with CALCULATE, you’ll quickly realize

that there won’t be many expressions you author in DAX where this function won’t be

required, even though you might think we’ve done pretty well up to now. In this chapter,

you will learn how to construct expressions using CALCULATE which you will find

relatively straightforward. It’s understanding when and why you must use CALCULATE,

and its purpose inside the measure, that will be more challenging to grasp, and so this

will be the true focus of this chapter.

 Why You Need CALCULATE
Let’s look at solving a scenario that will explain how CALCULATE can help us. In our

data model, we have our DateTable dimension that is related to the Winesales fact table

by the DateTable[DATEKEY}column and the Winesales[SALE DATE] column as shown in

Figure 6-1.

https://doi.org/10.1007/978-1-4842-8188-8_6

72

Figure 6-1. The DateTable dimension is related to the fact table

If we filter on the YEAR column in the DateTable, the filter will propagate to the

Winesales table to filter the sales for that year. We’ve been asked to carry out a specific

analysis of our data. For each of our wines, we would like to calculate what percentage

the total cases sold for 2021 is of the total cases sold for all years as shown in Figure 6-2.

Chapter 6 the CaLCULate FUnCtion

73

Figure 6-2. A Table visual showing what percentage the cases sold for 2021 are of
the total for all years

In other words, in the same visual, we need to have both the “Total Cases” measure

for all years and the “Total Cases” measure filtered for the year 2021. We can then divide

“Total Cases” for all years into “2021 Cases” and express this as a percentage.

If you look at the example in Figure 6-3, you can see that we have copied and pasted

the “Total Cases” measure and named it “2021 Cases”.

Chapter 6 the CaLCULate FUnCtion

74

Figure 6-3. We can copy a measure and attempt to apply filters to the
copied measure

We want to see if we can filter the “2021 Cases” measure to show values for 2021,

while at the same time the “Total Cases” measure shows values for all years. However, we

have a problem. If we use a slicer to filter the YEAR column from the DateTable, it filters

both measures; see Figure 6-4.

Chapter 6 the CaLCULate FUnCtion

75

Figure 6-4. Filters are applied to all measures in the visual

It seems that we must find a way to apply different filter contexts for different

measures in the same visual. However, as yet, any filters being used by a visual, be they

from the visual itself, from slicers, or from filters in the filters pane, apply the same filter

to all the measures in the visual. We can’t yet pick and choose which filters affect which

measures. At the moment it’s all or nothing. This is where the CALCULATE function can

help us.

Note at this juncture, the slicer filtering the Year column can be removed from
the canvas as it does not impact the data as required and is now redundant.

CALCULATE evaluates an expression in a modified filter context and has the

following syntax:

= CALCULATE (expression , filter1 , filter2 etc.)

Chapter 6 the CaLCULate FUnCtion

76

where:

expression is what you want calculated. This can be a DAX expression or a measure

that defines an expression.

filter1, filter2, etc. is how you want to filter the expression or measure. You can

have multiple filters, and these are combined in an “AND” logical statement.

Here are two examples of the CALCULATE syntax:

= CALCULATE (SUM (Winesales[CASES SOLD]), Wines[WINE] = "Bordeaux")
= CALCULATE ([Total Cases], Wines[WINE] = "Bordeaux")

The first example uses an expression in the expression argument, and the second

uses a measure in the expression argument (highlighted in gray).

This is the first time that we have nested a measure inside a “parent” measure. Note

that when you type your expression in the DAX editor, if you type a square bracket “ [”,

IntelliSense will list only measures; see Figure 6-5.

Figure 6-5. Typing a square bracket “ [” into the DAX editor, lists all your
measures

CALCULATE takes an expression or a measure and evaluates it in a different filter

context from the active filters coming through from the visual, slicers, or the filters

pane. The end result of this new filter context generated by CALCULATE depends on

the current state of the active filters. This is what is meant by the filter context being

“modified” in the description of CALCULATE. However, rather than trying to explain

what CALCULATE does, perhaps it’s easier to work through some examples.

Chapter 6 the CaLCULate FUnCtion

77

 Using Single Filters
Back to our scenario. In the Table visual in Figure 6-4, how do we generate a measure to

calculate the Total Cases for 2021 while retaining the measure that calculates Total Cases

for all years? This is the measure, using CALCULATE that will do the job:

2021 Cases =

CALCULATE ([Total Cases], DateTable[Year] = 2021)

Now we can create the final measure that will calculate the percentage that each

wine’s total cases for 2021 are of the total for all years and format it as percent:

2021 Percentage =

 [2021 Cases] / [Total Cases]

Or better still:

2021 Percentage =

DIVIDE ([2021 Cases], [Total Cases])

Note the DiViDe function returns a blank value by default if there is a divide by
zero error, so using DiViDe is the preferred method of performing divisions.

When we put either of these measures into a Table visual, we can see that the total

cases for “Bordeaux” wine in 2021 comprised 27.63% of the total cases for “Bordeaux”

wine for all years (2017 to 2021).

Let’s look more closely at the evaluation of the “2021 Cases” measure in Figure 6-2.

We can see that coming through from the Table visual, we have a filter on the WINE

column in the Wines dimension. However, using the “2021 Cases” measure, CALCULATE

in memory also filters the DateTable dimension so that YEAR equals 2021. This filter is

then applied to the Winesales fact table alongside the filter coming through from the

Wines dimension; see Figure 6-6.

Chapter 6 the CaLCULate FUnCtion

78

Figure 6-6. How filters propagate for the “2021 Cases” measure:

 1. The current filter context filters each WINE in the Wines

dimension. This filter is propagated to the Winesales table and

cross-filters each wine.

 2. The filter provided by CALCULATE programmatically filters the

DateTable for the year “2021”. This filter is also propagated to the

Winesales table and so applies a second cross-filter on Winesales.

The thing to note here is that the 2021 filter on the DateTable dimension only affects

the evaluation of this measure and no other measures in the visual. You can think of

CALCULATE as being a way to programmatically generate a filter context in memory that

interacts with active filters coming through from the visual, slicers, and the filters pane.

Let’s now explore some more examples of using CALCULATE. For example, let’s

calculate the total sales where the CASES SOLD value is greater than 350.

Total Sales for Cases Sold Greater than 350 =

CALCULATE (

 [Total Sales],

 Winesales[CASES SOLD] > 350

)

 Using Multiple Filters
CALCULATE accepts multiple filter arguments that are combined in an AND logical

statement. If you require an OR statement, you can use the OR operator or the OR

Chapter 6 the CaLCULate FUnCtion

79

function within a single filter argument inside CALCULATE, and we will be exploring

both of these scenarios. You can also use more complex filters that require aggregate

expressions inside the filter arguments of CALCULATE, and we will be moving forward

to understand these expressions too.

 AND and OR Filters
The following are three more examples of measures that use CALCULATE to modify

the filter context. Notice how all the filter arguments to CALCULATE are combined in

an “AND”.

Total Cases in May 2021 =

CALCULATE (

 [Total Cases],

 DateTable[YEAR] = 2021,

 DateTable[MONTH] = "may"

)

Total Cases for Abel in Argentina =

CALCULATE (

 [Total Cases],

 SalesPeople[SALESPERSON] = "abel",

 Regions[REGION] = "argentina"

)

Average Cases for Black Ltd in 2021 =

CALCULATE (

 AVERAGE (Winesales[CASES SOLD]),

 DateTable[Year] = 2021,

 Customers[CUSTOMER NAME] = "black ltd"

)

You can see the results of these expressions using the WINE column from the Wines

dimension in Figure 6-7.

Chapter 6 the CaLCULate FUnCtion

80

Figure 6-7. Measures using multiple filters generated by CALCULATE

In the preceding examples, filter arguments in CALCULATE are combined in an

“AND” statement, for example, cases sold for 2021 AND May. However, what if you

require a filter that uses “OR”, for example, 2021 OR 2020. Using CALCULATE, filtering

using “OR” on the same column is straightforward. Filtering using “OR” on different

columns is a little more challenging, and this is where our calculations will get a little

trickier. Let’s take the simpler calculations first.

To use “OR” on the same column, you can use the double pipe (||) operator within

the same filter argument, as in these examples:

Total Cases 2020 or 2021 =

CALCULATE ([Total Cases],

 DateTable[YEAR] = 2021

 || DateTable[YEAR] = 2020

)

Chapter 6 the CaLCULate FUnCtion

81

Average Cases Argentina or Australia =

CALCULATE (

 AVERAGE (Winesales[CASES SOLD]),

 Regions[REGION] = "argentina"

 || Regions[REGION] = "australia"

)

You can also use the OR function, but unlike Excel, you can only put two parameters

into the DAX OR function as in this example:

Average Cases Argentina or Australia =

CALCULATE (

 AVERAGE (Winesales[CASES SOLD]),

 OR (Regions[REGION] = "argentina",

 Regions[REGION] = "australia")

)

 Complex Filters
Let’s take another example of an “OR” filter. For example, we may want to find Total Sales

for red wines OR French wines using the TYPE and WINECOUNTRY columns in the

Wines table, respectively, and use this to analyze our salespeople’s performance of these

wines. This would be the expression:

Sales for Red or French #1=

CALCULATE (

 [Total Sales],

 Wines[TYPE] = "red"

 || Wines[WINE COUNTRY] = "France"

)

This measure appears to work just fine as you can see in Figure 6-8.

Chapter 6 the CaLCULate FUnCtion

82

Figure 6-8. The “Sales for Red or French #1” measure evaluated for each
salesperson

However, experienced DAX users would be surprised that this expression was valid

and would expect an error message as shown in Figure 6-9 that states

“The expression contains multiple columns, but only a single column can
be used in a True/False expression that is used as a table filter expression.”

Figure 6-9. This error message was removed in the March 2021 update of
Power BI

This message tells us that referencing two columns from the same table in a single

filter is not allowed. In fact, the expression using “OR” on different columns has only

become legitimate since the March 2021 update of Power BI.

However, although it appears to now be valid, there is still an inherent problem with

it. This expression doesn’t respond correctly to specific filter selections. To show this, we

have written an alternative measure, “Sales for Red or French #2”, and can now compare

the two versions of this expression in a Table visual where we are filtering “Red” wines

via the slicer; see Figure 6-10.

Chapter 6 the CaLCULate FUnCtion

83

Figure 6-10. Using “OR” on different columns from the same table doesn’t respond
correctly to specific filters

You will see that the measure “Sales for Red or French #1” doesn’t respond to filters

from the slicer that uses the TYPE column from the Wines dimension. It continues to

calculate sales for both red or French wines disregarding the slicer. The second measure,

“Sales for Red or French #2”, however, does show just sales for red wines. We will look at

the details of this measure in the chapter on the FILTER function, but for the moment,

we have to ask this question: Why has an expression that filters two different columns

from the same table been invalid until recently, and now that we are allowed to do it,

why doesn’t it calculate correctly with a filter on the TYPE column?

Let’s look more closely at the problem. When you have a filter on just one column,

the rows of the table are filtered in memory where the filter criterion on the column

equates to true. But when you place filters on multiple columns, you can only further

reduce the rows. For example, once you’ve filtered out the red wines, you can only then

filter the red wines that are French.

How can we solve this predicament? One way is to ensure that there are no filters on

either the Wines[TYPE] column or the Wines[WINE COUNTRY] column so that in every

evaluation, values in both columns are considered. This is the route that DAX takes in

the expression “Sales for Red or French #1”.

Chapter 6 the CaLCULate FUnCtion

84

Note it’s beyond the scope of this chapter to elaborate on the details of the
“Sales for red or French #1” expression or why it returns errors in the presence of
certain filters. however, we do uncover the problem in Chapter 18. all we need to
note at this stage is that the expression doesn’t always return the correct result.

Is there an alternative approach? Perhaps we could try this; rather than applying

filters directly to columns, we could filter out the rows that we want to evaluate instead.

For example, we could iterate the rows in the Wines dimension, and if we find a red

wine, filter the row out, or if we find a French wine, filter that row out too. We could then,

in memory, build a new virtual table comprising just the rows for wines that are red or

French. This in-memory virtual Wines table that has been filtered to just the rows we

need could then propagate that filter to the Winesales fact table, just like the “real” Wines

dimension filtering the Winesales table. Would that work?

Well yes, it would because in DAX, there is a group of functions called “table”

functions that generate in-memory virtual tables that, when used inside CALCULATE,

will propagate filters just like “real” tables. Now that we know this, all that remains

for us to discover is the name of the table function that will generate our virtual table

containing just the rows for red or French wines.

Before we find this function, however, there’s a little more learning to be done. We

need to look more closely at the different types of DAX functions and particularly to

understand what we mean by “table functions.” Then we can solve our “red or French”

conundrum.

Chapter 6 the CaLCULate FUnCtion

85
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_7

CHAPTER 7

DAX Table Functions
A skill that will serve you well when working with DAX is a good imagination. You’ve

already learned to construct a picture in your mind of the current filters that are

propagating through the data model. The scanning of tables by iterators can only be

envisaged, and designing the correct CALCULATE expression is done through inferring

what filters must be changed. There is yet another aspect of DAX that is hidden from us,

and that therefore must be imagined. That is the generation of virtual tables. Much of

your DAX code will involve building in-memory tables that are used in the evaluation

of the measure. In this chapter, we are going to explore this concept, how we create

table expressions through the use of table functions, and their purpose in manipulating

the data model. In doing so, we will be focusing on the most ubiquitous of the table

functions, and that is the FILTER function.

 Types of DAX Functions
In DAX, we can divide functions into three categories depending on the type of value the

functions return; see Table 7-1.

https://doi.org/10.1007/978-1-4842-8188-8_7

86

Table 7-1. Types of DAX functions

Function
Type

Example Description

Scalar
Functions

Return scalar values.

e.g., SUM, COUNTROWS,

SUMX, CALCULATE

These functions return a scalar or single value and are used

in all measures.

Table
Functions

Return virtual tables.

e.g., FILTER, VALUES,

PREVIOUSMONTH, ALL

Table functions are used to generate “virtual” tables that

propagate filters through the data model in the same way as

“real” tables. The virtual tables are typically subsets of rows

or subsets of columns of the original table, but they can

expand the number of rows in the case of the ALL function.

Because measures must always return scalar values and

not tables, table functions are always nested inside scalar

functions.

CALCULATE
Modifiers

Modify the filter

arguments of

CALCULATE.

e.g., CROSSFILTER,

USERELATIONSHIP,

KEEPFILTERS, ALL

We’ll meet this type of function later. These functions

change the behavior of any filters generated by CALCULATE

and so are always nested inside CALCULATE. These

functions don’t return any value.

Note The ALL function is both a Table function and a CALCULATE modifier. We’ll
look more closely at this later.

How do you know what type of function you are using? The best way is to consult the

DAX Function Library here: https://docs.microsoft.com/en-us/dax/dax-function-

reference, and it will tell you what a DAX function returns; for example, the FILTER

function returns “a table containing only the filtered rows,” see Figure 7-1.

CHAPTER 7 DAX TABLE FUNCTIONS

https://docs.microsoft.com/en-us/dax/dax-function-reference
https://docs.microsoft.com/en-us/dax/dax-function-reference

87

Figure 7-1. Use the DAX Function Library to check the function type

We’ve already explored some scalar functions, and we’ll meet some more in later

chapters such as the SELECTEDVALUE function. We will also delve into CALCULATE

modifiers like CROSSFILTER, USERELATIONSHIP and ALL later on. In this chapter, we

will focus only on table functions.

 Table Functions
Table functions create table expressions and can be used for two purposes:

 1. To generate additional tables in your data model using the New
Table button. These are referred to as calculated tables. If this is

your requirement, the recommendation is that new tables are

generated using Power Query, not DAX.

 2. To generate in-memory virtual tables as part of the evaluation of

measures.

In this chapter, we will only be considering the latter of these, the generation of

virtual tables using table expressions inside DAX measures.

Table expressions can be used in measures wherever a function accepts a “table”

as one of its arguments or as the filter argument inside CALCULATE. Up to now, we’ve

always referenced an actual table inside functions like COUNTROWS or SUMX, but

we can use a table expression instead. Inside CALCULATE, we’ve created Boolean

CHAPTER 7 DAX TABLE FUNCTIONS

88

expressions as column filters, but we could also use table expressions. When creating

measures, table expressions are always nested inside functions that return scalar values

and are never used on their own.

 Examples of Table Expressions
Consider the expressions in Figure 7-2 where, in place of referencing a table, we’re using

a table expression instead.

Figure 7-2. Examples of table expressions

These examples use a table function called VALUES. You don’t need to know at this

stage what the VALUES function is doing (we’ll meet VALUES in a later chapter). You just

need to understand that it’s a table expression being used as the “table” argument or as

the “filter” argument inside CALCULATE.

CHAPTER 7 DAX TABLE FUNCTIONS

89

 Why Do We Need Table Expressions?
There are two very different reasons why we use table expressions inside DAX measures.

Nested inside any other function other than CALCULATE, table expressions supply

the “table” argument and often create subsets of the original table, either subsets of rows

or subsets of columns. For example, FILTER nested inside SUMX will normally generate

a table with fewer rows for SUMX to iterate. As we will discover in later chapters, some

table functions are also used to generate “hybrid” tables that comprise combinations of

columns from different tables.

On the other hand, as filter arguments inside CALCULATE, table expressions

generate virtual tables that are used as filters. Understanding the use of table expressions

as filter arguments inside CALCULATE is a challenging concept to new DAX users, and

we’ll be exploring this concept in detail as we move through this chapter.

However, we will begin our journey through table functions by understanding the

use of the most common table function in DAX, and that is FILTER.

 The FILTER Function
The FILTER function returns a table that is a subset of another table and has the

following syntax:

= FILTER (table , filter)

where:

table is the table that you want to filter. The table can also be supplied by another

table function.

filter is the filter you want to apply to the table as a Boolean expression, for example,

“Wines[TYPE]= "red".

Here is an example of the FILTER function syntax:

= COUNTROWS (FILTER (Wines, Wines[TYPE]= "red"))

FILTER as a table function can be used to generate table expressions as explained in

“Why Do We Need Table Expressions?” section. We’ve learned that these functions have

different behaviors depending on whether they are used to change the shape of the data,

such as reducing the rows considered by an expression, or whether they are used inside

CALCULATE. The FILTER function is no exception, so let’s now consider these two

behaviors.

CHAPTER 7 DAX TABLE FUNCTIONS

90

 FILTER Used to Reduce Rows
For instance, we could calculate the number of high-volume sales where high volume is

any transaction where the CASES SOLD value is greater than 300. To do this, we can use

FILTER nested inside COUNTROWS to count the rows of the filtered Winesales table as

in the following expression:

No. of High Volume Sales =

COUNTROWS (FILTER (Winesales, Winesales[CASES SOLD] > 300))

You can see the result of this measure in Figure 7-3. FILTER can also be nested inside

SUMX, whereby the number of rows in the table iterated by SUMX will be reduced by

FILTER. For example, the “Total Sales” measure that we authored in Chapter 5

could be extended to filter the sales where the volume of cases is greater than 300

(shown in Figure 7-4):

Cases GT 300 =

SUMX (

 FILTER (Winesales, Winesales[CASES SOLD] > 300),

 Winesales[CASES SOLD] * RELATED (Wines [PRICE PER CASE]))

Figure 7-3. Using FILTER nested inside COUNTROWS to calculate the number of
high-volume sales

CHAPTER 7 DAX TABLE FUNCTIONS

91

Figure 7-4. Using FILTER nested inside SUMX to calculate the sales value where
cases sold is greater than 300

However, if you want to use this calculation, this is not the best expression for doing

the job. We will be discovering that FILTER is an iterator, and in this respect, it will scan

the Winesales fact table that may contain many millions of rows. We will be exploring

later in this chapter more efficient ways of performing this task.

 FILTER as the Filter Argument of CALCULATE
If FILTER is used in a filter argument of CALCULATE, FILTER generates an in-memory

table that is used to filter the data model, just as dimensions filter the data model.

Before March 2021, it was a requirement to use the FILTER function inside

CALCULATE in the following two situations:

 1. When the filter includes more than one column from the

same table

 2. When the filter includes an expression

However, it is now possible to omit the FILTER function when filtering two or more

columns in the same table, but depending on slicer selections, the measure can still fail.

It is also now possible to omit FILTER if the expression is a simple Boolean test using

an aggregate function, such as AVERAGE, but using any other expression in the filter

argument still requires the use of FILTER.

For people new to DAX, it is very important to understand that the new syntax, where

FILTER is no longer required in the situations outlined before, is a recent development

CHAPTER 7 DAX TABLE FUNCTIONS

92

(DAX was first introduced in 2009). Any DAX resources you browse or any code you copy

and paste will most probably be using the old syntax using FILTER.

With this in mind, let’s return to our “Sales for Red or French #1” measure we

authored when exploring the CALCULATE function in the previous chapter. This was the

measure:

Sales for Red or French #1 =

CALCULATE (

 [Total Sales],

 Wines[TYPE] = "red"

 || Wines[WINE COUNTRY] = "France")

This expression returns incorrect results if there is a filter on the TYPE column or the

WINE COUNTRY column, assuming that if you are slicing, you now want to calculate

sales only for red wines and French wines, not red or French wines, which is the current

calculation. If so, the correct values are shown in the “Total Sales” measure on the left in

Figure 7-5 as this measure is responding to the filters in the slicers.

Figure 7-5. Omitting FILTER can return incorrect results

CHAPTER 7 DAX TABLE FUNCTIONS

93

Note You will learn later in this book the precise details as to why the “#1”
measure returns incorrect results when there is a filter on either TYPE or
WINECOUNTRY.

We established that the root of the problem lies in the fact that we’re using two

different columns in our filter and indeed in earlier days, we were prevented from

authoring such code. To resolve this problem, we need to use the table function FILTER

inside CALCULATE. So let’s now get to grips with how we can use FILTER in this context

and use it to author the correct version of the measure, “Sales for Red or French #2”:

Sales for Red or French #2=

CALCULATE (

 [Total Sales],

 FILTER (Wines, Wines[TYPE] = "red"

 || Wines[WINE COUNTRY] = "France")

)

In Figure 7-6, you can see the measure evaluated when put into a Table visual. We’ve

also included the “Total Sales” measure to provide context and clarity on the evaluation.

Figure 7-6. The calculation of the “Sales for Red or French #2” measure

See Figure 7-7 for a step-by-step guide through the evaluation of this measure.

In the “Sales for Red or French #2” measure, FILTER is nested inside CALCULATE to

CHAPTER 7 DAX TABLE FUNCTIONS

94

provide the filter argument. The FILTER function is an iterator. We met iterators when

we looked at the SUMX function in Chapter 5. These are functions that scan a table

on a row-by-row basis and in the case of FILTER perform a test on each row. If the test

applied by FILTER is true for a row, that row is extracted to a virtual table of its own. This

virtual table, used as the filter argument to CALCULATE, is then used to propagate filters

through the model just like a “real” table.

CHAPTER 7 DAX TABLE FUNCTIONS

95

Figure 7-7. Stepping through the “Sales for Red or French #2” measure

CHAPTER 7 DAX TABLE FUNCTIONS

96

 1. The FILTER function iterates the Wines table in memory and

filters any rows where TYPE = “red” or WINECOUNTRY =

“France”.

 2. FILTER generates an in-memory virtual table containing only

those rows where the test is true.

 3. The virtual table generated by FILTER is used as the filter

argument to CALCULATE to filter the Winesales table.

We’ve been examining the use of the FILTER function to perform an “OR” test on two

different columns of the same table. Let’s look at another example with the same issue.

Consider the scenario where you want to find the number of sales (i.e., the number

of rows in the Winesales table) for high profit wines. High profit wines are where wines

have a price that is three times the cost price. This test involves two columns in the

Wines dimension, PRICE PER CASE and COST PRICE, and therefore, it’s recommended

that you use FILTER. These are the measures you can use:

No. of Sales =

COUNTROWS (Winesales)

No. of Sales of High profit Wines =

CALCULATE (

 [No. of Sales],

 FILTER (Wines, Wines[PRICE PER CASE] >= Wines[COST PRICE] * 3)

)

We’ve included the expression for “No. of Sales” that we will nest inside the “No. of

Sales of High profit Wines” measure. You can see this measure calculated in Figure 7-8.

CHAPTER 7 DAX TABLE FUNCTIONS

97

Figure 7-8. Finding high profit wines

You will notice again that FILTER can be omitted here because expressions using

different columns from the same table are now valid. However, take note that if you had

a filter on either the PRICE PER CASE column or the COST PRICE column, you would

not see correct values being returned. Therefore, it is recommended that you use FILTER

nested inside CALCULATE whenever more than one column is being referenced.

However, we also need FILTER whenever we need to use an expression in the filter

argument in CALCULATE. We’ve set out two examples of this requirement where we are

calculating the following:

 1. The number of sales where the total sales values are greater than

20,000. We are using the “Total Sales” measure in the filter test.

 2. The number of sales that are greater than the average sales value.

To calculate the average sales, we are using the AVERAGEX

expression that you learned in Chapter 5.

First, we have authored the “wrong” version of the measures that omits the FILTER

function. These expressions will return error messages. We have then authored the

correct expressions using FILTER. Therefore, it’s important that you understand that

CHAPTER 7 DAX TABLE FUNCTIONS

98

FILTER is required when you use any expression in the filter test of CALCULATE. We have

highlighted in gray the FILTER expressions to help clarify the code used:

Sales Greater than 20K Wrong =

CALCULATE ([No. of Sales], [Total Sales] > 20000)

Sales Greater than 20K =

CALCULATE ([No. of Sales],

 FILTER (Winesales, [Total Sales] > 20000))

Sales Greater than Avg Wrong =

CALCULATE (

 [No. of Sales],

 [Total Sales]

 > AVERAGEX (

 Winesales,

 Winesales[CASES SOLD] *

 RELATED (Wines[PRICE PER CASE])

)

)

Sales Greater than Avg =

CALCULATE (

 [No. of Sales],

 FILTER (

 Winesales,

 [Total Sales]

 > AVERAGEX (

 Winesales,

 Winesales[CASES SOLD] *

 RELATED (Wines[PRICE PER CASE])

)

)

)

However, if the requirement is to calculate the number of sales that are greater than

the average cases sold, this expression does not require FILTER because it’s using the

simple aggregate function AVERAGE. Since September 2021, we are now allowed to

CHAPTER 7 DAX TABLE FUNCTIONS

99

author code that uses the simple aggregate functions, such as AVERAGE or MAX in the

predicate as follows:

Cases GT Avg =

CALCULATE (

 [No. of Sales],

 Winesales[CASES SOLD] > AVERAGE (Winesales[CASES SOLD])

)

However, experienced DAX users would probably prefer to see this measure

expressed using FILTER:

Cases GT Avg =

CALCULATE (

 [No. of Sales],

 FILTER (Winesales, Winesales[CASES SOLD]

 > AVERAGE (Winesales[CASES SOLD]))

)

In this section on the FILTER function, you have learned that FILTER generates a

virtual table that can be used in the filter argument of CALCULATE. This virtual table is

used to filter the data model just like “real” tables do.

This leads us to another aspect of the FILTER function (and indeed table functions

generally) that we need to explore in more detail, and that’s the difference between using

a table expression as a filter inside CALCULATE and using a simple column filter instead.

 Column Filters vs. Table Filters
What you have learned is that in the “filter” argument to CALCULATE, you can supply

two types of filter: a filter using a column and/or a filter using a table. In short, within

CALCULATE, there are two ways to modify the filter context: using columns or using

tables. What you need to understand now is that there will be a considerable difference

in the evaluation of a measure depending on which type of filter you choose.

So far in this book, the only table function we’ve met is the FILTER function, so we’ll

use FILTER to illustrate the difference between column filters and table filters but to

appreciate that it’s relevant to all table expressions used as filters inside CALCULATE.

CHAPTER 7 DAX TABLE FUNCTIONS

100

Note We’ll be exploring a number of other table functions as we move through
this book such as ALL, VALUES, and the functions known as “time intelligence.”

Why do we need to distinguish between table filters and column filters? There are

essentially two reasons why this difference is important:

 1. Because the DAX engine has to generate the virtual tables, table

filters take longer to process.

 2. Your measure may return a different result depending on the

filter type.

We will now explore these two scenarios. In the first example, we look at how table

filters increase the processing weight of the measure. In the second example, we will see

that table filters can produce different results from column filters.

 Table Filters Are Less Efficient
In this example, let’s take two similar expressions using CALCULATE. The first uses

a column filter and the second, a table expression as the filter argument. In both

expressions, we are filtering the rows in the Winesales fact table that contain cases sold

greater than 300.

Cases GT 300 #1 =

CALCULATE ([Total Sales], Winesales[CASES SOLD] > 300)

Cases GT 300 #2 =

CALCULATE (

 [Total Sales],

 FILTER (Winesales, Winesales[CASES SOLD] > 300)

)

You can see in Figure 7-9 that both these measures return the same result, so how

does the table filter differ from the column filter? To answer this question, we must look

more carefully at the evaluation of each of these measures, taking the evaluation of

“Grenache” wine that returns $310,530 as our example.

CHAPTER 7 DAX TABLE FUNCTIONS

101

Figure 7-9. The measures return the same result

When measure “Cases GT 300 #1” is evaluated, a filter is placed on the CASES SOLD

column to filter values greater than 300. The Total Sales values are then calculated for the

filtered rows of the Winesales table; see Figure 7-10.

CHAPTER 7 DAX TABLE FUNCTIONS

102

Figure 7-10. Stepping through the “Cases GT 300 #1” measure

 1. The wine “Grenache” is filtered in the WINE column of the Wines

table and is cross-filtered to the Winesales table that only now

contains rows for “Grenache”.

 2. The CASES SOLD column in the Winesales table is further filtered in

memory to contain only the rows for this wine that are greater than

300. The “Total Sales” measure is then calculated for just these rows.

 3. Note the filter on the CASES SOLD column.

When the measure “Cases GT 300 #2” is evaluated, the FILTER function iterates the

Winesales table to extract rows where the CASES SOLD is greater than 300 into a virtual

table (remembering that Winesales is filtered to just contain “Grenache” wines). The

total sales for the virtual table generated by FILTER are then calculated; see Figure 7-11.

CHAPTER 7 DAX TABLE FUNCTIONS

103

Figure 7-11. Stepping through the “Cases GT 300 #2” measure

 1. The wine “Grenache” is filtered in the WINE column of the Wines

table and is cross-filtered to the Winesales table that now only

contains rows for “Grenache”.

 2. The FILTER function iterates the Winesales table to filter CASES

SOLD greater than 300 and generates a virtual table.

 3. The “Total Sales” measure is calculated for the rows in the virtual

Winesales table in memory.

 4. Note there is no filter on the CASES SOLD column because it’s the

virtual table that has generated the filtered rows.

CHAPTER 7 DAX TABLE FUNCTIONS

104

Question: Which of these evaluations do you think is more efficient?

If your fact table contains many millions of rows, the FILTER function must iterate

these rows to build the virtual table. We’re sure you can appreciate that you pay a heavy

processing price if you use table filters rather than column filters. Marco Russo and

Alberto Ferrari explain this in more technical terms:

“A side effect of a table filter is that it requires a large materialization to the storage

engine to enable the formula engine to compute the result.”1

This is why using the table function FILTER to filter the cases sold is not good

practice because you should be using the column filter.

To further make the point, in this video, Marco Russo takes you through why using

the FILTER function unnecessarily is not a good idea:

My Power BI report is slow: what should I do? by Marco Russo

Before we leave the subject of the problematic table filters, there is a third version of

the “Cases GT 300” measure that “newbies” might consider authoring. The expression

“Cases GT 300 #3” uses SUMX and returns the same values as the previous two versions

of the measure discussed before:

Cases GT 300 #3 =

SUMX (FILTER (Winesales, Winesales[CASES SOLD] > 300),

 [Total Sales])

What is the problem with this expression? You of course now know. The answer

is it’s inefficient. First, FILTER iterates the fact table to generate a table containing the

rows to be considered. Then SUMX iterates the table generated by FILTER. That’s a lot of

iterations!

The recommended expression is always to use a simple filter on the CASES SOLD

column in the filter argument of CALCULATE.

 Table Filters Return Different Results
To understand this aspect of the table filters, let’s consider these two measures, the first

using a column filter and the second using a table filter:

1 Marco Russo and Alberto Ferrari (2020), The Definitive Guide to DAX, 2nd ed, p. 699
[Microsoft Press]

CHAPTER 7 DAX TABLE FUNCTIONS

https://www.youtube.com/watch?v=B-h3Pohtn1Y

105

Bordeaux Wines #1 =

CALCULATE (

 SUM (Winesales[CASES SOLD]),

 Wines[WINE] = "Bordeaux")

Bordeaux Wines #2 =

CALCULATE (

 SUM (Winesales[CASES SOLD]),

 FILTER (Wines, Wines[WINE] = "Bordeaux")

)

You might think that these two measures should return the same result. However,

if we put these measures into a Table visual that contains the WINE column from the

Wines dimension (Figure 7-12), we get different results. The measure #1 gives the value

for “Bordeaux” for every wine, but in #2, we get blanks for any wine other than Bordeaux.

Figure 7-12. “Bordeaux Wines #1” and “Bordeaux Wines #2” in a Table visual
with the WINE column from the Wines dimension

CHAPTER 7 DAX TABLE FUNCTIONS

106

So why the difference? Let’s look more closely at the “Bordeaux Wines #1” measure.

In the first evaluation of this measure, the active filter context is on the WINE column of

the Wines dimension and is filtering “Bordeaux” in the first instance. This filter is now

cross-filtered to the Winesales table to sum the CASES SOLD for “Bordeaux”. On the

next evaluation, “Champagne” is in the filter context. But CALCULATE modifies the filter

context and replaces the filter on the WINE column from “Champagne” to “Bordeaux”.

It’s this filter that is now cross-filtered to the Winesales table to sum the CASES SOLD

for “Bordeaux”. And so on for every evaluation of each wine and also the Total row

evaluation; see Figure 7-13.

Figure 7-13. CALCULATE replaces the filter on the WINE column so it always
filters “Bordeaux”

Note As mentioned earlier, at this stage in your knowledge of DAX, this
explanation of how the filters work is not yet complete, but it will stand you in
good stead for the time being. We will get to a more accurate explanation later in
Chapter 18.

This is why the total cases for “Bordeaux” are always returned because CALCULATE

replaces the filter on the WINE column to “Bordeaux” for the evaluation of each wine.

CHAPTER 7 DAX TABLE FUNCTIONS

107

Let’s now look at the second measure using FILTER where we get a value returned

for “Bordeaux” but not for the other wines. This measure uses a table filter:

Bordeaux Wines #2 =

CALCULATE (

 SUM (Winesales[CASES SOLD]),

 FILTER (Wines, Wines[WINE] = "Bordeaux")

)

The current filter context is on the WINE column of the Wines dimension, filtering

“Bordeaux” in memory in the first instance. The FILTER function inside CALCULATE

scans this table looking for the value “Bordeaux” and generates a virtual table containing

just the “Bordeaux” row. It’s this table filter that is now cross-filtered to the Winesales

table to sum the CASES SOLD for “Bordeaux”. On the evaluation for “Champagne”, the

WINE column in the Wines dimension is filtered accordingly. However, the FILTER

function does not modify the filter context, so the FILTER function inside CALCULATE

scans this one-row table containing “Champagne” looking for the value “Bordeaux”. It

won’t find it, and so there is nothing to filter. There is now an empty filter generated by

FILTER, and an empty filter returns no value; see Figure 7-14. This is why there are no

values returned by the measure other than for “Bordeaux”.

Figure 7-14. FILTER can’t replace the filter on the WINE column to equal
“Bordeaux”, so there are no rows filtered other than for “Bordeaux”

The important thing to remember about the FILTER function is that it’s a weak

function. Unless you use the ALL function that we explore in the next chapter, FILTER

will only filter the rows that are in the current filter context and will therefore typically

CHAPTER 7 DAX TABLE FUNCTIONS

108

return a subset of the original filter. Using column filters inside CALCULATE, on the other

hand, will replace filters where required.

 Using the KEEPFILTERS Function
This behavior of CALCULATE whereby a column filter is always replaced is, by all accounts,

rather odd and unintuitive, giving you the same value for every evaluation. The filter

generated by FILTER, even though it’s a table filter, looks more “normal.” As we’re learning,

it’s always best to use column filters if possible, so to make the column expression behave

more intuitively, we can use a function called KEEPFILTERS as in this example:

Bordeaux Wines #1 =

CALCULATE (

 SUM (Winesales[CASES SOLD]),

 KEEPFILTERS (Wines[WINE] = "Bordeaux")

)

This function modifies the behavior of CALCULATE and prevents it from replacing

filters. In Figure 7-15, you can see that we now only get a value return for “Bordeaux” for

the “Bordeaux Wines #1” measure and no value is returned for the other wines.

Figure 7-15. The KEEPFILTERS function prevents CALCULATE replacing filters

In this chapter, you’ve learned to generate virtual tables as part of your DAX

expressions. These tables are used by measures to manipulate the data model, either

by returning subsets of “real” tables or to act as in-memory dimensions that propagate

filters through the data model. You’ve also been warned of the different behaviors of

table filters and column filters, particularly with respect to using the FILTER function. As

we move forward and tackle more challenging calculations, this difference will become

more important. For the moment, however, let’s just remember this:

Always use column filters where you can. Only use table filters where necessary.

CHAPTER 7 DAX TABLE FUNCTIONS

109
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_8

CHAPTER 8

The ALL Function and All
Its Variations
In previous chapters, we have explored the filter context and how the construct of the

visual, slicers, and filters all come together to filter the data model on the evaluation of

a measure. You have learned that with the CALCULATE function, you can modify these

filters programmatically. What you don’t yet know is how to remove filters so you can

calculate your own totals and subtotals. But better still, knowing how to remove filters

means you can programmatically reapply totally different filters than those that are

currently defining the filter context. Let me introduce you to the ALL function that allows

you to take control of this aspect of the evaluation of your measures.

On the face of it, the ALL function appears to be an easy function to understand.

The ALL function returns all the rows of a table, or all the distinct values in a column,

ignoring any filters that might have been applied. However, what you will be discovering

in this chapter is that the simplicity of the ALL function belies the fact that it’s one of the

most challenging DAX functions with which to come to terms. In this chapter, we will be

delving into this “wolf in sheep’s clothing” function; the objective is to teach you every

aspect of ALL and all the variations on the ALL function. This will enable you to move

forward and author more complex measures.

There are at least two reasons why the ALL function is challenging to understand.

Firstly, there are a number of variations of the ALL function:

• ALLSELECTED

• ALLEXCEPT

• ALLCROSSFILTERED

• ALLNOBLANKROW

You need to know which of these to use and when.

https://doi.org/10.1007/978-1-4842-8188-8_8

110

Note The ALLCROSSFILTERED and ALLNOBLANKROW functions are outside the
remit of this book.

Secondly, ALL (and its variations) has a dual face; it can be used either as a table

function or as a modifier to CALCULATE, as described in the following:

• ALL as a table function – When used as a table function, ALL

behaves as described before; that is, it returns all the rows of a table

or all the distinct values in a column or columns.

• ALL as a modifier – When ALL is used as a top-level filter argument

in CALCULATE, it acts as a modifier to CALCULATE and removes the

filters from tables or columns. In other words, it doesn’t generate a

virtual table.

In fact, ALL is two completely different functions. This is something that many

inexperienced users of DAX don’t appreciate. This is because mostly, the ALL function

behaves the way you would expect, whether you use it as a top-level filter argument

in CALCULATE or nested inside other functions such as FILTER or COUNTROWS. It

removes filters whether by generating virtual tables containing all the rows or

by removing filters from tables and columns. However, we will explore later how

understanding this difference is crucial in understanding the ALL function.

Although I’ve been referring solely to the ALL function here, we will also be exploring

the ALLSELECTED and ALLEXCEPT functions.

 The ALL Function
The ALL function has the following syntaxes:

= ALL (table)

where:

table is the table from where you want to clear the filters.

Here is an example of the ALL function syntax, referencing a table:

= ALL (Winesales)
Unlike other functions that use tables as arguments, you can’t nest another table

function inside the ALL function; you can only use base tables.

Or you can reference a column.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

111

= ALL (column 1, column 2, etc.)

where:

column(s) is the column or columns from where you want to clear the filters.

Here is an example of the ALL function syntax referencing a column:

= ALL (Wines[TYPE])
The ALL function will have a different impact on the filtering of the data model

depending on the syntax you use, whether ALL is removing filters from tables or

removing filters from columns. It will have a different impact yet again if you use ALL to

remove filters from fact tables or dimensions. Therefore, to make it easier to understand

the behavior of ALL, we’ll take these three different objects from where ALL can remove

filters and explore them separately, as follows:

 1. Fact tables

 2. Dimensions

 3. A column or columns

 Applied to the Fact Table
Let’s again consider a scenario. In the visual in Figure 8-1, we’re using this measure to

calculate the number of sales:

No. of Sales =

COUNTROWS (Winesales)

We have then calculated the “Grand Total No. of Sales” to act as a denominator

to calculate the percentage shown in “No. of Sales as Percent of Grand Total”; see

Figure 8-1.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

112

Figure 8-1. Using ALL to calculate the percentage of the Grand Total

To arrive at these calculations, first, we need to author a measure that ignores the

filters coming through from the Wines dimension so we can calculate the number

of sales for all the wines, 2,207. To do this, we can use ALL as a table function to

generate a virtual table containing all the rows of the Winesales fact table and then use

COUNTROWS to count the rows in this table. This is the expression:

Grand Total No. of Sales =

COUNTROWS (ALL (Winesales))

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

113

Finally, we can then divide the Grand Total into each wine’s total to find the

percentage, as in the following measure:

No. of Sales as Percent of Grand Total =

DIVIDE ([No. of Sales] , [Grand Total No. of Sales])

Let’s explore the impact of adding more filters to the report. In Figure 8-2, we have

placed a filter on the SalesPeople dimension using a slicer, but you can see that the

measure using the ALL function always returns the Grand Total regardless of the filter.

Figure 8-2. The ALL function ignores filters from dimensions

To understand the behavior of ALL in this example, we must again consider the filter

context. On the evaluation for “Bordeaux” wine, there are two active filters: one on the

Wines dimension filtering “Bordeaux” and one on the SalesPeople dimension filtering

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

114

“Abel”. However, the ALL function always counts the rows of the virtual table containing

all the rows of the Winesales fact table ignoring any filters propagating from dimensions;

see Figure 8-3.

Figure 8-3. The ALL function passed to the fact table generates a virtual fact table
that is used for all evaluations, and any filters from dimensions are ignored

Let’s look at another example of using the ALL function on the fact table, but this

time nesting ALL inside CALCULATE. For example, you may want to find the grand total

of cases sold, again so you could use this value as a denominator to find percentages; see

Figure 8-4. This would be the measure:

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

115

Total Cases All Winesales =

CALCULATE ([Total Cases], ALL(Winesales))

Figure 8-4. The ALL function nested inside CALCULATE to find the grand total of
cases sold

You can see how this measure again ignores any filters on the data model.

However, let’s now focus on an expression that you may require that calculates the

average cases sold for all wines so you can compare this average to the average cases sold

for each wine. This would be the measure that would find this average:

Avg Cases All Winesales =

CALCULATE(AVERAGE (Winesales[CASES SOLD]), ALL (Winesales))

You could then author the following measure using FILTER to calculate the number

of sales where the cases sold value is greater than the average for all the wines:

No. of Sales Where Cases is GT Avg All Wines =

CALCULATE (

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

116

 [No. of Sales],

 FILTER (Winesales, Winesales[CASES SOLD]

 >= [Avg Cases All Winesales])

)

 In the code for “No. of Sales Where Cases is GT Avg All Wines” the FILTER function

iterates the Winesales table to filter any rows where the value in the CASES SOLD

column is greater than the value calculated by “Avg Cases All Winesales”. However, to

fully appreciate the details of this expression, you need to understand the concept of

context transition that we will be exploring in a later chapter.

You can see the results of these expressions in Figure 8-5.

Figure 8-5. Calculating the grand total cases sold and the average cases for
all wines

What you have to understand here is that when ALL is nested inside CALCULATE, it

doesn’t behave as a table function. Instead, ALL is removing all the cross-filters on the fact

table and therefore evaluating all the rows of the fact table. We will be exploring this behavior

in detail as we move through this chapter.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

117

Using ALL in this way, we’ve been able to find the percentages of the Grand Total.

However, you may have a different requirement, and that is to calculate percentages

across filtered items. This brings us to the second place where we can use ALL, and that

is when it’s passed onto dimensions.

 Using ALL on Dimension Tables
For example, in Figure 8-2, we’ve filtered salesperson “Abel” in the slicer and can see

the total number of sales for Abel for all the wines is 376. We want to know what the

individual wine totals are for “Abel” as the percentage of this value. In other words,

we need to remove the filter on the Wines dimension while retaining the filter on the

SALESPERSON column in the SalesPeople dimension that is filtering “Abel”.

If we remove a filter from a specific dimension, filters propagating from other

dimensions into the fact table will be unaffected. Therefore, if we remove the filter

from the Wines dimension, the filter on the SalesPeople dimension will be preserved,

therefore calculating the number of sales for all the wines for the filtered salesperson.

However, this measure using ALL on the Wines dimension isn’t correct:

No. of Sales All Wines Wrong =

COUNTROWS (ALL (Wines))

This measure would generate a table containing all the rows in the Wines dimension

and then count the number of rows in this table, returning 14 because there are 14 rows

in the Wines dimension. Remember that the table whose rows we want to count is that

of the Winesales fact table, filtered to show the sales of all the wines for the salesperson

selected in the slicer. Therefore, we need to calculate the number of sales in the

Winesales table which we’ve already done a number of times:

No. of Sales = COUNTROWS (Winesales)

Because we want to modify the filter context to remove the filter from the Wines

dimension, we can use the “No. of Sales” measure inside CALCULATE, and then using

the ALL function as the filter argument in CALCULATE, we can modify the filter context

as follows:

No. of Sales All Wines =

CALCULATE ([No. of Sales], ALL (Wines))

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

118

Finally, we can divide to arrive at the percentage:

No. of Sales as Percent of Filtered Value =

DIVIDE ([No. of Sales] , [No. of Sales All Wines])

Let’s focus on the measure “No. of Sales All Wines” shown in Figure 8-6. We can

see it calculates the same value that is sitting in the Total row of the “No. of Sales”

measure, 376.

Figure 8-6. Removing the filter from a dimension using ALL

In this Table visual, initially, filters are on both the Wines dimension and the

SalesPeople dimension, but when the “No. of Sales All Wines” measure is evaluated for

each wine, all the filters are removed from the Wines dimension (because we are using

CALCULATE), therefore always returning the value for all the wines. Filters from any

other dimensions, for example, the SalesPeople dimension, are retained; see Figure 8-7.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

119

Figure 8-7. The ALL function removes filters from the Wines dimension, but other
filters are preserved

Perhaps we’re beginning to appreciate that there’s much to understanding the ALL

function! We’re getting there, but we’re not quite there yet. For instance, consider the

measure we’ve just been working with:

No. of Sales All Wines =

CALCULATE ([No. of Sales], ALL (Wines))

It may not be the calculation that you want. The problem is that it removes all the

filters in the Wines dimension. There will come a time when we need to be more specific

regarding from which columns in a dimension we need to remove the filters.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

120

 Using ALL on a Column
Consider the example in Figure 8-8. Both the SALESPERSON column from the

SalesPeople dimension and the SUPPLIER column from the Wines dimension are being

filtered by slicers. We’re filtering salesperson “Abel” and supplier “Alliance”. Remember

that there is also a filter on the WINE column from the Wines dimension filtering each

wine. However, the “No. of Sales All Wines” is showing the total for Abel for all suppliers,

376, because the measure removes all the filters from the Wines table including the

SUPPLIER column.

Figure 8-8. ALL that references a table will remove filters from all columns in a
table, which may be incorrect

Therefore, the percentage in “No. of Sales as Percent of Filtered Value” would be

correct if you want to show the percentage “Abel’s” sales of “Alliance” are of “Abel’s” total

sales for all suppliers (376). However, this would be incorrect if you want to show the

percentage “Abel’s” sales are of the total sales only for “Alliance” (99). If the latter is the

goal, we must calculate “Abel’s” total for all the wines that are supplied by “Alliance” (or

whatever supplier has been filtered), which is 99.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

121

Let’s look more closely at the problem. The current filter context uses filters on two

columns in the Wines dimension: WINE and SUPPLIER. If we could see the in-memory

Wines table for the evaluation of “Chardonnay”, it might look something like Figure 8-9.

Figure 8-9. Filters are on both the WINE column and the SUPPLIER column

The measure “No. of Sales All Wines” removes both these filters and so calculates

the number of sales for Abel for all wines and all suppliers. Using the ALL function with

a table name as its argument, whether it’s a fact table or a dimension, will remove all

the filters from that table. We can, however, use ALL to remove filters from just specific

columns.

To remedy the problem in Figure 8-8, we need to remove the filter from the WINE

column but retain the filter on the SUPPLIER column. This is the measure we can create

to do this:

No. of Sales All Wines #2 =

CALCULATE ([No. of Sales] , ALL (Wines[WINE]))

You can see that in this measure, we’ve used a reference to the WINE column

inside ALL, and so ALL removes the filter from this column only. Figure 8-10 shows

what is happening in memory, and you can see that the filter is retained on the

SUPPLIER column.

Figure 8-10. Using ALL on a column removes the filter from that column only

We can now calculate the correct percentage and see this evaluated in Figure 8-11:

No. of Sales as Percent of Filtered Value #2 =

DIVIDE ([No. of Sales] , [No. of Sales All Wines #2])

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

122

Figure 8-11. The correct percentage for sales for “Abel” for “Alliance” supplier

Let’s consider another example where we must use the ALL function to remove the

filter from a specific column. This is where the requirement is to calculate percentages

across grouped items. For example, in the Matrix visual in Figure 8-12, there are two

columns from the Wines dimension in the Rows bucket of the Matrix: WINE COUNTRY

and TYPE. We’ve calculated the percentage the “Total Cases” values for each TYPE are

of the “Total Cases” values for each WINE COUNTRY and can see that “White” wines

constitute 47.02% of “French” wines.1

1 For information on constructing Matrix visuals, visit https://www.burningsuit.
co.uk/7-secrets-of-the-matrix-visual/

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

https://www.burningsuit.co.uk/7-secrets-of-the-matrix-visual/
https://www.burningsuit.co.uk/7-secrets-of-the-matrix-visual/

123

Figure 8-12. Calculating percentages across grouped data

It would then be insightful to create a stacked column chart where we can show

the total cases for each WINE COUNTRY and TYPE. We could then use the Tooltip,

populated with our percentage measure to show the percentage breakdown across

TYPE, as in Figure 8-13.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

124

Figure 8-13. Stacked column chart showing the percentage breakdown across
WINE COUNTRY in the Tooltip

These are the measures that are calculated in Figure 8-12.

All Wines Type =

CALCULATE ([Total Cases], ALL (Wines[TYPE]))

Percentage of Wine Country =

DIVIDE ([Total Cases] , [All Wines Type])

Let’s look more closely at how the “All Wines Type” measure is evaluated in the

Matrix visual. The first evaluation starts with a filter on WINE COUNTRY of “France” and

a filter on TYPE of “Red”, and this is propagated to the fact table. However, to calculate

the Total Cases for “France”, the filter on TYPE must be removed so that the measure

calculates Total Cases for both “Red” and “White” types for “France”. If the filter from the

TYPE column is removed using ALL, then “France” is the only filter propagated to the

fact table; see Figure 8-14.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

125

Figure 8-14. Using ALL on the TYPE column removes the filter from only
that column

Being able to identify which table and/or column you want to remove filters from

is key to using ALL successfully. However, consider the example in Figure 8-15 where

we have four columns in the Rows bucket. To calculate the percentage for each WINE

COUNTRY, we need to remove the filters from three columns in the Wines dimension,

that is, TYPE, SUPPLIER, and WINE.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

126

Figure 8-15. Removing filters from multiple columns

Inside the ALL function, you can reference multiple column names, so you could

write this measure:

All Wines Type, Supplier & Wine =

CALCULATE ([Total Cases],

 ALL (Wines[TYPE], Wines[SUPPLIER], Wines[WINE])

)

Note Because we are removing the filter from the WINE column, “Lambrusco”
wine that has no data will appear in the visual. To fix this, use a visual-level filter to
filter nonblank items.

However, you can appreciate how tedious this could get if you had many columns

from which you must remove filters. This is where you could use the ALLEXCEPT

function instead of ALL.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

127

 The ALLEXCEPT Function
ALLEXCEPT removes all filters in a table except filters that are applied to the columns

you specify. This can be used for situations in which you want to remove the filters on

many but not all of the columns in a table.

The ALLEXCEPT function has the following syntax:

= ALLEXCEPT (table, column1, colum2, etc.)

where:

table is the table where you want to clear the filters from except the filters on the

columns specified in the next arguments.

column1, column2 are the columns where you want filters preserved.

Here is an example of the ALLEXCEPT syntax:

= ALLEXCEPT (Wines, Wines[WINE COUNTRY])

Note that in ALLEXCEPT, unlike ALL, you need to first supply the table name.

Therefore, in the Matrix visual in Figure 8-15, you could author an alternative version

of the “All Wines Type, Supplier & Wine” measure as follows:

All Except Wine Country =

CALCULATE ([Total Cases],

 ALLEXCEPT (Wines, Wines[WINE COUNTRY])

)

So now we can calculate the percentage:

Percentage of Wine Country #2=

DIVIDE ([Total Cases] , [All Except Wine Country])

You might think that surely we’ve exhausted all possible “ALL” variations! We’ve

looked at removing filters from entire tables, either fact tables or dimensions. We’ve also

seen how we can remove filters from specific columns and how to remove filters from

several columns while retaining filters on others. However, there is still another scenario

that we need to explore. Consider Figure 8-16.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

128

Figure 8-16. The “Grand Total No. of Sales” measure is not the total for the
selected wines in the slicer

Here, we have a Table visual into which the WINE column from the Wines dimension

has been placed. You can see that four wines have been filtered using the slicer. The “No.

of Sales” measure calculates the number of sales for the selected wines. The “Grand Total

No. of Sales” measure has also been included and has the following expression:

Grand Total No. of Sales =

COUNTROWS (ALL (Winesales))

This measure returns the total number of sales for all wines irrespective of the slicer

selection. This would also be true if the wines filter was generated from a filter placed

in the Filters pane. If we want to calculate percentages of the total only for the selected

wines (699 in this case), this “Grand Total No. of Sales” measure is not going to work.

The problem is that the values selected in the slicer come from the same column that

is put into the Table visual, which is the WINE column. We’re using the slicer to reduce

the wines shown in the visual. Therefore, we need to find a function that specifically

finds grand totals for the items that have been filtered in the visual. The function we need

is called ALLSELECTED.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

129

 The ALLSELECTED Function
The syntax for the ALLSELECTED function is the same as for the ALL function:

= ALLSELECTED (table)

or

= ALLSELECTED (Column 1, Column 2, etc.)

However, if you were to look at the function description in the DAX Function Library,

you may be a little bemused:

“ALLSELECTED removes context filters from columns and rows in

the current query, while retaining all other context filters or explicit

filters. The ALLSELECTED function gets the context that represents

all rows and columns in the query, while keeping explicit filters and

contexts other than row and column filters. This function can be

used to obtain visual totals in queries.”

To be fair, it is very difficult to explain what this function does. It’s much easier to

look at an example of using it. Therefore, let’s return to our problem of calculating the

grand total for only the wines selected in the slicer. This is the DAX expression we need:

Grand Total No. of Sales for Selected Wines =

CALCULATE ([No. of Sales], ALLSELECTED (Wines[WINE]))

You can see this measure and the percentage calculated from it in Figure 8-17.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

130

Figure 8-17. The ALLSELECTED function calculates the correct grand total

How does this expression work? Well again, let’s consider the current filter context

for the first evaluation of this measure, that is, “Bordeaux” in the WINE column of the

Wines dimension. However, ALLSELECTED replaces the filter on the WINES column

with the filter from the slicer. Therefore, the Wines dimension is filtered to reflect the

slicer selection; see Figure 8-18.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

131

Figure 8-18. The ALLSELECTED function replaces the filter to reflect the slicer
selections

Mostly you can use ALLSELECTED in place of ALL because often you’re using

slicers or the Filters pane to reduce the number of items shown in visuals. If there are no

selections from slicers or from the Filters pane, ALLSELECTED will remove all filters, just

like ALL.

Up to now, we’ve been using the ALL function (and its variations) while not

considering whether it’s being used as a table function or is being used as a modifier to

CALCULATE. The “ALL” functions seem to be doing their job, and we’re thankful for that.

We know that ALL removes filters whether by removing filters from tables and columns

or by generating virtual tables containing all the rows. However, we are now going to

focus our attention on the difference between ALL as a table function and ALL as a

modifier to CALCULATE. Remember how in Chapter 1 we said that when working with

DAX, the devil is in the detail? Understanding this difference in these two behaviors of

ALL is a fine example of paying attention to this detail.

 ALL as a Modifier to CALCULATE
To understand this aspect of ALL, let’s consider a scenario that we’ve looked at before,

which is removing the filter from the WINE column in the Wines dimension while still

retaining the filter on the SUPPLIER column (see Figure 8-11). This was to calculate the

number of sales for the selected supplier.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

132

However, this time we’re going to count the number of wines supplied by “Alliance”

by counting the rows in the Wines table that are filtered accordingly, using a slicer. To

do this, we’ve created two similar measures that both use the ALL function on the WINE

column in the Wines dimension:

No. of Wines #1 =

COUNTROWS (ALL (Wines[WINE]))

No. of Wines #2 =

CALCULATE (COUNTROWS (Wines), ALL (Wines[WINE]))

However, only one of these measures returns the correct result; see Figure 8-19.

Figure 8-19. Using ALL on a column can return different results

The “No. of Wines #1” measure uses ALL as a table function and generates a one-

column table of all the distinct values in the WINE column. The measure then counts the

number of rows in this virtual table and returns 14 rows as shown in Figure 8-20.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

133

Figure 8-20. ALL as a table function generates a virtual table of distinct values

The “No. of Wines #2” measure uses ALL inside CALCULATE as a modifier and

therefore removes the filter from the WINES column but preserves the filter on the

SUPPLIER column. This measure then counts the number of rows in the Wines

dimension and returns four rows; see Figure 8-21.

Figure 8-21. The ALL function as a CALCULATE modifier removes the filter on
the WINE column

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

134

This example has been easy to explain. However, the ALL function acting as a

modifier to CALCULATE can be more challenging to understand, and this is certainly the

case in the next example we’re going to explore.

We’ve built three measures that calculate the number of sales where the cases sold

is greater than 300. They’re all using the expression “ALL (Winesales)” (highlighted

in gray), and the expressions look much the same. You might therefore expect them to

return the same result:

No. of Sales Where Cases GT 300 #1 =

CALCULATE ([No. of Sales],

 ALL (Winesales),

 Winesales[CASES SOLD] > 300

)

No. of Sales Where Cases GT 300 #2 =

CALCULATE (

 [No. of Sales],

 FILTER (

 ALL (Winesales), Winesales[CASES SOLD] > 300)

)

No. of Sales Where Cases GT 300 #3 =

CALCULATE (

 [No. of Sales],

 ALL (Winesales),

 FILTER (Winesales, Winesales[CASES SOLD] >300)

)

However, as you can see in Figure 8-22, whereas measures #1 and #2 return the same

value, measure #3 returns a different value.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

135

Figure 8-22. Similar expressions can return different results

These three measures all use ALL on the Winesales table so they should ignore any

filters on the Winesales table. This is true for measures #1 and #2 (there are 286 rows in

the Winesales table where CASES SOLD is greater than 300), but what about measure #3?

In this measure, the ALL function appears to be ignored, and the cross-filter propagated

from the Wines dimension is retained. Therefore, this measure returns the number of

sales for each wine where CASES SOLD is greater than 300.

Question: Which of these measures is the odd one out?

You might think measure #3 is the odd one out because it returns a different value.

However, you could argue that measure #2 is the odd one out because it’s the only

measure where ALL is being used as a table function. In the other two measures, ALL is

acting as a CALCULATE modifier.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

136

To understand this, let’s look at the evaluation of each of these measures in

more detail.

In this measure

No. of Sales Where Cases GT 300 #1 =

CALCULATE ([No. of Sales],

 ALL (Winesales), Winesales[CASES SOLD] > 350

)

there are two filter arguments in CALCULATE. The first one using ALL is modifying the

filter to remove filters from the Winesales table. This is evaluated first and produces an

empty filter. The second filter is a column filter on the CASES SOLD column, filtering

cases sold greater than 300; see Figure 8-23.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

137

Figure 8-23. The evaluation of “No. of Sales Where Cases GT 300 #1”

 1. ALL behaves as a modifier to CALCULATE and removes any filters

or cross-filters on Winesales, including the filter coming through

from the Wines dimension. This results in an empty filter, and

therefore, the Winesales table now has no filters on it.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

138

 2. A new filter is then placed on the CASES SOLD column of the

Winesales table to filter any cases sold that are greater than

300. This is the new filter in which the “No. of Sales” measure is

evaluated and the rows of the Winesales table are counted.

In this measure

No. of Sales Where Cases GT 300 #2 =

CALCULATE (

 [No. of Sales],

 FILTER (

 ALL (Winesales), Winesales[CASES SOLD] >350)

)

there is just one filter argument in CALCULATE supplied by the FILTER function

(highlighted in gray). Inside the FILTER function, the ALL function generates a virtual

table of all the rows in the Winesales table, therefore removing the cross-filter from the

Wines dimension. The FILTER function iterates this virtual table to return the rows

where CASES SOLD is greater than 300; see Figure 8-24.

Figure 8-24. The evaluation of “No. of Sales Where Cases GT 300 #2”

 1. The current filter context filters each WINE in the Wines

dimension, and this is cross-filtered to the Winesales table.

 2. The ALL function inside FILTER generates a virtual table of all the

rows of Winesales, ignoring the wine filter.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

139

 3. The FILTER function iterates over the virtual Winesales table to

filter out the rows where CASES SOLD is greater than 300. This is

the new filter in which the “No. of Sales” measure is evaluated and

the rows of the virtual Winesales table are counted.

The outcome of this measure is the same as in #1 before. However, you can

appreciate that the generation of a virtual table is less efficient than simply placing a

filter on a column. Here is yet another example of paying a heavy processing price when

using a table filter inside CALCULATE (we’ve looked at this earlier when learning about

the FILTER function).

In this measure

No. of Sales Where Cases GT 300 #3 =

CALCULATE (

 [No. of Sales],

 ALL (Winesales),

 FILTER (Winesales, Winesales[CASES SOLD] >300)

)

there are two filter arguments inside CALCULATE. The first, “ALL (Winesales)”, is a

CALCULATE modifier. The second, “FILTER (Winesales, Winesales[CASES SOLD] >

300”, is a table filter. We need to understand that CALCULATE modifiers are evaluated

first before any other filter arguments. Let’s take the first argument that is modifying the

filter context to remove the filters from the Winesales table. This is evaluated first and

creates an empty filter because all filters on the Winesales table have been removed.

The second filter uses the FILTER function to create a virtual Winesales table. But

which rows have been filtered in the virtual Winesales table generated by FILTER? We

have asked FILTER to filter to the rows where CASES SOLD is greater than 300. However,

remember what we know about the FILTER function. This function filters only the rows

in the current filter context. So the table generated by FILTER still contains the rows for

each wine (e.g., only rows for “Bordeaux” in the first evaluation), and these rows are

further filtered to just rows where CASES SOLD is greater than 350; see Figure 8-25.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

140

 1. The first argument uses ALL as a modifier to remove the filters

from the Winesales table. This is evaluated first, and there is now

an empty filter on the Winesales table.

 2. The filter argument using FILTER is now evaluated separately.

The Wines dimension is cross-filtered to the Winesales fact table

filtering each wine.

 3. The FILTER function iterates the Winesales table in the current

filter context and generates a virtual table containing the rows for,

for example, “Bordeaux” wine.

 4. It then further filters these rows so only rows containing CASES

SOLD that is greater than 300 for that wine remain in the table.

Figure 8-25. The evaluation of “No. of Sales Where Cases GT 300 #3”

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

141

Because the first argument using ALL has produced an empty

filter, this is the new filter in which the “No. of Sales” measure is

evaluated and the rows of the virtual Winesales table are counted.

So let’s summarize what we now know about ALL. The ALL function as a table

function generates a virtual table containing all the rows from a table or all the distinct

rows of a column or columns. This virtual table containing all the rows can be refiltered

by FILTER, and this will then propagate filters through the model as in measure

#2 before.

The ALL function as a modifier to CALCULATE is evaluated first before any filter

arguments inside CALCULATE. ALL as a modifier removes any filters from a table or a

column and generates an empty filter. Any other filter arguments of CALCULATE are

then evaluated and generate the new filter context as in measures #1 and #3 before.

Because ALL has a different behavior when used as a top-level argument to

CALCULATE, users believed it should have a different name when used in this context.

As a result, in 2019, a new function was introduced into the DAX Function Library,

REMOVEFILTERS. This function is synonymous with ALL, but it can be used only as a

CALCULATE modifier and not as a table expression like ALL.

In this chapter we have explored the ALL, ALLEXCEPT and ALLSELECTED functions

that are challenging functions with which to get to grips. Regardless of how long you’ve

been using DAX, the examples described here will always be problematic to understand,

but it’s only by thinking through the evaluation of these measures, paying close attention

to the details, can we come to truly understand how DAX works.

Having covered ALL and its variations, we can now move on to look at a group of

functions called time intelligence functions where paradoxically, the ALL function has

mostly been made redundant.

ChApTER 8 ThE ALL FuNCTION AND ALL ITS VARIATIONS

143
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_9

CHAPTER 9

Calculations on Dates:
Using DAX Time
Intelligence
Have you ever wanted to compare sales for the current month against sales for last

month? Or perhaps something a little more ambitious, such as cumulative totals or even

a rolling monthly average? If the answer is yes, and why wouldn’t it be, calculations

using date data such as these require the use of a group of DAX functions called “time

intelligence” functions. Exploring these functions will be the focus of this chapter, and

you will learn how to design expressions to enable you to evaluate data across different

granularities of time such as financial years, quarters, months, and even down to the

day grain. In doing so, you will be able to compare and contrast calculations over

those periods to build insights into the data that’s important to you, such as trends and

patterns over time.

Note The term “time intelligence” is a little misleading. These are not time
intelligence functions but date intelligence functions, so these functions will not
help you with calculations on hours, minutes, or seconds, although we can do
these calculations with the help of a Time dimension.

The starting point to using time intelligence functions is the creation of a date

dimension. This is because most time intelligence functions are designed to work with

a date table as an integral part of the data model. You may feel your data model doesn’t

require a date dimension, but you’ll struggle to create the date-based calculations you

need, and you certainly won’t be able to reap the benefits of time intelligence measures.

https://doi.org/10.1007/978-1-4842-8188-8_9

144

However, people new to DAX often don’t appreciate this aspect of date calculations

and therefore don’t have a date dimension in their model. If this is the case, Power BI

will help you with your date analysis by generating built-in date hierarchies, and this is

what we will explore first.

 Power BI Date Hierarchies
In the absence of a date dimension in your model, if you have columns of a date data

type in any tables, for every one of these columns, Power BI will generate an in-memory

date table for you that also contains a date hierarchy. We have removed the DateTable

dimension from our data model, and so the SALE DATE column is now expressed as a

date hierarchy as shown in Figure 9-1.

Figure 9-1. A date type column with a date hierarchy generated by Power BI

This feature is called “Auto date/time,” but you can turn off this behavior either

globally or only for the current file in the Options pane shown in Figure 9-2.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

145

Figure 9-2. You can turn off the generation of a date hierarchy using the
Options pane

If you have the “Auto date/time” feature turned on and you don’t have a date

dimension in your model, any fields of a date data type will be structured into

hierarchies. These built-in date hierarchies are useful for drilling into different date

granularities when put into Power BI visuals and also make it possible to slice by year,

quarter, month, and day. For example, in Figure 9-3, we are using the SALE DATE

hierarchy to drill into Month granularity in a Power BI line chart and slice by year.

Figure 9-3. Using the built-in date hierarchy to visualize date data

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

146

However, there are a number of drawbacks to using these hierarchies:

• What if your financial year doesn’t start in January?

• What if you want to analyze sales by week granularity? How would

you add week numbers?

• What if you want to compare sales in 2020 with sales in 2021 in a

clustered column chart?

All the preceding problems present a real challenge if you’re using built-in date

hierarchies, but if you have a date table dimension in your model, life becomes a lot

easier as far as date calculations go. Therefore, the first step is generating your date

dimension table and integrating it into your data model.

 Creating a Date Table
To generate your date table, you can use DAX or Power Query as explained

comprehensively in these two links:

www.sqlbi.com/articles/creating- a- simple- date- table- in- dax/

https://exceleratorbi.com.au/build- reusable- calendar- table- power- query/

Failing these two suggestions, you could use Excel to create a date table.

The only mandatory column in a date table is a column containing a list of

sequential dates that includes all the dates that cover the time span of your data. For

example, our wine sales begin in January 2017 and end in December 2021; therefore, our

date table has a DATEKEY column with values starting on January 1, 2017, and ending

on December 31, 2021 (the end of our financial year). You must include all the dates in

these years even if there is no data for specific dates. The other columns in the date table

are used to group and categorize these dates and are completely arbitrary. However, it

would be normal to have columns for your financial year and quarters and columns for

months, including month name and month number. You could also include different

financial years and week numbers. To analyze by months, you need to include both

month name and month number. This is so you can sort the month names correctly, and

some measures will require referencing both month name and number.

We’ve now replaced our DateTable back into our data model. You can see the

DateTable is related to the fact table using the SALE DATE and the DATEKEY columns as

shown in Figure 9-4.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

http://www.sqlbi.com/articles/creating-a-simple-date-table-in-dax/
https://exceleratorbi.com.au/build-reusable-calendar-table-power-query/

147

Figure 9-4. The DateTable is related to the Winesales fact table using the
DATEKEY column

Note it’s usual to use the column in your date table that contains the list of
unique dates as the linking field or primary key, but it would be possible to use
some other unique field in the date table as the linking field. however, you must
always have a column containing a list of sequential dates in your date table even
if you don’t use this field to link to the fact table.

The next requirement regarding the date table is to ensure the model “knows” this is

your date dimension. This is particularly true if you haven’t used the field containing the

list of unique dates as the primary key of the date table. You do this by marking the date

dimension as a date table by selecting Mark as date table from the Table Tools tab.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

148

Now, in the “Date column” drop-down, select the column in your date table that

contains the list of unique dates, as shown in Figure 9-5.

Figure 9-5. Use the Mark as date table option to ensure the integrity of the date
dimension

Note You will find more information on the requirement to “mark as date table”
here: https://www.sqlbi.com/articles/mark- as- date- table/

The final step in the setup of the data dimension is to sort the month names

correctly. You can see in Figure 9-6 that we’ve used the Sort by column button on the

Column Tools tab to sort the Month by the Month No.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

https://www.sqlbi.com/articles/mark-as-date-table/

149

Figure 9-6. Use the Sort by column option to sort the month names

Now that we have generated our date dimension, we can reap the benefits of using

the time intelligence functions inside DAX and analyze our data across years, quarters,

months, and days in many insightful ways.

 Using Time Intelligence Functions
Time intelligence functions use a base date from which to perform the required

calculation. This base date is supplied by the current filter context. For example, the

terms “previous month” and “same period last year” are relative terms, relative, that is,

to the date that is in the current filter context. Therefore, with most of these functions,

you must have a specific date filtered (a year, a quarter, a month, or a day) either by using

slicers, by using the Filters pane, or by having dates in the visual. For example, if you

want to find the previous month’s sales, you must have a current month filtered in the

visual or in a slicer; see Figure 9-7.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

150

Figure 9-7. The “base date” is supplied by the filter context which can be through
columns in the visual or by year and month slicers

All time intelligence functions (except LASTNONBLANK and

LASTNONBLANKVALUE) have an argument that requires specifying a column of dates

to be used in the calculation. In most cases, in this argument, you supply the name of the

column in your date table that holds the list of unique dates, for example, the DATEKEY

column in our data; see Figure 9-8.

Figure 9-8. The “Dates” argument normally requires referencing the column that
holds the list of unique dates

Note There is an exception to this. in the lasTDaTe and FirsTDaTe functions,
you may need to reference the date column in your fact table.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

151

For every DAX expression you construct using time intelligence functions, you could

author an equivalent expression using standard DAX functions such as CALCULATE,

FILTER, MAX, and MIN. However, if this were the case, there is one function you would

also need, and that’s the ALL function. For example, to find dates in May when the

current filter context is filtering dates in June, you would have to use the ALL function

to remove the current filter on June in the date table so that it could be refiltered for the

dates in May. By using time intelligence functions and referencing the “Dates” column

of the date table, the work of the ALL function is implicit. That’s why when using time

intelligence functions, you don’t need to remove filters by using ALL and then reapply

your specific filter.

The time intelligence functions we’re going to explore in this chapter are outlined in

Table 9-1. The return value is typically a virtual table containing a single column of dates.

The dates returned into this column are also shown in Table 9-1.

Table 9-1. Time intelligence functions and their return value

Function Dates Returned

preViousmonTh The previous month from the month in the current filter context.

sameperioDlasTYear The same period last year from the month in the current filter context.

DaTeaDD prior (or future) years, quarters, months, or days from the current filter

context.

DaTesYTD The year up to the date in the current filter context.

DaTesBeTWeen Between two dates.

DaTesinperioD starting with a date and then going back (or forward) by any number of

years, quarters, months, or days from the current filter context.

lasTDaTe The last date in the current filter context.

lasTnonBlanK The last date in a column where the expression is nonblank in the current

filter context.

lasTnonBlanKValue The last value in a column where the expression is nonblank in the current

filter context.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

152

Typically, time intelligence functions generate a virtual one-column table containing

filtered dates from the DATEKEY column in the date dimension (or whatever you’ve

named this column). This virtual table is used as a table filter inside CALCULATE to filter

the dates in the fact table.

However, DAX time intelligence functions either can be table functions that are

nested inside CALCULATE as the filter argument or can return scalar values. The reason

for this is that if a table function returns a one-column, one-row table, this virtual table is

converted into a scalar value by the DAX engine; see Table 9-2.

Table 9-2. Showing “Table” or “Scalar” functions, or both

Table Table or Scalar Scalar

DaTeaDD

DaTesBeTWeen

DaTesinperioD

DaTesYTD

preViousmonTh

sameperioDlasTYear

lasTDaTe

lasTnonBlanK

lasTnonBlanKValue

For example, it would be possible to use LASTDATE as follows:

Used as a scalar

LastDate Example #1 =

LASTDATE(Winesales[SALE DATE])

Used as a table filter inside CALCULATE

LastDate Example #2 =

CALCULATE([Total Sales],LASTDATE(Winesales[SALE DATE]))

Used to return a scalar inside CALCULATE

LastDate Example #3 =

CALCULATE(LASTDATE(Winesales[SALE DATE]),DateTable[YEAR]=2020)

Let’s now analyze our total cases values across different time frames. You can see the

results of the following expressions in Figure 9-9. Note the use of slicers to filter the base

date of December 2021 from which the expressions are calculated.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

153

 Previous Month/Year – PREVIOUSMONTH/YEAR
These are the DAX expressions to calculate the previous month’s or year’s values,

respectively:

Previous Month Total Cases =

CALCULATE ([Total Cases],

 PREVIOUSMONTH (DateTable[DATEKEY])

)

Previous Year Total Cases =

CALCULATE ([Total Cases],

 PREVIOUSYEAR (DateTable[DATEKEY])

)

The PREVIOUSYEAR function assumes that your financial year ends on December

31. If you use a different financial year, you can use the second argument of this function

to define your year-end date. To avoid any date locale issues, use the date format “YYYY-

MM- DD” (the function ignores the year, so use any year value); for example, if your year-

end date is the March 31st, this would be your measure:

Year To Date Cases =

CALCULATE ([Total Cases] ,

PREVIOUSYEAR (DateTable[DATEKEY], "2021-03-31"

)

)

 Same Period Last Year – SAMEPERIODLASTYEAR
This is the DAX expression to calculate values in the same period in the previous year:

Same Period Last Year Cases =

CALCULATE ([Total Cases],

 SAMEPERIODLASTYEAR (DateTable[DATEKEY])

)

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

154

 Values for Any Time Ago – DATEADD
These are the DAX expressions that calculate values for 6 months ago and 30 days ago,

respectively:

6 Months Ago Cases =

CALCULATE ([Total Cases],

 DATEADD (DateTable[DATEKEY], -6, MONTH)

)

30 Days Ago Cases =

CALCULATE ([Total Cases] ,

 DATEADD (DateTable[DATEKEY], -30, DAY)

)

 Year to Date – DATESYTD
This expression will calculate year to date values for the year in the current filter context:

Year To Date Cases =

CALCULATE ([Total Cases] ,

 DATESYTD (DateTable[DATEKEY])

)

The DATESYTD function, like PREVIOUSYEAR, assumes that your financial year

ends in December, and just like PREVIOUSYEAR, you can use the second argument of

this function to define your year-end date, using the format “YYYY-MM-DD” to avoid

date locale issues, as follows:

Year To Date Cases =

CALCULATE ([Total Cases] ,

 DATESYTD (DateTable[DATEKEY], "2021-03-31")

)

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

155

With the help of the time intelligence functions, these expressions have all been

straightforward to write. Let’s now move forward and explore some more complex

calculations.

 Total to Date or Cumulative Totals
The DAX measure for calculating total to date or a cumulative total for the “Total Sales”

measure is as follows (see Figure 9-10):

Cumulative Total =

CALCULATE ([Total Sales] ,

 DATESBETWEEN (DateTable[DATEKEY], 0 ,

 LASTDATE (DateTable[DATEKEY])

)

)

Figure 9-9. Time intelligence calculations

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

156

Figure 9-10. The cumulative total sales

This expression uses the DATESBETWEEN function that returns a table of dates that

fall between a start date and an end date.

Notice that the start date for the DATESBETWEEN function is zero, which means the

start date will be the earliest value in the dates column, or you could use the BLANK()

function (we will look at this function in the following chapter). The end date is found

by the LASTDATE function, which finds the last date in the current filter context. This

will be the last date of the month sitting in any row of the Table visual or the last date of a

month filtered in a slicer or Filters pane.

 Rolling Annual Totals and Averages
To calculate rolling annual totals and averages, you must use two functions:

DATESINPERIOD and LASTDATE. Let’s do the rolling annual total first:

Rolling Annual Total Sales =

CALCULATE ([Total Sales],

 DATESINPERIOD (DateTable[DATEKEY],

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

157

 LASTDATE (DateTable[DATEKEY]) , -1 , YEAR))

The LASTDATE function in this measure finds the last date in the current filter

context (i.e., the last date of the month sitting in any row of the Table visual, in a slicer,

or in the Filters pane). The DATESINPERIOD function calculates the total sales, starting

with this last date and going back by 1 year.

Now for the rolling annual average:

Rolling Annual Average Total Sales =

CALCULATE (

 [Total Sales] / COUNTROWS (VALUES (DateTable[MONTH])),

 DATESINPERIOD (

 DateTable[DATEKEY],

 LASTDATE (DateTable[DATEKEY]), -1, YEAR

)

)

The expression for the rolling annual average does much the same as the expression

for the rolling annual total. However, we need to find the average monthly total for each

rolling year. If we divided the “Total Sales” measure by 12, this would not be correct

for the first year because in January, only one month is rolling; in February, only two

months are rolling; in March, only three months; etc. This is why we need to use the

COUNTROWS and VALUES functions to calculate the correct number of rolling months

for the denominator and not simply divide by 12. The results of these measures are

shown in Figure 9-11.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

158

Figure 9-11. The rolling annual and average sales

We will meet the VALUES function later in this book, so at this stage, suffice to say

that this function generates a virtual table containing only the values in the MONTH

column of the date dimension that are visible in the filter context generated by the

DATESINPERIOD expression. The COUNTROWS function counts the rows in the virtual

table, giving us the correct number of cumulative months in the first year of our data.

 Calculating the Last Transaction Date and the Last
Transaction Value
If you want to find the first or last date for which there is data, for example, the last

date for which there is a value for the “Total Sales” measure, you can use the functions

FIRSTNONBLANK and LASTNONBLANK as follows:

Date of Last Transaction =

LASTNONBLANK (DateTable[DATEKEY], [Total Sales])

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

159

Date of First Transaction =

FIRSTNONBLANK (DateTable[DATEKEY], [Total Sales])

You could then find the value of the total sales on these dates by using

LASTNONBLANKVALUE and FIRSTNONBLANKVALUE; see Figure 9-12.

Value of First Transaction =

FIRSTNONBLANKVALUE (DateTable[DATEKEY], [Total Sales])

Figure 9-12. Calculating first and last transaction dates and values

Value of Last Transaction =

LASTNONBLANKVALUE (DateTable[DATEKEY], [Total Sales])

The functions LASTNONBLANK and LASTNONBLANKVALUE can be used in more

creative ways. Perhaps you need to calculate the date of the previous transaction, and

perhaps you would like to find the difference in sales values between consecutive sales,

as shown in Figure 9-13.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

160

Figure 9-13. Calculating the difference in values between consecutive transactions

These are the expressions used to accomplish these tasks:

Previous Sales Date =

CALCULATE (

 LASTNONBLANK (DateTable[DATEKEY],[Total Sales]),

 DateTable[DATEKEY] < MAX (DateTable[DATEKEY])

)

Previous Sales Value =

CALCULATE (

 LASTNONBLANKVALUE (DateTable[DATEKEY], [Total Sales]),

 DateTable[DATEKEY] < MAX (DateTable[DATEKEY])

)

Sales Difference =

[Total Sales] - [Previous Sales Value]

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

161

Because we are using the DATEKEY column from the date dimension in

the Table visual in Figure 9-13, the expressions using LASTNONBLANK and

LASTNONBLANKVALUE will be evaluated for every date in this column, regardless of

whether each date has a transaction in the Winesales table. When you then populate

the “Total Sales” measure into the Table visual, you will see blank values for dates where

there are no transactions. To resolve this, use a visual-level filter and filter the “Total

Sales” measure to exclude blank values.

The important factor in the evaluation of these expressions is the use of CALCULATE

to modify the filter context in which the LASTNONBLANK and LASTNONBLANKVALUE

are evaluated. The expression “MAX (DateTable[DATEKEY])” returns the date value

in the current filter context, for example, 7 January 2017; see Figure 9-14. The MAX

function is used to return a scalar value. As there is only a single date in the current

filter context, we could equally use MIN or SUM. The filter argument of CALCULATE

therefore is saying “find the date in the DATEKEY column of the DateTable that is before

the date returned by ‘MAX (DateTable[DATEKEY])’ but only if it has a sales value and

is not blank.” The LASTNONBLANK function returns this date, that is, 3 January 2017.

The LASTNONBLANKVALUE function returns the sales value associated with this date,

$10,560.

Figure 9-14. Focusing on an evaluation of the LASTNONBLANK and
LASTNONBLANKVALUE expressions

We can then simply subtract the “Previous Sales Value” measure from the “Total

Sales” measure.

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

162

 Finding the Difference Between Two Dates
Finding the difference in days between two dates in DAX can be done in a similar way to

Excel; simply subtract one date from another. However, in DAX, you must nest the dates

in the INT function to return a value in days as opposed to returning a date:

Days Difference =

INT ([Date of Last Transaction]) - INT ([Date of First Transaction])

DAX also has the same function DATEDIFF that we use in Excel to find the difference

between weeks, months, years, etc. (see Figure 9-15).

Months Difference =

DATEDIFF ([Date of First Transaction], [Date of Last Transaction], MONTH)

Figure 9-15. Calculating days between and months between two dates

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

163

Hopefully, our foray into some of the more ubiquitous DAX time intelligence

functions has whetted your appetite for performing calculations on dates. There are of

course a number of other time intelligence functions that we haven’t explored here but

that you might find useful in the analysis of your data, so why not self-explore more of

these valuable DAX functions. You will find them all here:

https://docs.microsoft.com/en- us/dax/time- intelligence- functions- dax

ChapTer 9 CalCulaTions on DaTes: using DaX Time inTelligenCe

https://docs.microsoft.com/en-us/dax/time-intelligence-functions-dax

165
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_10

CHAPTER 10

Empty Values vs. Zero
In this chapter, we will look at a very specific DAX behavior, and that is how DAX treats

empty, missing, and null values.1

Note We will be examining this behavior in the context of a calculated column
and mostly creating expressions that would only be valid in this context. However,
you must appreciate that the behavior of empty, missing, and null values is exactly
the same in the context of DAX measures, and the examples at the end of this
chapter will illustrate this.

 The BLANK() Function
In DAX, there is a special way to identify null or empty values, and that’s by using a value

called “blank.” To return blank values, we can use the BLANK() function as shown in a

calculated column created in the Winesales table (Figure 10-1):

10 Percent =

IF (Winesales[CASES SOLD] > 100,

Winesales[CASES SOLD] * 0.1, BLANK ())

1 To follow along with the examples, use the Power BI Desktop file “2 DAX Blanks & Zeros.pbix”.

https://doi.org/10.1007/978-1-4842-8188-8_10

166

Figure 10-1. Use the BLANK() function to return blank values

When constructing DAX expressions using IF, if you want to return BLANK() on

the “Value if false” argument, you can just close off on the bracket because BLANK()

is the default if no value is supplied in the argument. So we could rewrite the previous

expression like this:

10 Percent =

IF (Winesales[CASES SOLD] > 100,

Winesales[CASES SOLD] * 0.1)

We can test for null or blank values as in the following calculated column:

Note In the sample .pbix file, sort the Winesales table by SALE DATE ascending
to see the blanks and zeros in the CASES SOLD column.

Blank? =

IF (Winesales[CASES SOLD] = BLANK(), "Blank", "Other")

Notice that testing for BLANK() includes 0 (zero), so we never get “Other” for zero

(Figure 10-2).

CHApTEr 10 EmpTy VALuES VS. ZErO

167

Figure 10-2. Testing for a blank includes zero values

What’s surprising, however, is that the reverse is true, so in the following calculated

column, testing for 0 includes blank values, so again we don’t get “Other” for blank

values (see Figure 10-3):

Zero? =

IF (Winesales[CASES SOLD] = 0, "Zero", "Other")

Figure 10-3. Testing for zero includes blanks

Therefore, we can see that DAX treats BLANK() and 0 (zero) as the same value when

used in the predicate of the IF function, as in the previous two examples.

CHApTEr 10 EmpTy VALuES VS. ZErO

168

 The ISBLANK Function
So what if you want to distinguish between 0 and blank values? You can use a DAX

function that will “weed out” blanks as compared to 0. That function is ISBLANK as used

in this following calculated column (Figure 10-4):

Blank or Zero? =

IF (

 ISBLANK (Winesales[CASES SOLD]),

 "Blank",

 IF (Winesales[CASES SOLD] = 0, "Zero", "Other")

)

Figure 10-4. Use the ISBLANK function to test for blanks and not zeros

Using ISBLANK, we now have “Zero” returned for zero values and “Blank” returned

for blank values, and any other values return “Other”.

 Testing for Zero
If you want to find just 0, you can use this calculated column (Figure 10-5):

Zero? =

CHApTEr 10 EmpTy VALuES VS. ZErO

169

IF (

 NOT (ISBLANK (Winesales[CASES SOLD]))

 && Winesales[CASES SOLD] = 0,

 "Zero",

 "Other"

)

Figure 10-5. Testing for zeros

Now, we only see “Zero” where applicable.

 Using Measures to Find Blanks and Zero
You can also use a measure inside ISBLANK. For example, to find how many customers

have no sales, as opposed to 0 (zero) sales, this would be the DAX expression:

No. of Customers with No Sales =

COUNTROWS (FILTER (Customers, ISBLANK ([Total Sales])))

Whereas this expression would find the number of customers who had either zero

sales or no sales:

No. of Customers with Zero or No Sales =

CHApTEr 10 EmpTy VALuES VS. ZErO

170

COUNTROWS (FILTER (Customers, [Total Sales] = 0))

This expression would find the number of customers who had zero sales:

No. of Customers with Zero sales =

COUNTROWS (

 FILTER (Customers, NOT (ISBLANK ([Total Sales]))

 && [Total Sales] = 0)

)

You can see these measures used in Card visuals in Figure 10-6. To see the customers

with no sales in the Table visual, use the “Show items with no data” option.

Figure 10-6. Customers with no sales and zero sales

We can conclude, therefore, that we must be careful using the following expression:

“= IF ([expression] = 0)”

because it will include blank values as well as zero values.

CHApTEr 10 EmpTy VALuES VS. ZErO

171

 Using the COALESCE Function
There is often a requirement to substitute a blank value for another value, such as zero.

This would be the expression that would achieve this outcome:

If Blank Return Zero =

If (ISBLANK ([Total Sales]), 0, [Total Sales])

However, in March 2020, a new function was introduced into the DAX library, and

that was the COALESCE function that provides us with a more succinct expression as in

these two examples:

If Blank Return Zero =

COALESCE([Total Sales],0)

If Blank Return No Sales =

COALESCE([Total Sales],"No Sales")

The first argument of this function is the expression where you are looking for blank

values, for example, the “Total Sales” measure. The second argument is the value you

want returned if the expression is blank, for example, 0 or “No Sales”, see Figure 10-7.

CHApTEr 10 EmpTy VALuES VS. ZErO

172

In this chapter, you have learned that DAX treats blanks and zeros as the same value

unless you specifically use the ISBLANK function in your expression to distinguish

between these two values. This chapter has also been a welcome transgression from

the hard work of learning how to analyze your data by using some of the more difficult

aspects of DAX such as using ALL to calculate percentages and using time intelligence to

calculate rolling averages.

In the next chapter, we prepare ourselves for the more complex expressions to

come. You must now learn how to use DAX variables in your code to facilitate authoring

measures that require a more advanced knowledge of DAX.

Figure 10-7. Use the COALESCE function to replace blanks with a value

CHApTEr 10 EmpTy VALuES VS. ZErO

173
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_11

CHAPTER 11

Using Variables: Making
Our Code More Readable
We’ve managed very well so far without the use of variables in our DAX code. Indeed,

variables haven’t always been around in the DAX language. They came on board in

2015, five years after DAX was first developed. In this chapter, we will elaborate on why

variables are so useful when writing DAX expressions, and once you’ve learned how to

utilize them, we will be including them henceforth in our expression, where applicable.1

Using variables in your DAX expressions can help you write the more complex

calculations that we will begin to tackle as we move forward in this book. There are three

major advantages gained by using variables:

 1. Improved performance

 2. Improved readability

 3. Reduced complexity

In this chapter, we will explore these three benefits of including variables when

generating DAX code. We will also look at the immutable and constant nature of

variables and when they may be a hindrance rather than a help.

To include variables in your code, use the keyword VAR followed by the name of the

variable and then the definition of the variable. The keyword RETURN is then used at the

end of the code to return the expression to be evaluated. For example:

Example Measure =

VAR MyVariable = SUM (Winesales[CASES SOLD])

RETURN

MyVariable * 1.1

1 To follow along with the examples, use the Power BI Desktop file “1 DAX Sample Data.pbix”.

https://doi.org/10.1007/978-1-4842-8188-8_11

174

Variable declarations are usually made at the beginning of the expression, and their

value remains constant throughout the evaluation. However, you can declare variables

within the expression to limit the scope.

Variables can be used in both measures and calculated columns to harvest the

values generated by

• Expressions, for example, SUM (Winesales[CASES SOLD])

• Measures, for example, [Total Cases]

• Tables, for example, FILTER (Winesales, Winesales[CASES

SOLD] >300)

• Values, for example, 0.1, 10, 20

When variables are used in calculated columns, they can also harvest values

generated in columns.

The name of the variable must not contain spaces, and you can’t use reserved

words such as “date” or “min”. Also, it makes sense if the name of the variable isn’t the

name of an existing table or column. Some people like to use the underscore to start the

variable name.

 Improved Performance
As an example of how variables can improve performance, let’s look at a measure to

calculate 10% or 5% of the CASES SOLD based on the CASES SOLD value being greater

than 20,000 and 15,000, respectively. This would be the expression you might author:

10 PC or 5 PC =

IF (

 SUM (Winesales[CASES SOLD]) > 20000,

 SUM (Winesales[CASES SOLD]) * 0.1,

 IF (

 SUM (Winesales[CASES SOLD]) > 15000,

 SUM (Winesales[CASES SOLD]) * 0.5,

 SUM (Winesales[CASES SOLD])

)

)

Chapter 11 Using Variables: Making OUr COde MOre readable

175

The problem with this expression, especially as far as performance goes, is that there

are five repetitions of the SUM function, forcing the evaluation of these expressions five

times. Also, the use of the nested IF is rather cumbersome. Using the SWITCH function

in place of the nested IF is a small improvement:

10 PC or 5 PC #2 =

SWITCH (

 TRUE (),

 SUM (Winesales[CASES SOLD]) > 20000,

 SUM (Winesales[CASES SOLD]) * 0.1,

 SUM (Winesales[CASES SOLD]) > 15000,

 SUM (Winesales[CASES SOLD]) * 0.5,

 SUM (Winesales[CASES SOLD])

)

This is the first time that we have met SWITCH, and its construct is as follows:

=SWITCH (expression, value1, result1, value2, result2 etc…else)

Notice that inside SWITCH, the function TRUE() is used as the expression to be

evaluated and then Boolean statements are listed, followed by the value to be returned if

the statements are true. The final argument is the “else” expression.

However, despite the fact that the measure using SWTICH is more compact to write,

it doesn’t offer any great improvement in performance as the SUM function is still being

evaluated multiple times.

Therefore, let us now introduce the use of a variable by using the keyword VAR to

define the variable and the keyword RETURN to return the expression to be evaluated, as

follows:

10 PC or 5 PC #3 =

VAR TotalCasesValue =

 SUM (Winesales[CASES SOLD])

RETURN

 SWITCH (

 TRUE (),

 TotalCasesValue > 20000, TotalCasesValue * 0.1,

 TotalCasesValue > 15000, TotalCasesValue * 0.5,

 TotalCasesValue

)

Chapter 11 Using Variables: Making OUr COde MOre readable

176

In this expression, not only do we avoid repeating the SUM function, but also the

total cases calculation is performed only once when the variable is declared rather than

being recalculated for every test.

 Improved Readability
Variables can also help to clarify expressions that use nested measures or nested

expressions where the readability of the expressions gets more convoluted. For example,

consider the following expression that calculates growth percentage. Notice that the

first variable defines a measure and the second variable defines an expression. The use

of the variables and the RETURN statement result in the expression much simpler to

understand:

Growth % =

VAR CurrentCases = [Total Cases]

VAR LastYrCases =

 CALCULATE ([Total Cases], PREVIOUSYEAR (

 DateTable[DateKey]))

RETURN

 DIVIDE (CurrentCases - LastYrCases, LastYrCases)

Note because this measure uses the preViOUsYear function, you must have a
year filtered (e.g., by using a slicer) in the visual that uses the measure.

Not only can variables define measures and expressions, but they can also define

tables. In Chapter 7, we calculated the number of high profit wines as follows:

High-profit Wines =

 CALCULATE ([No Of Sales],

 FILTER (Wines, Wines[PRICE PER CASE] >=

 Wines[COST PRICE] * 3))

Chapter 11 Using Variables: Making OUr COde MOre readable

177

However, we could use a variable to hold the table expression defined by the FILTER

function and use that as the filter argument inside CALCULATE. Again, using the

RETURN statement greatly streamlines the expression:

High-profit Wines #1 =

VAR TableOfWines =

 FILTER (Wines, Wines[PRICE PER CASE] >=

 Wines[COST PRICE] * 3)

RETURN

 CALCULATE ([No Of Sales], TableOfWines)

We can use variables in calculated columns too, for instance, within the

arguments of IF:

Cases Sold Increase =

VAR CasesSold = Winesales[CASES SOLD]

VAR MyValue1 = 1.1

VAR MyValue2 = 1.2

RETURN

IF(CasesSold > 100, CasesSold * MyValue1, CasesSold * MyValue2)

We will look at further examples of how variables can help you when used in the

context of the calculated column when we delve into more complex DAX expressions in

later chapters.

 Reduced Complexity
Our next example of the benefit to be reaped by using a variable is by revisiting a

calculation we built when exploring the FILTER function in Chapter 7. We calculated

the number of sales where the value in the CASES SOLD column was above the average

cases for all wines. This was the measure:

No. of Sales Where Cases is GT Avg All Wines =

 CALCULATE([No. of Sales],

 FILTER (Winesales,

 Winesales[CASES SOLD] >= [Avg Cases All Winesales]))

Chapter 11 Using Variables: Making OUr COde MOre readable

178

The problem with this code is that because it nests the measure “Avg Cases All

Winesales” within the expression, this measure must already exist in our model, as

would any measures we use in this context. We may be required to continually locate

such measures in the Fields list in order to edit or debug them, leading to frustration and

annoyance.

The preferred expression would use two variables as follows:

No. of Sales Where Cases is GT Avg All Wines #2 =

VAR AvgAllWines =

CALCULATE(AVERAGE (Winesales[CASES SOLD]) ,ALL (Winesales))

VAR FilterAvgAll =

FILTER (Winesales, Winesales[CASES SOLD] >= AvgAllWines)

RETURN

 CALCULATE ([No. of Sales], FilterAvgAll)

 Variables As Constants
There is one last important point to make regarding variables, and that is the term

“variable” can be misleading. Perhaps if we called DAX variables “constants,” this

might be a more accurate description because that’s what they really are. Consider the

following expression:

Sales for Abel =

VAR MyAmount = [Total Sales]

RETURN

 CALCULATE (MyAmount, SalesPeople[SALESPERSON] = "abel")

We can see in Figure 11-1 that this expression does not return the sales amount for

salesperson “Abel” but simply returns the total sales.

Chapter 11 Using Variables: Making OUr COde MOre readable

179

Figure 11-1. Variables behave as constants and can’t be modified by CALCULATE

The reason for this is that the variable “MyAmount” is calculated where it is

declared, in this case, before any other code. It then does not and cannot change by using

CALCULATE to modify the filter. This is where we must use a measure such as “Total

Sales” inside CALCULATE instead.

However, the immutable nature of variables is also their strength. For instance,

consider the scenario where you want to identify the months where you’ve had

exceptionally high sales. You’ve identified exceptionally high sales as those transactions

where the sales value is greater than 5% of the total sales for that month.

This is the code you would probably write:

No of Sales GT 5% Wrong =

CALCULATE (

 [No of Sales],

 FILTER (

 Winesales,

 [Total Sales] > [Total Sales] * 0.05

)

)

Chapter 11 Using Variables: Making OUr COde MOre readable

180

However, this measure does not return the correct result. The value of the “Total

Sales” measure when used inside an iterator such as the FILTER function calculates

the total sales for each row in the Winesales table, not the total sales for each month.

Therefore, the measure “Total Sales GT 5% Wrong” calculates the number of sales where

the sales value is greater than 5% of the sales value on each row (i.e., each transaction)

and so returns the number of sales; see Figure 11-2.

Figure 11-2. The “No of Sales GT 5% Wrong” measure returns the number of sales

This expression uses the concept of context transition that we will meet in a later

chapter, but nevertheless, it’s intuitive to understand that if FILTER is iterating the

Winesales table, it must be scanning the table row by row.

The correct expression must calculate the total sales in the current filter context,

which is the total sales for each month, that has been lost by the iteration of FILTER. To

reapply this filter, CALCULATE can use the filter that is placed on the Winesales table,

the code for which would be a challenge even to experienced DAX users:

No of Sales GT 5% Difficult =

CALCULATE (

 [No of Sales],

Chapter 11 Using Variables: Making OUr COde MOre readable

181

 FILTER (

 Winesales,

 [Total Sales] > CALCULATE ([Total Sales], Winesales) * 0.05

)

)

This measure has been labelled as the “difficult” expression because it uses two

challenging DAX concepts that we’ve yet to meet: context transition and table expansion.

However, you may be relieved to know that you don’t need this advanced knowledge to

arrive at the correct calculation. You can use variables instead, and this will render the

expression very easy:

No of Sales GT 5% Easy =

VAR PerCentToFind = [Total Sales] * 0.05

RETURN

 CALCULATE ([No of Sales],

FILTER (Winesales, [Total Sales] > PerCentToFind))

The “easy” expression uses a variable to calculate 5% of the “Total Sales” measure,

and this is evaluated first and remains constant. This variable is then used to calculate

the number of sales in each month that have a total sales value that is greater than the

value stored by the variable.

The moral of this story? Let’s just be grateful for variables!

Chapter 11 Using Variables: Making OUr COde MOre readable

183
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_12

CHAPTER 12

Returning Values
in the Current Filter
There is often a requirement when designing reports to display the value or values

selected in slicers or in the Filters pane. This might be to show these values in the title

of a visual using conditional formatting or to show them in Card visuals, as shown in

Figure 12-1.

Figure 12-1. Displaying the values in the current filter context

If this is your goal, we have three DAX functions that do this job: SELECTEDVALUE,

CONCATENATEX, and VALUES. In this chapter, we will be exploring the use of these

functions to return filter selections. You will learn how to generate dynamic titles for

https://doi.org/10.1007/978-1-4842-8188-8_12

184

your visuals that label the data filtered within them. However, this chapter will also

introduce the concept of the parameter table, a table that is unrelated to other tables in

the model and used to capture values selected by the user. Such values can then be used

dynamically within your calculations.

The SELECTEDVALUE and CONCATENATEX functions fall into the category of

functions that return scalar values and can return either a numeric or a text value. This

is why it’s not a verity to say the measures only return scalar values, as that would imply

that they can only return numeric values. Measures using either of these functions will

often return a text value. The VALUES function is unusual in that it can return either a

scalar value or a table, and therefore, we will hold off looking at this function until the

end of the chapter.

You’ve learned that a measure must return a single value whether numeric or text

and SELECTEDVALUE and CONCATENATEX are no exception. SELECTEDVALUE

will return the value in the current filter context but only if there is one value to return.

However, sometimes, the filter context holds more than one value, when we make

multiple selections in slicers for instance, so how can we return values in this scenario?

If the requirement is to return multiple values that are in the filter context, we

must use another function: CONCATENATEX. This function falls into the “X” group

of iterating functions that you learned about in Chapter 5. In order that a single value

is returned, measures using CONCATENATEX will concatenate multiple values in the

current filter context and so return a single text string.

Therefore, we have two functions SELECTEDVALUE and CONCATENATEX, one of

them being an iterator, that are very different from each other. However, they are used

for the same purpose, and that is flagging up items that have been filtered out by slicer or

filter selections. Let’s now look at the first of these: SELECTEDVALUE.

 The SELECTEDVALUE Function
The SELECTEDVALUE function returns the value in the filter context when there’s only

one value in the specified column, otherwise, it returns the alternate result. It has the

following syntax:

= SELECTEDVALUE(column name, alternate result)

where:

column name is the column from which you want to find the value.

Chapter 12 returning Values in the Current Filter

185

alternate result (optional) is the value returned when the column has been filtered

to more than one distinct value or no value. When not provided, the default value is

BLANK().

Here is an example of the SELECTEDVALUE syntax:

= SELECTEDVALUE (Wines[TYPE], “Many”)

Before we look more closely at this function, it’s important that we recap on what we

mean by “the current filter context” by considering the following measure:

Total Cases =

SUM (Winesales[CASES SOLD])

Figure 12-2. The filters for the evaluation of the “Total Cases” measure are placed
on both the SALESPERSON and WINE columns

This visual in Figure 12-2 contains the “Total Cases” measure filtered by the

SALESPERSON and WINE columns. For the first evaluation of 8,531 cases, there is a filter

on salesperson “Abel” and “Bordeaux” wine. However, it’s the filter on the WINE column

from the slicer on which we will focus. If we could see the filter on the Wines dimension,

it would look something like Figure 12-3 where the table has been filtered to one row.

Chapter 12 returning Values in the Current Filter

186

Figure 12-3. The slicer filters just one row in the Wines dimension

We know that this filter is then propagated to the fact table along with the filter on

the SalesPeople dimension, both these filters making up the current filter context.

Often, we have many slicers on the report canvas, and it’s not always apparent to

users of the report which slicers they have clicked on. It would be beneficial if we could

provide them with this information as in Figure 12-4.

Figure 12-4. Informing users of slicer selections

This is where the SELECTEDVALUE function can help us. You can see in Figure 12-4

that the wine selected in the slicer is shown in both the title of the Table visual using

conditional formatting and in the Card visual. This is the measure that we used in these

examples:

Wine Selected =

"You have selected " & SELECTEDVALUE (Wines[WINE])

Chapter 12 returning Values in the Current Filter

187

This example uses the SELECTEDVALUE function to return the value from the

WINE column sitting in the current filter context. This is also the first time that we’ve

used the ampersand (&) in a DAX expression. Just like Excel, the ampersand is the DAX

concatenate operator and is used to string parts of a DAX expression together.

Note if you need help in using conditional formatting in the title of a visuals,
follow this link: https://docs.microsoft.com/en- us/power- bi/create-
reports/desktop- conditional- format- visual- titles

But what if there’s more than one value selected in the slicer? As we will see in the

following, one option is to use CONCATENATEX, but there is another, much easier

solution because the SELECTEDVALUE function allows you to supply an alternative

result when multiple items have been selected, as shown here:

Wine Selected #2 =

"You have selected " &

SELECTEDVALUE (Wines[WINE],"multiple wines")

However, because the “alternate result” argument of SELECTEDVALUE kicks in

whether there are multiple selections or no selection, we have a problem. You’ll notice

that if you have nothing selected in the slicer, the Table visual title and Card visual will

still tell you that you have multiple wines selected (Figure 12-5)!

Chapter 12 returning Values in the Current Filter

https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-conditional-format-visual-titles
https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-conditional-format-visual-titles

188

Figure 12-5. The “alternate result” shows for no selection as well as for many
selected

One way to avoid this problem is to ensure users can’t make multiple selections or

no selection by turning on “Single select” on the Slicer settings formatting card. The

other way is to use CONTCATENATEX as we will be discovering later in this chapter.

The SELECTEDVALUE function also allows you to test for specific values in the

current filter. In Figure 12-6, the Card visual1 shows “Expensive Wine” if the PRICE PER

CASE value of the wine selected in the slicer is greater than $75.00; otherwise, it shows

“Cheap Wine”.

1 For information on formatting the Card visual, visit https://docs.microsoft.com/en-us/
power-bi/visuals/power-bi-visualization-card

Chapter 12 returning Values in the Current Filter

https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-card
https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-card

189

Figure 12-6. Using SELECTEDVALUE to test for values in the current filter

This is the expression used in Figure 12-6:

High Price =

IF (

 SELECTEDVALUE (Wines[PRICE PER CASE]) > 75,

 "Expensive Wine",

 "Cheap Wine"

)

It’s important to note here that when using SELECTEDVALUE, you can select any

value sitting in any column of the row that has been filtered, not just the column used in

the slicer.

However, we still have a problem when a user selects multiple values in a slicer. You

may not want to use “single select” in the slicer but instead be able to select multiple

items and list the items in a Table or Card visual. We’ve also seen that the “alternate

result” of SELECTEDVALUE displays when there is no selection as well as when

there are many selected. Let’s now see how we can solve this problem by using the

CONCATENATEX function.

 The CONCATENATEX Function
We know that any function that ends in an “X” is an iterating function, and

CONCATENATEX is no exception. It iterates the table referenced in its first argument

Chapter 12 returning Values in the Current Filter

190

and then concatenates the values in the column referenced in its second argument.

Specifically, the CONCATENATEX function has the following arguments:

= CONCATENATEX(table, expression, delimiter, order by, order)

where:

table is the table to be iterated.

expression is the column (or expression) whose values you want concatenating for

every row in table.

delimiter is the character you want to separate the values, for example, a comma or

an ampersand.

order by (optional) is usually a column by which you want to sort the values.

order (optional) is ASC or DESC.

Now let’s look at an example of an expression using CONCATENATEX:

Types of Wine =

CONCATENATEX (Wines, Wines[WINE] , ", " , Wines[WINE ID], ASC)

In this measure, CONCATENATEX iterates the Wines table and, for every row in

the table, returns a concatenated list of values from the WINE column, separated with

a comma and sorted ascending by WINE ID. In Figure 12-7, you can see the values that

this expression returns when the TYPE column from the Wines tables has been placed

in the Table visual. The “Types of Wine” measure displays all the wines beside their

type (i.e., Red or White), separated by a comma and sorted by the WINE ID column

ascending.

Figure 12-7. The values returned by the “Types of Wine” measure

Chapter 12 returning Values in the Current Filter

191

We can use just the first three arguments and place this measure in a Card visual,

using a slicer to filter by the WINE column:

Types of Wine #1 =

 CONCATENATEX (

 Wines, Wines[WINE] ,

 ", ")

Here, CONCATENATEX will simply return all the wine names in the current filter;

see Figure 12-8. At last, we’ve been able to solve the problem of displaying slicer

selections when multiple items have been selected.

Figure 12-8. The “Types of Wine #1” measure in a Card visual sliced by WINE

However, we’re not quite there yet. If there is no selection in the slicer, the Card

visual returns all the wine names which probably isn’t what you want. To resolve this, we

need to take our “Types of Wine #1” expression a little further.

In Figure 12-9, we have used two similar measures in the title of a Table visual using

conditional formatting: “Types of Wine #2” and “Types of Wine #3”. Both measures return

the phrase “Sales by Wine, filtered by”, and the list of wines will grow as the selection

grows. To avoid cluttering the visual with many wine names, the “Types of Wine #3”

shows “and More” when more than three wines have been selected. When there is no

selection in the slicer, the title of the visuals shows “Sales by Wine”, rather than “you have

selected multiple wines”, as in the case of the measures using SELECTEDVALUE.

Chapter 12 returning Values in the Current Filter

192

Figure 12-9. Using CONCATENATEX to solve the problem of multiple selections
and no selection

Therefore, using CONCATENATEX, we have solutions for all four problem scenarios:

 1. No selection in the slicer

 2. Selections in the slicer

 3. Three or fewer wines selected

 4. More than three wines selected

The measure required that solves problem scenarios #1 and #2 is relatively

straightforward. However, we need to extend this expression to accommodate scenarios

#3 and #4, and this is where the expression will become a little more ambitious.

Chapter 12 returning Values in the Current Filter

193

Therefore, let’s tackle the situation where users make selections in the slicer or there is

no selection.

To resolve this scenario, the measure we build must return either

 1. “Sales of Wines” if there are no selections in the slicer

or

 2. “Sales of Wines filtered by” followed by a list of wines selected in

the slicer

Therefore, we need a way to find out whether the filter on the WINES column has

reduced the number of rows in the Wines dimension. If it has, there must be selections

in the slicer. If it hasn’t, there must be no selection in the slicer. What we can do here

is use the function named VALUES that generates a virtual one-column table that lists

the values in the WINE column in the current filter context. We can then use the ALL

function to return another virtual one-column table containing all the wine names. If

these tables have the same number of rows in them, then there must be no selections in

the slicer.

Note We deep dive into the Values function later in this chapter.

Here is the expression that we can build. Note the use of variables to harvest the

values returned by COUNTROWS:

Types of Wine #2 =

VAR NoFilteredWines =

 COUNTROWS (VALUES (Wines[WINE]))

VAR NoAllWines=

 COUNTROWS (ALL(Wines[WINE]))

RETURN

 IF (NoFilteredWines = NoAllWines ,

 "Sales by Wine",

 "Sales by Wine, filtered by "

 &

 CONCATENATEX (

 Wines, Wines[WINE] ,

 ", "))

Chapter 12 returning Values in the Current Filter

194

Let’s now turn our attention to resolving the scenario of users selecting more than

three wines in the slicer. If they select three or fewer wines or no wines, then the measure

will return the same as “Types of Wine #2”. However, if they select four or more wines,

we want the measure to return a list of the first three wines selected followed by “and

more…”. Therefore, we need to generate a list of just the top three wine names selected in

the slicer. We can use a table function named TOPN to do this job. As its name suggests,

TOPN will build a virtual table containing only the top N (e.g., 3) values as in the

following expression:

TOPN (3, VALUES (Wines[WINE]))

Notice again how the VALUES function is used to generate a one-column table listing

the wine names in the current filter context. The TOPN function will extract the top three

of these wine names into its own table that can then be used by CONCATENATEX to

concatenate these values. We can then concatenate “and more…” using the ampersand.

You can see the following expression will solve our final scenario. All we need to do

is add the IF function to execute the TOPN expression, followed by the TOPN expression

itself, added to the bottom of the code (highlighted in gray):

Types of Wine #3 =

VAR NoFilteredWines =

 COUNTROWS (VALUES (Wines[WINE]))

VAR NoAllWines=

 COUNTROWS (ALL (Wines[WINE]))

RETURN

 IF (NoFilteredWines = NoAllWines ,

 "Sales by Wine",

 "Sales by Wine, filtered by "

 &

 IF (NoFilteredWines <=3,

 CONCATENATEX (

 Wines ,

 Wines[WINE] ,

 ", ") ,

Chapter 12 returning Values in the Current Filter

195

 CONCATENATEX (

 TOPN (3, VALUES (Wines[WINE])),

 Wines[WINE] ,

 ", ")

 & " and more..."

))

In building these measures, you have learned how CONCATENATEX can be used

to string together slicer selections. However, it has also been a valuable exercise in the

use of table functions and table expressions to generate virtual in-memory tables that

are then used within the expression. This concept lies at the heart of DAX, building

temporary tables that contain the values used by scalar functions. It might also be

worth noting here that the measure “Types of Wine #3” is an order of magnitude more

advanced than anything you have tackled so far in this book, but you now have the skills

to author such complex code.

We have also covered the details of the SELECTEDVALUE function on which we

are now going to refocus. This is because we can put it to better use than alerting users

to whatever has been chosen in a slicer. We understand that SELECTEDVALUE will

return a single value, and in this way, we can use this function to harvest ad hoc values

in columns of unrelated tables. These unrelated tables have a name, parameter tables

whose use we are now going to explore.

 Using Parameter Tables
You can use SELECTEDVALUE to return a user-selected parameter. This chosen

parameter can then be used as a value inside a measure.

Consider the Table visual in Figure 12-10. Here, we have a slicer that allows us to

select a sales projection scenario for our “Total Sales” measure as follows:

• “Best case” (increase by 20%)

• “Probable” (increase by 10%)

• “Worst case” (decrease by 10%)

Chapter 12 returning Values in the Current Filter

196

The total sales is then calculated accordingly in the “What If Scenario” measure.

Figure 12-10. Using a parameter table to analyze sales projection scenarios

To create these scenarios, we’ve used the Enter data button on the Home tab and

created this table, called “What If”, as shown Figure 12-11.

Figure 12-11. The “What If” parameter table

Chapter 12 returning Values in the Current Filter

197

Notice in Figure 12-11 that this table is not related to any other tables in the data

model. We now need to place a slicer on the canvas populated with the “Scenario”

column from the “What If” table, and we’re ready to create this measure:

What If Scenario =

[Total Sales] * SELECTEDVALUE ('What If'[Value])

When we select a value from the Scenario slicer, for example, “Probable”, this value

is filtered in the “What If” table. There is only one row in the “What If” table, and the

value sitting in the Value column is then used to multiply the value of the “Total Sales”

measure.

You have learned that you can build parameter tables and by using

SELECTEDVALUE can construct expressions that test for specific values selected from

the parameter table. Once you know you can do this, you can use the values selected to

drive specific calculations. Let’s look at an example of this. You may have found that one

of the frustrations of working in Power BI is that you can only populate column values

into slicers. However, this question often arises: Can I put measures into slicers? The

answer is yes, you can! Consider Figure 12-12.

Figure 12-12. Creating slicers for measures

Here, we have a slicer that lists three measures. On selecting a measure in the slicer,

the “Measure to Show” measure in the Table visual calculates the selected measure.

Chapter 12 returning Values in the Current Filter

198

To build this example, again, we started with creating the parameter table and

named it “Select Measures”. This table has two columns. The column named “Measure”

lists the measures, but appreciate that these names are arbitrary; you don’t have to use

the exact measure names. The second column named “Value” assigns a value to the

“Measure” name. As with all parameter tables, this table is unrelated to any other tables

in the model; see Figure 12-13.

Figure 12-13. The “Select Measures” parameter table

A slicer was then placed on the canvas containing the “Measure” column from the

“Select Measures” table.

This is the expression for “Measure to Show”:

MEASURE toShow =

 SWITCH (

 SELECTEDVALUE ('Select Measures'[Value]),

 1, [Total Sales],

 2, [Total Cases],

 3, [No. of Sales]

)

Note the use of the SWITCH function in place of using IF, but either does the job.

This measure was then placed in the Table visual alongside the WINE column from the

Wines table.

Chapter 12 returning Values in the Current Filter

199

 The Values Function
It was debatable whether I would include the VALUES function in this book because

in recent years, its requirement has largely been replaced by the SELECTEDVALUE

function. However, the reason I changed my mind is that if you’re a DAX user, you would

know and understand the VALUES function, even if you were rarely required to use it.

Before the arrival of the SELECTEDVALUE function in 2017, the VALUES

function was one of the major DAX functions. For this reason, you will meet VALUES

when you browse other people’s code, and therefore, it would be a good idea if you

knew the purpose of the function within an expression. Also, these two functions,

SELECTEDVALUE and VALUES, are not interchangeable; sometimes, only VALUES will

do. Indeed, we’ve already had cause to use the VALUES function when we were exploring

CONCATENATEX.

VALUES is particularly useful when you want to convert a column reference into a

table reference or when you want to reapply “lost” filters.

This function has a very simple syntax. Inside the function, you either reference a

table or a column:

=VALUES (table name or column name)

Here are two examples of VALUES syntax; the first references a table and the second,

a column:

= VALUES (Wines)
= VALUES (Wines[WINE])
This function is a table function and returns a virtual table as follows:

• When the input parameter is a column name, it returns a one-

column table that contains the distinct values from the specified

column using the current filter context. Duplicate values are removed,

and only unique values are returned.

• When the input parameter is a table name, it returns a table

containing the rows from the specified table using the current filter

context, and duplicate rows are preserved.

Although SELECTEDVALUE has largely replaced VALUES, they are two quite

different functions. SELECTEDVALUE is a scalar function that will return a single value.

Therefore, inside SELECTEDVALUE, you can only reference the column name where the

scalar value you require is located. The VALUES function, on the other hand, is described

Chapter 12 returning Values in the Current Filter

200

as being a table function, and inside VALUES, you can reference either a column name or

a table name. If you reference a column name inside VALUES, that column is converted

to a table and so allows you to use columns as table expressions. Because this is one

of the benefits of using this function, VALUES is more commonly used with a column

reference, and it’s this behavior of VALUES on which we will concentrate in this section.

 A Table or a Scalar Function?
However, if SELECTEDVALUE returns a scalar value and VALUES returns a table, how

can VALUES be replaced by SELECTEDVALUE? This is where the VALUES function gets

interesting because although it’s described as a table function, VALUES can return either

a table or a scalar value.

The reason for this is that when a DAX table expression returns a one-column, one-

row table, it’s converted by the DAX engine from a table to a scalar value (remember

that the LASTNONBLANK function also exhibited this behavior; see Chapter 9). This

is when VALUES changes its nature and switches from returning a table to returning a

scalar value.

We can now explore an example of this behavior.

Note the following examples of DaX measures using the Values and
seleCteDValue functions are for explanation purposes only. We write measures
that return the wine names that we’ve already put into a visual, and clearly,
there’s no purpose to these calculations. the reason we’re using these particular
expressions is to explain more readily how the Values function works. We later put
the Values function to more realistic and beneficial use.

Consider the following expression that will return a one-column table containing the

name of the wine sitting in the current filter context.

Values Wine = VALUES (Wines[Wine])

Chapter 12 returning Values in the Current Filter

201

Before we put this measure into a Table visual, we must turn off the Total row of

the visual (for reasons we will explain presently).2 When the measure is placed into the

visual, it returns the values in the WINE column in the current filter; see Figure 12-14.

Figure 12-14. The VALUES function returns the value in the current filter context

We get no error on the evaluation of the “Values Wine” measure, so it would appear

that VALUES is behaving like a scalar function (remember that all measures must return

scalars). We can see how this is possible. In the first evaluation for “Bordeaux” wine, the

VALUES expression creates a virtual table containing a list of unique values in the WINE

column that are in the current filter. It therefore generates a one-column, one-row table

containing the value “Bordeaux”. If we could see this table, it may well look like the table

containing a single value as shown in Figure 12-15.

Figure 12-15. The one-column, one-row table generated by VALUES

2 For information on removing the Total row, visit https://community.powerbi.com/t5/Desktop/
How-to-remove-the-quot-Total

Chapter 12 returning Values in the Current Filter

https://community.powerbi.com/t5/Desktop/How-to-remove-the-quot-Total
https://community.powerbi.com/t5/Desktop/How-to-remove-the-quot-Total

202

This table contains a single value that can be converted to a scalar, and this is why it

can be used successfully in the measure “Values Wine”.

However, let’s now replace the Total row in the Table visual. When we do this, the

measure will now return an error as shown in Figure 12-16.

Figure 12-16. An error is returned when the VALUES function evaluates the
Total row

The error message reads:

“A table of multiple values was supplied where a single value was expected.”

Why do we get this error when the Total row shows but not when it’s absent? When

a DAX expression is evaluated for the Total row, there is no longer a single value being

returned by VALUES, but now all the wine names are in the filter context. Therefore,

the VALUES function will return a virtual table containing all the values in the WINE

column. This is the “table of multiple values” that the error message is referring to

(Figure 12-17).

Chapter 12 returning Values in the Current Filter

203

Figure 12-17. VALUES returns a “table of multiple values” when evaluating the
Total row

Therefore, we can deduce that it’s the evaluation of the Total row that’s the problem

because you can’t put multiple values into a “cell” in the Total row. This is why in the

Table visual in Figure 12-14, we must remove the Total row for our expression to work.

However, you might think this is a bit of a workaround and at some point want to show

the Total row value for your measure.

To remedy this, rather than removing the Total row from the visual, instead, we can

get DAX to distinguish between the evaluation for each wine and the evaluation for the

Total row. For this, we must use a DAX function that returns TRUE if there is just one

value in the current filter context. Its name is unsurprisingly HASONEVALUE. Here is the

expression we need:

Values Wine =

IF (HASONEVALUE (Wines[WINE]),

 VALUES (Wines[WINE]),

 "All Wines")

But doesn’t the preceding expression return the same values as this one?

Selected Value Wine =

SELECTEDVALUE (Wines[WINE], "All Wines")

Chapter 12 returning Values in the Current Filter

204

Figure 12-18. The VALUES function returns the same values as the
SELECTEDVALUE function

Well, yes, it does (Figure 12-18), and because the VALUES expression is more

complex, you would probably prefer to use SELECTEDVALUE. Whenever you use

VALUES to return a scalar value, you could use SELECTEDVALUE instead. What’s more,

with SELECTEDVALUE, you don’t have to account for only one value in the filter context

as it’s implicit in the “alternate result” argument.

You may be wondering why you would want to return the wine names anyway, using

either SELECTEDVALUE or using VALUES, when you’ve already got them as the first

column in the visual!

Chapter 12 returning Values in the Current Filter

205

 Replacing “Lost Filters”
You may feel that these examples, although explaining how VALUES works, are not

“real-world” calculations. However, you have now learned how the VALUES function

operates, that it can return either a table or a scalar value. We need to find a better use for

VALUES and also find a situation where we can’t substitute SELECTEDVALUE. A better

example of the VALUES function is when we use VALUES as a table function, rather than

returning a scalar. So let’s look at this next scenario.

One of the problems with filtering using slicers is that you lose the original unfiltered

value. One way to overcome this problem is to use two visuals and then use “Edit

Interactions”3 so that a slicer filters one of the visuals but not the other (Figure 12-19).

Figure 12-19. Using “Edit Interactions”, you can prevent slicers from filtering
a visual

3 For information on how to edit the interactions of visuals, visit https://docs.microsoft.com/
en-us/power-bi/create-reports/service-reports-visual-interactions

Chapter 12 returning Values in the Current Filter

https://docs.microsoft.com/en-us/power-bi/create-reports/service-reports-visual-interactions
https://docs.microsoft.com/en-us/power-bi/create-reports/service-reports-visual-interactions

206

However, we want a single visual that retains the unfiltered values alongside the

filtered ones, as in Figure 12-20. This is the DAX expression for the “Total Sales Not

Filtered” measure:

Total Sales Not Filtered =

CALCULATE ([Total Sales],

 ALL (Winesales),

 VALUES (Wines[WINE])

)

Figure 12-20. A table visual where the “Total Sales Not Filtered” measure ignores
the slicer filter

Now let’s examine the “Total Sales Not Filtered” measure in more detail. The first

filter argument to CALCULATE is the ALL function that acts as a modifier and removes

any cross-filters on the Winesales fact table coming from both the WINE column and the

Chapter 12 returning Values in the Current Filter

207

SALESPERSON column. In the second filter argument, VALUES is used to build a virtual

one-column, one-row table containing the wine name in the current filter context, that

is, “Bordeaux” in the first evaluation. This is equivalent to “Wines[WINE] = “Bordeaux”.

CALCULATE then applies this new filter to the Winesales table that is then refiltered

accordingly. The end result is that there is a filter on the WINE column but no longer

a filter on the SALESPERSON column, and therefore, we see sales for all salespeople

for each wine. When the measure calculates the Total row, it constructs a virtual one-

column table containing all the wine names to be used as the filter.

However, the following expression is an alternative way of achieving the same result:

Total Sales Not Filtered #2 =

CALCULATE ([Total Sales], ALL (Winesales), Wines)

In this measure, we’ve referenced the entire Wines table as the filter instead of using

VALUES to generate a virtual one-column table. We can do this because the Wines table

has been filtered down to one row (or all rows for the evaluation of the Total row) and the

entire table can be used as a table expression.

This is the first time we have referenced a table in the filter argument to CALCULATE

rather than a table expression, and we’re going to do this again later on. Remember that

the Wines table will contain a single row containing the wine in the current filter context,

or all the rows of the Wines table when evaluating the Total row. This expression is

perhaps a better one because we don’t need to nest yet another function.

 Converting Columns to Tables
We’ve already established that the VALUES function is a useful function to add to your

DAX “toolbox” even though you can normally use SELECTEDVALUE instead. What

you will discover as you work with DAX is that VALUES is more commonly used with a

column reference because one of its major uses is to convert columns into tables. For

example, this expression:

“= Wines[WINE]” is a column,

but this expression:

“= VALUES (Wines[WINE])” is a table.

We will look later at using VALUES in this way when we look at the TREATAS function

later in this book.

Chapter 12 returning Values in the Current Filter

208

With its dual personality of returning either a table or a scalar value, and particularly

how it can convert a column to a table, VALUES is a function well worth getting to know.

In this chapter, we have explored three functions, SELECTEDVALUE,

CONCATENATEX, and VALUES, that allow you to use the value or values sitting in the

current filter. You have learned that by creating parameter tables, you can harvest these

values to use within your DAX expressions. But more than this, when working with

CONCATENATEX, you have understood how, by using variables, you can hold the values

returned by these functions so they can be referenced later within the expression. You

have also successfully generated a number of temporary in-memory tables to control

filters placed on the data model. All these techniques are ubiquitous to writing DAX

expressions and will hold you in good stead as you move forward and author more

complex code.

Chapter 12 returning Values in the Current Filter

209
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_13

CHAPTER 13

Controlling the Direction
of Filter Propagation
Up to now, you have understood that filters only flow from the one side of the

relationship to the many, from dimensions into the fact table, as indicated by the arrows

in the linking lines in Model view; see Figure 13-1.

Figure 13-1. Filters only flow from dimensions into fact tables

However, there will be situations when you will want to author measures that require

filters to propagate in the opposite direction. In this chapter, we explore these situations

and learn how to reverse the direction of the filters using two methods:

https://doi.org/10.1007/978-1-4842-8188-8_13

210

 1. The CROSSFILTER function to programmatically reverse the filters

 2. Editing the data model to make filter propagation flow both to and

from the fact table

However, regarding method #2, we will be warning you of the downside if you

change the structure of your data model. In fact, it’s important to understand that if you

want filters to flow in the opposite direction, this will always be problematic whichever

way you choose to work it.

 Programming Bidirectional Filters
For example, let’s look at a problem we explored in Chapter 4 when you were learning

about the filter context and which at that time, you were not able to resolve. In the

Customers dimension, we have the column NO. OF STORES; see Figure 13-2.

Figure 13-2. The Customers table and the NO. OF STORES column

We would like to calculate the number of stores in which we’ve sold each wine. We

might create this measure:

Total Stores =

SUM (Customers[NO. OF STORES])

However, as you can see in Figure 13-3, this measure does not work.

Chapter 13 Controlling the DireCtion of filter propagation

211

Figure 13-3. The “Total Stores” measure does not return the correct results

In Chapter 4, we established the reason for the incorrect values. The filter on the

Wines dimension only propagates to the fact table and does not propagate onward to the

Customers dimension; see Figure 13-4.

Figure 13-4. The filter does not propagate from Winesales to Customers

So how do we find the number of stores in which we’ve sold our wines? The answer

lies in using a function called CROSSFILTER.

The CROSSFILTER function returns no value but is used as a modifier to the

CALCULATE function. It programmatically sets the direction of the filter propagation in

the execution of the measure in which it is used. It has the following syntax:

= CROSSFILTER (column1, column2, direction)

Chapter 13 Controlling the DireCtion of filter propagation

212

where:

column1 is the column name that represents the many side of the relationship to

be used.

column2 is the column name that represents the one side of the relationship to

be used.

direction is the cross-filter direction to be used in the measure and can be set to

“both” to generate bidirection filters.

Here is an example of CROSSFITLER syntax:

= CROSSFILTER (Winesales[CUSTOMERID], Customers[CUSTOMERID], both)

The CROSSFILTER function specifies the cross-filtering direction to be used by a

measure, so we can now, in memory, change the direction in which the filters propagate.

We can rewrite our original “Total Stores” measure like this:

Total Stores =

CALCULATE (

 SUM (Customers[NO. OF STORES]),

 CROSSFILTER (Winesales[CUSTOMER ID], Customers[CUSTOMER ID], BOTH)

)

This measure uses CROSSFILTER to change the direction of the relationship between

Customers and Winesales. When this measure is evaluated, the Winesales table is cross-

filtered by the Wines dimension, and this filter is propagated onward to the Customers

dimension; see Figure 13-5.

Figure 13-5. The CROSSFILTER function can change the direction of the filter
programmatically

Chapter 13 Controlling the DireCtion of filter propagation

213

So in the first instance for “Bordeaux” wine, the Customers table becomes cross-

filtered to contain only customers who bought this wine, and we can see that there were

728 stores in which we’ve sold “Bordeaux”; see Figure 13-6.

Figure 13-6. The “Total Stores” measure is now calculated correctly

However, note the value in the Total row, 1,181. It is not the total of the values for all

the wines in the Table visual. Changing the filter propagation to bidirectional has a side

effect. Many of the same customers have bought each wine, and so their total number of

stores is included in multiple evaluations. However, the Total row sums the number of

stores for all customers for all wines.

 Why You Should Never Use
Bidirectional Relationships
The CROSSFILTER function allows you to programmatically change the direction of filter

propagation in the execution of a specific measure. However, you may know that there’s

an easier way to change the filter direction, and that’s to change the structure of the data

model. To do this, you can double-click on the linking line between two tables in Model

view to edit the relationship, setting the “Cross filter direction” to “Both”; see Figure 13-7.

Chapter 13 Controlling the DireCtion of filter propagation

214

Figure 13-7. You can edit the relationship and set the cross-filter to both

However, a quick fix as this is, we would never recommend that you do this for

two reasons. Firstly, bidirectional relationships are much less efficient and can hinder

the performance of the data model, but perhaps, more importantly, they introduce

ambiguity into the data model. It’s beyond the scope of this book to elaborate on the

concept of ambiguity, but for more information on these issues, check out this link:

www.sqlbi.com/articles/bidirectional-relationships-and-ambiguity-in-dax/

However, even at a more basic level, you will find that creating many bidirectional

relationships in your model will render the data model unpredictable when filters are

propagated, and you will start to lose control of what filters what. You will find it much

easier if your model abides by the rule of single directional relationships, and if you must

change the filter direction, use CROSSFILTER.

There are usually three reasons why people edit a relationship to bidirectional

filtering, all of which are not valid reasons:

Chapter 13 Controlling the DireCtion of filter propagation

http://www.sqlbi.com/articles/bidirectional-relationships-and-ambiguity-in-dax/

215

 1. There is a lack of understanding of the subtleties of the Power BI

data model and filter propagation.

 2. People don’t know enough DAX to be able to programmatically

change the filter direction using CROSSFILTER.

 3. People want to cross-filter slicers when the slicers use columns

from different dimensions.

Let’s take a look at the last of these reasons: wanting to cross-filter slicers when

using columns from different dimensions. If this is your objective, you don’t need to use

bidirectional filtering. You can do this by using a measure in a visual-level filter on the

slicer you want cross-filtered.

For example, in Figure 13-8, you can see we have two slicers: one using the

CUSTOMER NAME column from the Customers dimension and one using the WINE

column from the Wines dimension. If we select from the CUSTOMER NAME slicer, for

example, “Ballard & Sons”, the WINE slicer won’t change to reflect the wines that “Ballard

& Sons” has bought. We always see all the wines regardless of selections made in the

CUSTOMER NAME slicer.

Figure 13-8. Slicers don’t cross-filter from one dimension to another

Chapter 13 Controlling the DireCtion of filter propagation

216

You already know why this is. If the Customers table is filtered, the filter is

propagated to the Winesales table but not filtered onward to the Wines table because

filters don’t flow from the many side of the relationship to the one side. However, we

can force the Wines table to cross-filter accordingly. We can do this by placing a visual

filter on the WINE slicer using a measure, such as “Total Sales”, and filter only Wines that

have a “Total Sales” value. In fact, we can use any measure that does a calculation on the

Winesales table and then set this filter to “Show items when the value is not blank” as

shown in the visual filter in Figure 13-9.

Figure 13-9. Use a visual filter populated with a measure and set to “is not blank”
to cross-filter slicers

So there really is no excuse for editing relationships to bidirectional! Always design

measures using the CROSSFILTER function to do this. However, as we have seen, the

problem of measures that use bidirectional filters, whether using CROSSFILTER or

editing the relationship, is that the Total row shows a misleading value. There is no

real solution to this outcome; the total is correct but may not be the total you want to

show. You can, of course, always turn off the display of the total row in the Table or

Matrix visual.

Chapter 13 Controlling the DireCtion of filter propagation

217
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_14

CHAPTER 14

Working with Multiple
Relationships Between
Tables
In our data model, all our tables have single relationships between other tables. Indeed,

it’s only possible to have one active relationship between any two tables, but you can

have as many inactive relationships as you want. In this chapter, you will learn how

to use multiple relationships between tables and activate inactive relationships. This

may be because you require multiple links from a dimension table into the fact table.

However, there is another less obvious use of inactive relationships that we will discover

in this chapter, and that is using comparison dimension tables. Here, we can use

measures to force filter propagation through the comparison dimension table, therefore

being able to compare a column from a default dimension with its counterpart in a

comparison dimension.

If you attempt to build a second relationship or subsequent relationships between

any two tables, all but the first relationship will be inactive, indicated by a dotted

relationship line. Consider the tables in Figure 14-1. We now have two date columns

in our Winesales table: SALE DATE and ORDER DATE.1 The first relationship was

established between the DATEKEY column in the DateTable and the SALE DATE column

in the Winesales table. When we attempt to create a second relationship between

the DateTable and the Winesales table by using ORDER DATE, we get a dotted line

indicating that this relationship is inactive.

1 To follow along with the examples, use the Power BI Desktop file “3 DAX USERELATIONSHIP.pbix”.

https://doi.org/10.1007/978-1-4842-8188-8_14

218

Figure 14-1. Active and inactive relationships

All measures will use the active relationship by default, so how do you use the

inactive relationship? For example, if we build a Table visual containing the YEAR and

MONTH columns from the DateTable (Figure 14-2), we can find the number of sales in

each month using this measure:

No. of Sales =

COUNTROWS (Winesales)

Chapter 14 Working With Multiple relationships BetWeen taBles

219

Figure 14-2. Using YEAR and MONTH from the DateTable filters the SALE DATE
column in the Winesales table

In this visual, the “No. of Sales” measure filters the YEAR and MONTH columns in

the DateTable, which is propagated to the Winesales table using the active relationship

and therefore filters the SALE DATE column for that year and month. However, to

calculate the number of orders, we will need to use the inactive relationship so that the

ORDER DATE column is filtered for that year and month instead. To do this, we can use

the USERELATIONSHIP function.

 Activating Inactive Relationships
The USERELATIONSHIP function, like the CROSSFILTER function, returns no value but

is used as a modifier to the CALCULATE function. It programmatically uses an inactive

relationship to propagation filters in the execution of the measure in which it is used. It

has the following syntax:

= USERELATIONSHIP (column1, column2)

where:

column1 is the column name that represents the many side of the relationship to

be used.

Chapter 14 Working With Multiple relationships BetWeen taBles

220

column2 is the column name that represents the one side of the relationship to

be used.

Here is an example of the USERELATIONSHIP syntax:

= USERELATIONSHIP (Winesales[SALE DATE], DateTable[ORDER DATE])
You must have an inactive relationship in place in order to use the

USERELATIONSHIP function.

This is the measure to calculate the number of orders in each month shown in

Figure 14-3:

No. of Orders =

CALCULATE (

 COUNTROWS (Winesales),

 USERELATIONSHIP (Winesales[ORDER DATE], DateTable[DATEKEY]))

.

Figure 14-3. Calculating the number of sales and number of orders

When this measure is evaluated, the year and month filtered in the DateTable are

propagated to the Winesales table to cross-filter the ORDER DATE column to find the

orders in that month.

Chapter 14 Working With Multiple relationships BetWeen taBles

221

 Comparing Values in the Same Column
The USERELATIONSHIP function can be used for another purpose: dynamic

comparisons between values from the same column in a dimension. In other words,

being able to compare a column from a default dimension with its counterpart in a

comparison dimension.

Consider the example shown in Figure 14-4. Here, we are comparing 2020 sales (the

“Total Sales” measure) to 2021 sales (the “Compare Year” measure), but the benefit here

is that we are making the comparison in the same Table visual, rather than using separate

visuals for each year.

Figure 14-4. Comparing sales for two different years selected in slicers

Chapter 14 Working With Multiple relationships BetWeen taBles

222

The starting point for the “Compare Year” measure is to create a comparison

DateTable in the data model by duplicating the original DateTable. We’ve named the

duplicate DateTable “DateTable Compare”. This table is then related to the Winesales

table using the DATEKEY column from the “DateTable Compare” table and the SALE

DATE column from the Winesales table; see Figure 14-5.

Figure 14-5. Relate the comparison table to the fact table but set the relationship
to inactive

You must then edit this relationship to ensure that it’s marked as inactive by checking

off “Make this relationship active” in the Edit Relationship dialog; see Figure 14-6.

Chapter 14 Working With Multiple relationships BetWeen taBles

223

Figure 14-6. Making a relationship inactive

The next step is to create the two slicers as shown in Figure 14-4. The slicer on the

left, named “YEAR”, is created using the YEAR column from the DateTable. Selecting

a year from this slicer filters the “Total Sales” measure. The slicer on the right, named

“COMPARE YEAR”, uses the YEAR column from the “DateTable Compare” table.

Selecting a year from this slicer filters the “Compare Year” measure as follows:

Compare Year =

CALCULATE (

 [Total Sales],

 ALL (DateTable),

 USERELATIONSHIP (Winesales[SALE DATE], 'DateTable Compare'[DATEKEY])

)

Notice the use of the ALL function to remove the filter on the YEAR column of the

DateTable coming through from the YEAR slicer that is used by the active relationship.

Chapter 14 Working With Multiple relationships BetWeen taBles

224

Using USERELATIONSHIP to make comparisons between your data is a simple

strategy and doesn’t require complex DAX, so let’s take this idea a step further. Let’s see

if we can answer this question: Of the customers who bought wine X, who also bought

wine Y? For example, of the customers who bought “Champagne”, who also bought

“Pinot Grigio”?

We’ve set out the solution to this question in Figure 14-7. The “No. of Sales”

measure is being filtered by the WINE slicer on the left and shows the number of sales of

“Champagne” for each customer. The “Compare Wine” measure is being filtered by the

COMPARE WINE slicer on the right and shows the number of sales of “Pinot Grigio” for

each customer. Finally, we’ve created a “Both Wines” measure that shows the customers

who bought both wines, showing the combined number of sales for both wines.

Figure 14-7. Customers who bought either wines or both wines

You can see in Figure 14-7 that

• “Charleston Ltd” bought both “Champagne” and “Pinot Grigio”.

• “Charlottesville & Co” bought “Champagne” but not “Pinot Grigio”.

• “Chatou & Co” bought “Pinot Grigio” but not “Champagne”.

If we put the “Both Wines” measure into a Table visual of its own, we see only

customers who bought both wines (Figure 14-8).

Chapter 14 Working With Multiple relationships BetWeen taBles

225

Figure 14-8. Customers who bought both wines

The expressions for the measures in Figure 14-7 are almost the same as those we

used when we were comparing years in Figure 14-4. First, you need to duplicate the

Wines dimension. We’ve called this duplicate table “Wines Compare” and then related

this duplicate table to the fact table, remembering to set the relationship as “inactive.”

These are the three measures we used in Figure 14-7:

No. of Sales =

COUNTROWS (Winesales)

Compare Wine =

CALCULATE (

 [No. of Sales],

 ALL (Wines),

 USERELATIONSHIP (Winesales[WINE ID], 'Wines Compare'[WINE ID])

)

Chapter 14 Working With Multiple relationships BetWeen taBles

226

Both Wines =

IF (

SELECTEDVALUE (Wines[WINE]) = SELECTEDVALUE ('Wines Compare'[WINE]),

[No. of Sales],

--If the same wine is selected in both slicers, don’t add the number of

sales together

 IF (

 [No. of Sales] && [Compare Wine],

 [No. of Sales] + [Compare Wine]

)

--If customers have sales for both wines, add the number of sales together

)

However, those of you that are observant may notice that the value in the Total row

of the “Both Wines” measure in Figure 14-8 (298) is not correct. It totals all rows for

the selected wines not just those rows for customers who have bought both wines. To

calculate the correct total if “Champagne” and “Pinot Grigio” are selected (258), you can

use SUMX (iterating the Customers table) and edit the “Both Wines” measure as follows:

Both Wines =

SUMX (

 Customers,

 IF (

 SELECTEDVALUE (Wines[WINE]) = SELECTEDVALUE ('Wines

Compare'[WINE]),

 [No. of Sales],

 IF ([No. of Sales] && [Compare Wine], [No. of Sales] +

[Compare Wine])

)

)

We hope you feel inspired by these examples to create comparisons in your own data

by using the USERELATIONSHIP function. And of course, you now know how to activate

inactive relationships.

Chapter 14 Working With Multiple relationships BetWeen taBles

227
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_15

CHAPTER 15

Understanding Context
Transition

Nothing in life that’s worth anything is easy.

—Barack Obama

You could also say that nothing in DAX that’s worth anything is easy. Certainly, the

concept of context transition is one of the more challenging theories to get to grips with

in DAX. It can’t be explained in a few short paragraphs, and therefore, we dedicate this

entire chapter to teaching you the details of what context transition is and how it is used

within DAX expressions. It’s only then can you move forward in the following chapter to

explore some practical applications of this concept. Once you understand the purpose

of context transition in your code, a whole range of challenging calculations becomes

possible. In fact, most DAX expressions you meet will probably be using context

transition, and indeed, there will come a time when most DAX expressions you write will

use it.1

To explain context transition in its simplest terms, it allows you to programmatically

perform aggregations at the dimension, or group granularity, rather than the row

granularity. For example, the expression “AVERAGE (Winesales[CASES SOLD])”

calculates the average cases sold across transactions. This expression, using context

transition, “AVERAGEX (Wines, [Total Cases])”, will calculate the average of the

aggregated values, in this case, the average of the values returned by the “Total Cases”

measure. Mostly, context transition happens in memory when an expression is being

evaluated, and therefore, we can’t see it happening.

1 To follow along with the examples, use the Power BI Desktop file “1 DAX Sample Data.pbix”.

https://doi.org/10.1007/978-1-4842-8188-8_15

228

 Overview of DAX Evaluations Contexts
To understand context transition, you must have a firm handle on how DAX expressions

are evaluated. You must clearly understand the difference between filter context and row

context and be able to use these concepts correctly in your code. Therefore, our starting

point in this chapter will be to remind ourselves of the difference between these two

conditions in which our expressions are evaluated.

 Row Context Revisited
When using the row context, a DAX expression iterates every row in a table. The values

used in the expression are the values sitting in the current row, which may be different

for every row. For example, the CASES SOLD value is mostly different for each row of the

Winesales table, and so this calculated column

10 Percent of Cases Sold =

Winesales[CASES SOLD] * 0.1

will iterate all the rows in the Winesales table, finding a different value for CASES SOLD

on each row and multiplying it by 0.1.

We can categorically state therefore that all calculated columns are evaluated in

the row context. But measures will also use the row context if they iterate a table. For

example, this measure (that we met when looking at the SUMX function in Chapter 5)

Total Sales =

SUMX (Winesales,

 Winesales[CASES SOLD] * RELATED (Wines[PRICE PER CASE])

)

is evaluated first in a filter context, for example, filtered for “Bordeaux” wine, but then

the SUMX function iterates the Winesales table and using the row context multiplies the

CASES SOLD value sitting in each row by the PRICE PER CASE value from the Wines

table. This will be the price of the wine in the current row of the Winesales table. The

SUMX function then sums the result of all these row-level calculations, for example, for

“Bordeaux” wine.

Therefore, what we can also state is that any DAX expression that iterates a table,

whether in a calculated column or inside a measure, uses the row context.

Chapter 15 Understanding Context transition

229

 Filter Context Revisited
All DAX measures are evaluated in a filter context. There are no exceptions to this rule.

We understand that the filter context is typically generated from the current state of the

Power BI report when the measure is evaluated, be it the structure of the visual, any

slicers affecting the visual, or any filters in the Filters pane. But there is another way that

the filter context can be generated, and this is what we’re now going to investigate.

 How Row Context Becomes Filter Context
There is a specific situation when a DAX expression is evaluated that will turn the row

context into a filter context. This is what we know as context transition. To understand this

specific situation, let’s consider these five DAX expressions, two calculated columns and

three measures (you don’t need to know at this point what the expressions are calculating):

 1. Column 1 =
CALCULATE (SUM (Winesales[CASES SOLD))

 2. Column 2 =
[Total Cases]

 3. Measure 1 =
AVERAGEX (Wines, [Total Cases])

 4. Measure 2 =
 AVERAGEX (Wines, CALCULATE (SUM (Winesales[CASES SOLD])))

 5. Measure 3 =
CALCULATE ([No. of Sales], FILTER (Winesales, [Total Cases] > 350))

Question: What is common to all these expressions?

The answer is that all five expressions share the same three attributes as follows:

 1. They all use the CALCULATE function.

 But surely Column 2 and Measure 1 don’t? At this point, there’s

something more we need to teach you regarding measures. All

measures implicitly invoke CALCULATE even if they don’t call the

function explicitly. Therefore, Column 2 and Measure 1, which both

reference the measure “Total Cases”, are both calling CALCULATE

implicitly. The other expressions are using CALCULATE explicitly.

Chapter 15 Understanding Context transition

230

 2. They all iterate tables creating a row context.

 Column 1 and Column 2 are calculated columns, and all

calculated columns iterate tables. We know that the functions

AVERAGEX and FILTER are iterators too, so Measure 1, Measure 2,

and Measure 3 all iterate tables, creating a row context. Measure 1

and Measure 2 iterate the Wines table, and Measure 3 iterates the

Winesales table.

 3. They all invoke context transition.

 This is where the row context, generated by an iteration of either a

calculated column or inside a measure, is turned into a filter context.

Therefore, the specific situation to which we alluded is this: context transition occurs

whenever

• The expression uses CALCULATE either explicitly or implicitly

(because you’re using a measure)

AND

• The expression (either in a column or in a measure) iterates a table

using the row context

You now understand when context transition happens, but what exactly is “context

transition”? To answer this question, let’s first take this expression and use it in a

calculated column:

Total Cases Column =

SUM (Winesales[CASES SOLD])

Chapter 15 Understanding Context transition

231

You can see in Figure 15-1 that in every row, the expression returns the same value,

the grand total of CASES SOLD. As a calculated column, the expression iterates the table

using the row context, and therefore, there is no filter present. Aggregate functions such

as SUM, by definition, require the rows to be aggregated to first be filtered. Because there

is no filter on the table, this expression can only use the values from the entire table and

so sums all the values for CASES SOLD.

We have just learned that context transition happens when there’s an iteration, and

we use CALCULATE. We can therefore now take our first look at context transition in

action in a calculated column by editing our expression and wrapping CALCULATE

around it:

Total Cases Column =

CALCULATE (

 SUM (Winesales[CASES SOLD])

)

Figure 15-1. The calculated column returns the grand total on every row

Chapter 15 Understanding Context transition

232

Figure 15-2 shows that the result of this expression returns the CASES SOLD value

of each row. What has happened here is the expression iterates the table generating

a row context, as do all calculated columns. But we’re also using CALCULATE in the

iteration, and by doing so, the expression ignores the row context and replaces it with a

filter context. Notice that although the expression uses CALCULATE, there are no filter

arguments inside CALCULATE. Therefore, what is the filter being used by CALCULATE?

The answer is rather a strange one (at least to new DAX users). A filter is placed on each

value in each of the columns sitting in the current row. For example, in the first row of

the table where the calculation returns 213, the filter is this:

SALE DATE = 01/01/2017

WINESALES NO = 2

SALESPERSON ID = 6

CUSTOMER ID = 16

WINE ID = 10

CASES SOLD = 213

The calculated column, “Total Cases Column”, iterates the Winesales table, and

because of the presence of CALCULATE, context transition occurs. All rows that share

the same set of filters (as described before) are grouped and become filtered in their

own right. The CASES SOLD values summed are the cases sold values sitting in each

group. Because our rows are unique, each group comprises a single row, and therefore,

the expression returns the same value as CASES SOLD. This is why, were you to have a

Figure 15-2. Using CALCULATE evokes context transition in the
calculated column

Chapter 15 Understanding Context transition

233

duplicate first row in our example, you would see 426 (213 x 2) in “Total Cases Column”

because the duplicate rows would be grouped before CASES SOLD was summed.2

However, each of our rows is unique, so each filter generated by the context transition

returns one row, which is the current row. This is an example of using CALCULATE in

a calculated column where we have an iteration (and therefore a row context) and so

CALCULATE evokes the context transition.

However, context transition also happens whenever you use a measure where there is

a row context, for example, if you put a measure into a calculated column.

Note it is recommended that you are in data view to create the calculated
columns as described in the following.

This is because all measures call CALCULATE implicitly, and so context transition

will also occur. For example, let’s take this measure:

Total Cases =

SUM (Winesales[CASES SOLD])

Now let’s edit our calculated column, “Total Cases Column”, to perform the same

calculation (i.e., summing the CASES SOLD column) but this time expressed as the

“Total Cases” measure:

Total Cases Column =

[Total Cases]

2 For information on removing duplicate rows, visit www.excelnaccess.com/
removing-duplicate-rows-in-power-bi/

Chapter 15 Understanding Context transition

http://www.excelnaccess.com/removing-duplicate-rows-in-power-bi/
http://www.excelnaccess.com/removing-duplicate-rows-in-power-bi/

234

You will notice in Figure 15-3 that the results of this expression are the same as when

we used CALCULATE explicitly. Therefore, these two expressions

Total Cases Column =

CALCULATE (

 SUM (Winesales[CASES SOLD]))

and

Total Cases Column =

[Total Cases]

are the same expressions.

At this stage in understanding context transition, I appreciate you’re thinking:

Why would I want to create a calculated column that returns the same value as the

value sitting in the current row? Also, our Winesales table, being the fact table, could

potentially contain millions of rows, so any context transition occurring in a calculated

column would be very slow. In short, what is the purpose of context transition?

To answer this question, let’s see how context transition performs when invoked in

dimension tables, rather than in the fact table. Let’s now repeat the same expressions

we’ve been working with, but rather than placing them in the fact table, this time we will

put them in the Wines dimension.

Figure 15-3. Using a measure in a calculated column evokes context transition

Chapter 15 Understanding Context transition

235

These are the calculated columns that we can create in the Wines dimension:

Wine Total Cases 1=

SUM (Winesales[CASES SOLD])

Wine Total Cases 2 =

CALCULATE (

 SUM (Winesales[CASES SOLD]))

Wine Total Cases 3 =

[Total Cases]

Observing the behavior of these calculated columns in Figure 15-4, let’s look more

closely at the evaluation of each of these expressions.

Figure 15-4. The three calculated columns in the Wines dimension

The first of these calculated columns, “Wine Total Cases 1”, uses the “SUM (

Winesales[CASES SOLD])” expression. There is no measure in this expression, and

it’s not using CALCULATE, either implicitly or explicitly. The expression uses the

SUM function that requires a filter context. In the absence of any filter, it sums the

CASES SOLD values in all the rows of the Winesales table giving us the grand total of

CASES SOLD.

Chapter 15 Understanding Context transition

236

The second calculated column, “Wine Total Cases 2”, is using CALCULATE that

converts the row context invoked by the iteration of the calculated column into a

filter context. At this point, we need to remind ourselves that the filter context always

propagates through the entire data model. The filter coming through from context

transition behaves no differently from a filter coming through from a visual or a slicer

on the report canvas. When the expression in the calculated column, “Wine Total Cases

2”, evaluates the first row of the Wines dimension, it turns the entire row into a filter and

filters “Bordeaux” wine. We could imagine that in memory on the evaluation of the first

row, our Wines dimension looks something like the table in Figure 15-5.

Figure 15-5. The Wines dimension is filtered by context transition

Does Figure 15-5 look familiar? The filter on the Wines dimension for “Bordeaux” is

the same filter that would be applied if we had used a slicer or any other means by which

we could filter “Bordeaux” in the report. We know that because the Wines dimension is

related to the Winesales fact table in a many-to-one relationship, this filter, generated by

context transition, is propagated onward to the Winesales table. Therefore, our Winesales

table is now cross-filtered to contain only “Bordeaux” wines, and the CASES SOLD

values are summed accordingly.

What we can conclude, therefore, is that a calculated column that uses CALCULATE

where context transition occurs behaves just like a measure in a visual on the report

canvas, in that it filters and then aggregates.

Looking at the third calculated column, “Wine Total Cases 3”, here, we are using

the “Total Cases” measure that defines the same expression as in “Wine Total Cases 2”.

Because all measures implicitly call CALCULATE, “Wine Total Cases 2” and “Wine Total

Cases 3” are the same expressions. Whenever you see a measure, even if it doesn’t use

CALCULATE explicitly, you should always imagine that it’s wrapped inside CALCULATE.

To summarize the outputs of the three calculated columns, “Wine Total Cases 2”

and “Wine Total Cases 3” both use context transition in their evaluation, but “Wine Total

Cases 1” does not.

Chapter 15 Understanding Context transition

237

 How Context Transition Can Return
“Surprising Results”
In our investigation of context transition, we’ve been using calculated columns to

see context transition in action. However, we don’t need to see context transition to

understand that it happens, and besides which, you’re probably not going to be creating

these types of calculated columns in reality.

Mostly, context transition happens behind the scenes, in memory, when you

construct iterating measures that reference another measure (because all measures

implicitly call CALCULATE).

Let’s, at this point, remind ourselves of the specific situation where context

transition occurs:

• When the expression uses CALCULATE either explicitly or implicitly

via a measure

AND

• When the expression iterates a table using the row context

Typically, this is when we nest measures inside the iterating “X” aggregate functions

like AVERAGEX or MAXX or we use measures inside the FILTER function. Because we

can’t see context transition happening, being oblivious of its existence means we’ll

struggle to understand how DAX works. Marco Russo and Alberto Ferrari in their The

Definitive Guide to DAX explain understanding context transition as follows:

“Being ignorant of certain behaviors can ensure surprising results. Nevertheless, once

you master the behavior, you start leveraging it as you see fit. The only difference between a

strange behavior and a useful feature – at least in DAX – is your level of knowledge.”3

Marco and Alberto talk about “strange behaviors” and “surprising results.” The

only reason these behaviors would seem strange or surprising to you is that you

don’t understand the behavior of context transition, the fact that in the evaluation of

measures, there’s a world of difference between iterations referencing measures that call

CALCULATE and iterations referencing expressions that do not. To illustrate this, we’re

going to take a look at authoring expressions where getting it right, which is whether

3 Marco Russo and Alberto Ferrari (2020), The Definitive Guide to DAX, 2nd ed, p.154
[Microsoft Press]

Chapter 15 Understanding Context transition

238

you nest a measure or whether you nest an expression, is key. In these examples, we’re

going to see how DAX expressions can return “surprising results” unless, of course, you

understand the behavior of context transition.

 Filters Using AVERAGE
In the first example, we must reference an expression in our measure to get the correct

calculation; nesting the measure that defines the same expression won’t work.

Consider the calculation to find the number of sales for each wine where cases sold

is greater than the average cases sold for that wine. For example, the average number of

cases sold for “Bordeaux” is 300 and we want to calculate how many sales of “Bordeaux”

have cases sold greater than this value (this is purely an intellectual exercise and not a

particularly useful calculation).

We’ve already created these two measures:

Avg Cases =

AVERAGE (Winesales[CASES SOLD])

No. of Sales =

COUNTROWS (Winesales)

Now to calculate the number of sales where the CASES SOLD value is greater than

the average cases, we could author this measure:

No. Of Sales GT Avg #1=

VAR AvgCasesTable =

 FILTER (Winesales, Winesales[CASES SOLD] > [Avg Cases])

RETURN

 CALCULATE ([No. Of Sales], AvgCasesTable)

Note the use of the “Avg Cases” measure (highlighted) nested in the FILTER

expression that iterates the Winesales table. We know that in the presence of a nested

measure inside an iteration, context transition is invoked.

Unfortunately, the “No. Of Sales GT Avg #1” measure does not return the correct

results; it returns blanks. This is a surprising result, I think you’ll agree; see Figure 15-6.

Chapter 15 Understanding Context transition

239

Figure 15-6. The “No. Of Sales GT Avg #1” does not return a value

Clearly, we must take a closer look at what’s happening here. This measure, “No. Of

Sales GT Avg #1”, uses the FILTER function that iterates the Winesales table to filter rows

where the CASES SOLD value is greater than the value calculated by the “Avg Cases”

measure. But what is the value calculated by “Avg Cases”? If we put this measure, that

is, “[Avg Cases]”, into the Winesales table as a calculated column, we can see what the

FILTER function is testing the CASES SOLD value against; see Figure 15-7.

Chapter 15 Understanding Context transition

240

Figure 15-7. The “Avg Cases” measure evaluated in a calculated column filters the
Winesales table to the single row that’s being evaluated

Note remember that in the first evaluation in the table visual in Figure 15-6,
the Winesales table will be cross-filtered in memory for “Bordeaux” wine, which is
Wine id 1.

What we find is that the values returned by “Avg Cases” are the same as the CASES

SOLD values. This is because “Avg Cases” is a measure, and therefore, it evokes context

transition as FILTER iterates the Winesales table. This creates a filter on each row of

the Winesales table that’s being evaluated in memory. Because each row is unique, it

calculates the average of the CASES SOLD value only for the current row, which is the

same as the CASES SOLD value. Therefore, the “Avg Cases” value is never greater than

the CASES SOLD value. You could test this by changing “>” to “>=” where instead of

blanks being returned, you would get the same values as “No. of Sales”.

Let’s now replace the measure inside the FILTER function with an expression

(highlighted) that calculates the average:

No. Of Sales GT Avg #2 =

VAR AvgCasesTable =

 FILTER (Winesales, Winesales[CASES SOLD] >

Chapter 15 Understanding Context transition

241

 AVERAGE (Winesales[CASES SOLD]))

RETURN

 CALCULATE ([No. Of Sales], AvgCasesTable)

This time we get the correct results; see Figure 15-8.

Figure 15-8. Using a nested expression inside FILTER and not a nested measure
returns the correct results

To understand why the second version of the measure using the expression works,

we can again put the expression, “AVERAGE (Winesales[CASES SOLD])”, into a

calculated column in the Winesales table, filtered for “Bordeaux” wines (as this is the in-

memory cross-filter on the Winesales table in the first evaluation).

We can see in Figure 15-9 that the expression returns the average of the cases sold for

the wine in the current filter context.

Chapter 15 Understanding Context transition

242

Note in Figure 15-9, we are simulating the rows in the Winesales table that
would be visible in the current filter in memory, which you will not be able to see
in data view. therefore, when you put “AVERAGE (Winesales[CASES SOLD])” into
a calculated column, you will see the average for all transactions (192), not just
those for “Bordeaux” (300).

We know that the average number of cases sold for “Bordeaux” is 300. So in the first

evaluation for “Bordeaux”, there are 89 transactions where cases sold is greater than 300.

We can understand therefore that despite the fact that the expression and the

measure both calculate the same average, we must nest the average expression inside the

measure being evaluated, not nest the measure that calculates the average.

 Filters Using MAX
In our second example of how DAX can return “surprising results,” we will calculate

cumulative totals, as shown in Figure 15-10.

Figure 15-9. The “AVERAGE (Winesales[CASESSOLD])” expression evaluated in
a calculated column returns the average cases for each wine

Chapter 15 Understanding Context transition

243

Figure 15-10. Calculating cumulative totals in the “Cumulative Total” measure

To generate the “Cumulative Total” measure, we must again use a nested expression

in the parent measure, not a nested measure, and this time we’ll be using the aggregate

function, MAX.

Note We’ve calculated cumulative totals before using the time intelligence
function, datesBetWeen. however, in this section, we explore an alternative
method of achieving the same result.

To calculate cumulative totals in the Table visual in Figure 15-10, for any given date

in the current filter context, we must sum a value (in our example, the total sales value)

up to the latest date in the current filter context. For example, if “May 2017” is the current

filter, we must sum values up to and including 31 May 2017. We might think, therefore,

that we need to first construct a measure that finds the latest date in the current filter

context using the MAX function like so:

Max Date =

Chapter 15 Understanding Context transition

244

MAX (DateTable[DATEKEY])

We could then use this “Max Date” measure (highlighted) in the following expression

(note the use of ALL to remove the filter on the DateTable that is currently filtering

each month):

Cumulative Total Wrong =

VAR FilteredDatesTable =

 FILTER (

 ALL (DateTable),

 DateTable[DATEKEY] <= [Max Date]

)

RETURN

 CALCULATE ([Total Sales], FilteredDatesTable)

Looking at the result of this expression in the visual in Figure 15-11, clearly, this

hasn’t worked.

Figure 15-11. The “Cumulative Total Wrong” measure returns incorrect results

Chapter 15 Understanding Context transition

245

Let’s take a look at what’s going wrong with “Cumulative Total Wrong”. Here, we’re

using the measure “Max Date”, which defines the maximum date. The FILTER function

with ALL generates a virtual DateTable containing all the rows in the DateTable. It then

iterates this virtual table to compare each date in the DATEKEY column to the date

calculated by “Max Date”. What is the value of “Max Date”? The “Max Date” measure

evokes context transition and so filters each row to a single row. Therefore, when

iterating the DateTable, it will always return the same date that is sitting in the current

row of the DateTable. To understand this, we can put the “Max Date” measure into a

calculated column in the DateTable as shown in Figure 15-12.

Figure 15-12. The “Max Date” measure evaluated in a calculated column filters
the DateTable to the single row that’s being evaluated

Because DATEKEY is always equal to “Max Date”, all the dates are filtered by the

FILTER function, and so CALCULATE calculates the total cases for all dates (to see this in

another way, try replacing the “<=” with “<” where you will now get blanks returned).

Therefore, to remedy this, we must use an expression (highlighted) to calculate the

latest date in the current filter context, and this is the correct measure:

Cumulative Total =

VAR FilteredDatesTable =

 FILTER (

 ALL (DateTable),

Chapter 15 Understanding Context transition

246

 DateTable[DATEKEY] <= MAX (DateTable[DATEKEY])

)

RETURN

 CALCULATE ([Total Sales], FilteredDatesTable)

In this measure, the FILTER function with ALL iterates the virtual DateTable table

to compare each date in the DATEKEY column to the date calculated by the expression

“MAX (DateTable[DATEKEY)”. This expression will find the latest date in the current

filter context; for example, it will return 31 May 2017 when evaluating “May 2017”; see

Figure 15-13.

Figure 15-13. The MAX expression evaluated in a calculated column returns the
maximum date for the month in the current filter

Note in Figure 15-13, we’re again simulating the rows in the datetable that
would be visible in memory in the current filter. You cannot see in-memory filters in
data view. therefore, if you put the “MAX (DateTable[DATEKEY)” expression into a
calculated column in the datetable, you will see the last date for all dates, that is,
31 December 2021.

Chapter 15 Understanding Context transition

247

The FILTER function will compare every date in the DATEKEY column of the virtual

DateTable to the date calculated by “MAX (DateTable[DATEKEY)” and therefore will

filter all the dates that are before or equal to this date.

 Filters Using Measures
In the last of our “surprising results” examples, we must use a measure and not an

expression. For example, it could transpire that you want to calculate the number of

transactions where the “Total Sales” value for each transaction is greater than $10,000. To

remind you, this is the expression that is used in the “Total Sales” measure:

Total Sales =

SUMX (Winesales, Winesales[CASES SOLD] *

 RELATED (Wines[PRICE PER CASE])

You may be tempted to use this expression (highlighted) to calculate the number of

sales that are greater than $10,000:

No. Of Sales GT 10,000 #1=

VAR MySales =

 SUMX (Winesales, Winesales[CASES SOLD] *

 RELATED (Wines[PRICE PER CASE]))

VAR SalesTable =

 FILTER (Winesales, MySales > 10000)

RETURN

 CALCULATE ([No. Of Sales], SalesTable)

However, as you can appreciate from Figure 15-14, this measure returns the number

of sales, not the number greater than $10,000.

Chapter 15 Understanding Context transition

248

Figure 15-14. The “No. Of Sales GT 10,000” measure does not return the
correct result

In the “No. Of Sales GT $10,000 #1” measure, we are using SUMX to calculate the

total sales. However, the SUMX expression would sum the total sales for all transactions

in the Winesales table for each wine in the current filter context, giving us the grand

total of “Total Sales” for each wine. In Figure 15-15, the SUMX expression has been

placed into a calculated column in the Winesales table to understand its return value in

memory (only showing total sales for “Bordeaux”), which is the total sales for the wine,

not the total sales for each transaction. When FILTER iterates the Winesales table, this

value will always be greater than $10,000.

Chapter 15 Understanding Context transition

249

Figure 15-15. The SUMX expression evaluated in a calculated column returns the
grand total sales for the wine in the current filter

When we write the expression to find the number of sales greater than $10,000, we

must therefore use the “Total Sales” measure (highlighted) inside FILTER as follows:

No. Of Sales GT 10,000 #2 =

VAR MyTable =

 FILTER (Winesales, [Total Sales] > 10000)

RETURN

 CALCULATE ([No. Of Sales], MyTable)

As you can now see in Figure 15-16, the “No. Of Sales GT 10,000 #2” measure using

the nested measure “Total Sales” returns the correct value.

Chapter 15 Understanding Context transition

250

Figure 15-16. Using a nested measure inside FILTER and not an expression
returns the correct results for the number of sales greater than $10,000

We must again investigate the reason why our second attempt at this calculation

using the nested measure works. If we put the “Total Sales” measure into a calculated

column, this will reveal what FILTER returns when it iterates the Winesales table in

memory. We can see that it is the total sales for each transaction because it’s using

context transition to filter each row in memory; see Figure 15-17.

Chapter 15 Understanding Context transition

251

Figure 15-17. The “Total Cases” measure evaluated in a calculated column filters
the Winesales table to the single row that’s being evaluated

When FILTER iterates the Winesales table, it can use this value to find values greater

than $10,000.

I think we’ve made our point regarding the “surprising results” to which Marco Russo

and Alberto Ferrari alluded, and in doing so, you now understand the concept of context

transition. This is where the row context is transitioned into a filter context because of

the presence of CALCULATE within an iteration, and these filters propagate through the

data model, just as all filters do. No matter how long you’ve been using DAX, these are

challenging calculations to get your head around. In what follows in this chapter, we’ll

explore why it’s so important that you take up the challenge to understand the strange

behaviors and surprising results that context transition throws at you because in doing

so, you will begin to reap the real benefits of using DAX.

 Aggregating Totals Using Context Transition
The power of context transition comes when you use it to calculate averages, maximums,

and minimums of totals as opposed to row-level values, and in this section, we will be

exploring why this is mandatory knowledge in advanced calculations. This is also where

the importance of having clearly defined dimension tables comes to the fore because to

achieve this type of calculation, we will be passing context transition across dimension

Chapter 15 Understanding Context transition

252

tables both real and virtual. What you will discover in the following section is that

context transition can just as equally be passed into virtual tables generated by table

expressions as it can be passed into actual dimensions within the data model.

 Aggregating in Dimensions
We will begin by exploring how context transition works when used in expressions that

reference dimension tables.

For example, take this simple measure:

Max Cases =

MAX (Winesales[CASES SOLD])

The “Max Cases” measure can tell us the maximum number of cases in any single

transaction in the Winesales table for each wine. For example, for “Bordeaux”, the

maximum number of cases sold in any single transaction is 500 cases. This is a row-level

calculation, but this is not what we want.

This measure, we know, will sum the cases sold values in the Winesales table:

Total Cases =

SUM (Winesales[CASES SOLD])

Our goal here is to calculate the maximum of this “Total Cases” measure, not the

maximum of the individual transactions, as shown in Figure 15-18.

Chapter 15 Understanding Context transition

253

Figure 15-18. The “Max Cases” measure is a row-level calculation, but we want to
calculate across totals

To do this, we need to use context transition. We know that context transition

happens when a measure is iterated over a table. We looked earlier at creating a

calculated column in the Wines dimension (“Wine Total Cases 3”) that used the measure

“Total Cases” to evoke context transition and so found the total cases sold value for each

wine in the Wines dimension; see Figure 15-19.

Chapter 15 Understanding Context transition

254

Figure 15-19. Creating a calculated column in the Wines dimension using the
“Total Cases” measure evokes context

Rather than putting this measure into a calculated column to witness the context

transition, we could nest this measure in another measure using MAXX, and this will

iterate the Wines dimension, just as the calculated column does. If we do this, context

transition will happen in memory, and we can find the maximum of the values that you

can see in the calculated column. Let’s now author this measure:

Max of Totals =

MAXX (Wines, [Total Cases])

The MAXX function iterates the Wines dimension in memory to calculate the “Total

Cases” measure for every row in the dimension, just like the calculated column in

Figure 15-19. It then finds the maximum of these values.

Note We are using the Maxx function here because it’s clearer to understand the
evaluation – you can easily see which value is the largest. however, the aVeragex
function would work better because you must calculate the average of the totals to
know what that value is.

Chapter 15 Understanding Context transition

255

However, when this measure is placed in the Table visual in Figure 15-20, why does

it return the same result as the “Total Cases” measure in all rows except in the Total row,

where the value is correct?

Let’s now answer this question. In this Table visual, the first evaluation is for

“Bordeaux” wine, and so in the current filter, there is only one value for “Total Cases”,

and that is the value of the total cases for “Bordeaux”. The maximum of only one value

is that value, and that is why we see the same value for “Total Cases” and for “Max of

Totals”. It’s not until the measure reaches the evaluation of the Total row, where there

is no filter on the Wines dimension, that it can then find the maximum of all the wines,

which is 54,070 for “Bordeaux”.

What is important to emphasize here is that context transition always works

within filters placed on the data model. For example, if we add a Salesperson slicer to

the canvas and filter “Abel”, we can now see the maximum cases for “Abel” (10,993).

Because the Winesales fact table is now filtered for “Abel’s” sales, context transition now

calculates these values in the new filter context; see Figure 15-21.

Figure 15-20. “Max of Totals” measure is correct in the Total row, which is 54,070,
the cases sold for “Bordeaux”

Chapter 15 Understanding Context transition

256

Figure 15-21. The “Max of Totals” measure calculated in a different filter context

However, because the “Max of Totals” measure returns the same value as “Total

Cases” for each of the wines, the “Max of Totals” measure does not really work in a visual

that filters the wine names. This measure is more fitting when placed in a visual that

filters a different dimension. In Figure 15-22, we have used the “Max of Totals” measure

in a Matrix and a Table visual that shows the maximum value for each salesperson. We

have focused on the maximum cases value for “Abel”, which is 10,993 for “Champagne”.

We’ve also placed this measure in a Card visual to show the maximum for all wines.

Chapter 15 Understanding Context transition

257

Figure 15-22. The “Max of Totals” measure works better if placed in visuals that
filter dimensions other than the Wines dimension

Let’s now consider another scenario. Rather than calculating the maximum of

the total cases, perhaps you want to programmatically identify which wine has the

maximum total (“Bordeaux” in our case).

In this situation, for the evaluation of each wine, we must calculate the maximum

of the totals for all the wines. We can then compare the maximum against each wine’s

total. Therefore, we must remove the filter from the Wines dimension by using ALL or

ALLSELECTED as in this example:

Max of Totals #2 =

MAXX (

 ALL (Wines) , [Total Cases])

In this measure, we are using ALL to generate a virtual table containing all the rows

in the Wines dimension, and therefore, MAXX will iterate all the rows in this temporary

table. Context transition calculates the total cases for every row, and MAXX finds the

largest of these. If you have a slicer filtering the wines, you must use ALLSELECTED

which will output to a virtual table containing the wines filtered in the slicer.

We can now write the measure that specifically returns the name of the wine that has

the maximum cases sold, using the expression in the “Max of Totals #2” measure as a

variable:

Wine with Max =

VAR MyMax =

Chapter 15 Understanding Context transition

258

 MAXX (ALL (Wines), [Total Cases])

RETURN

 CALCULATE (VALUES (Wines[WINE]),

 FILTER (Wines, [Total Cases] = MyMax))

Note the use of the VALUES function to return the name of the wine that will be

filtered according to the filter expression.

You can see the results of these measures in Figure 15-23. Note how we use the

“Wine with Max” measure in a Card visual that displays the scalar value returned

by VALUES.

In the preceding examples, we’re using ALL to generate a virtual table containing all

the rows and all the columns in the Wines dimension. We’ll see in the next section that

we could equally use ALL to generate a virtual table containing only the WINE column.

Figure 15-23. The “Max of Totals #2” returns the maximum value for all wines.
We can then use this expression to find the wine that has the maximum

Chapter 15 Understanding Context transition

259

 Aggregating in Virtual Tables
So far, we’ve looked at finding the maximum of the total values using context transition

with a dimension table. We then used ALL to generate a virtual Wines dimension

to find the maximum of the totals of all the wines. Therefore, we know that context

transition can be generated in virtual tables too. We are now ready to explore examples

of using ALL to build virtual tables that contain only the columns that we require for the

expression, not all the columns in the table. Because ALL will return a table containing a

column or columns of distinct values, we are essentially using ALL to group our data so

that context transition can calculate totals across these ad hoc groups.

 Using ALL to Group Columns in the Same Table

For example, we’ve been asked to calculate the variance between the total sales for each

wine and the average of these totals. Consider the following measure that uses context

transition to find the average of “Total Sales” for our wines. However, this time we’re

using the ALL function on the WINE column rather than ALL on the Wines table:

Average of Totals =

AVERAGEX (ALL (Wines[WINE]), [Total Sales])

As mentioned before, depending on the filters in your report, you may need to use

ALLSELECTED in place of ALL.

Let’s look at the three steps in the evaluation of this measure:

 1. The ALL function creates a virtual table comprising a single

column holding a list of unique values in the WINE column.

 2. AVERAGEX then iterates the virtual table and using context

transition calculates the “Total Sales” measure for each of the

wines in the virtual table generated by ALL.

 3. AVERAGEX finds the average of these values.

In Figure 15-24, you can see the virtual table generated by ALL and how the average

of the total values is calculated.

Chapter 15 Understanding Context transition

260

Figure 15-24. The ALL function creates a virtual one-column table of the WINE
column. The table is iterated by AVERAGEX, and context transition calculates the
“Total Sales” for each row. AVERAGEX finds the average of these values

Now we can edit this measure to calculate how each wine’s total sales vary from the

average and visualize the data; see Figure 15-25.

Variance from Average of Totals =

VAR AvgOfTotals =

 AVERAGEX (ALL (Wines[WINE]), [Total Sales])

RETURN

[Total Sales] - AvgOfTotals

Chapter 15 Understanding Context transition

261

Figure 15-25. Using context transition to calculate the average of the totals and
then we can find the variance

Here, we have been using ALL to group by values in the WINE column. Indeed,

we could use ALL to group by salespeople, customers, or regions by generating tables

containing just a list of the names of the entities in these dimensions accordingly.

However, if we want to pass context transition into the DateTable, it becomes a little

more problematic. For example, the expression

Average Daily Sales For Dates =

AVERAGEX (DateTable, [Total Sales])

would pass context transition to every row in the DateTable, therefore aggregating the

total sales for each day. Therefore, this measure would calculate the average daily sales.

However, this may not be the date granularity in which you are interested. Perhaps you

would like to calculate the average quarterly sales in each year, as shown in Figure 15-26.

Here, we have authored the measure “Average Quarterly for Each Year” and placed this

in a Matrix visual. Note that this measure works best if the visual only shows the YEAR

column from the DateTable.

Chapter 15 Understanding Context transition

262

Figure 15-26. The “Average Quarterly for Each Year” measure works best in a
Matrix visual that only shows years

In the Matrix visuals in Figure 15-26, on the evaluation sales in “2017”, there is a filter

on the YEAR column in the DateTable. We must now generate a virtual one-column table

that retains the filter on the YEAR column but lists all four quarters in that year, and we

can use the ALL function to do that, referencing the QTR column. AVERAGEX can then

iterate this table and using context transition can calculate the total sales for each of the

quarters in “2017”, finding the average of these values. This is the code we have used in

the measure:

Average Quarterly for Each Year =

AVERAGEX (ALL (DateTable[QTR]), [Total Sales])

The virtual table generated by ALL in the evaluation of the “2017” average would

look like Figure 15-27.

Chapter 15 Understanding Context transition

263

Figure 15-27. The ALL function builds a table containing all the quarters in the
filtered year

The ALL function can also generate virtual tables comprising unique combinations

of columns from the same table to enable you to group by these combinations. For

example, you could generate a virtual table using ALL containing a distinct list of years

and quarters from the DateTable using this table expression:

ALL (DateTable[YEAR], DateTable[QTR])

Such a virtual table generated by ALL is shown in Figure 15-28.

Figure 15-28. Using ALL referencing multiple columns from the same table
generates a table containing the distinct combination of those values

Using context transition and the ALL expression that generates the table in Figure 15-28,

you could find the average quarterly total sales across all years as in this measure:

Average Quarterly for All Years =

Chapter 15 Understanding Context transition

264

AVERAGEX (

 ALL (DateTable[YEAR], DateTable[QTR]),

 [Total Sales])

Here, the ALL function creates an in-memory table that generates a distinct list

combining the YEAR column and the QTR column, and then AVERAGEX, using context

transition, finds the average of the “Total Sales” values; see Figure 15-29.

Figure 15-29. The ALL function generates a virtual table containing the distinct
combination of values from multiple columns from the same table. Context
transition can be passed to this table to calculate averages

We can appreciate that viewing this measure in a Matrix comprising the YEAR and

QTR columns, where the values returned are repeated, will not do much for people

viewing your report. Just as in the “Max of Totals” measure before, the “Average Quarterly

for All Years” measure works best when you have no filter on the DateTable as in

Figure 15-30.

Chapter 15 Understanding Context transition

265

Figure 15-30. The “Average Quarterly for All Years” measure works well when
analyzing entities other than those from the DateTable

Here, we are analyzing our salespeople’s sales performance by comparing their

average quarterly total sales value.

 Using SUMMARIZE to Group Columns from Related Tables

We can normally use ALL or ALLSELECTED to group columns into virtual tables so

we can perform calculations across ad hoc groups using context transition. It’s only

occasionally that you will require another function called SUMMARIZE to do this job,

and that’s when you need to group columns from different tables.

The SUMMARIZE function allows you to retrieve combinations of columns from the

same table or from one or more related tables. As we’ve seen before, we can usually use

ALL to group columns from the same table, so SUMMARIZE normally need only be used

to group columns from different related tables.

The SUMMARIZE function has the following syntax:

= SUMMARIZE (table, group by column1, group by column2 etc., name,
expression)

where:

table is the table or table expression containing the columns you want to group by.

group by columns are the columns by which you want to group your data. These can

be columns from the same table or from related tables.

name (optional) is the name of the expression you want to generate in the expression

argument later. This is a nonmandatory argument.

Chapter 15 Understanding Context transition

266

expression (optional) is an expression that will be calculated for every row in the

virtual table. This is a nonmandatory argument.

Mostly you will use SUMMARIZE only with the first two arguments, specifying a table

and the group by columns as follows:

=SUMMARIZE (Winesales, Wines[WINE], DateTable[YEAR])

This table expression builds a virtual table grouping by the WINE column and then

by the YEAR column and can do this because the Wines table and the DateTable are

related to Winesales.

However, there is one big difference between using ALL to generate ad hoc groups

of columns and using SUMMARIZE, and that is that SUMMARIZE builds a virtual table

comprising the values in the current filter context. Therefore, often, the ALL function is

required, nested inside SUMMARIZE, to remove these filters.

With two of the arguments inside SUMMARIZE (i.e., “name” and “expression”), you

can optionally create calculations in the virtual table, and we will look at an example of

this in the next chapter. However, usually, to create calculations for these groups using

context transition, you can nest the table generated by SUMMARIZE inside functions

such as MAXX and AVERAGEX that will then perform the calculations.

Using SUMMARIZE, you can group columns from related tables. For instance, if

the table you reference inside SUMMARIZE is a fact table, then you can group by any

columns from the dimensions related to the fact table.

If you use the New Table button on the Modeling tab in Power BI, you can create

calculated tables using table functions. This is a convenient way to see the output of table

expressions such as those involving SUMMARIZE. You can view calculated tables in Data

view just as you would any tables in your data model. However, when the SUMMARIZE

expression is nested inside a measure, its output will be filtered in memory according

to the filter context, and this is something that you can’t see in the calculated table in

Data view.

We can use SUMMARIZE to group the WINE column from the Wines dimension and

the YEAR column from the DateTable using this table expression:

Wine and Year Table =

SUMMARIZE (Winesales,

 Wines[WINE], DateTable[YEAR])

In Figure 15-31, you can see the result of this table expression when used in a

calculated table using the New table button.

Chapter 15 Understanding Context transition

267

Figure 15-31. Using SUMMARIZE to generate a table containing the WINE and
YEAR columns

Let’s look at a scenario where we may need to generate this virtual table using

SUMMARIZE, remembering that such a table will be built in the current filter context.

We want to calculate the yearly average total sales for all our wines and display this in

a Card visual. This is the measure we will author using SUMMARIZE to group by both

WINE and YEAR (note the use of a variable to store the virtual table).

Yearly Average =

VAR SummaryTable = SUMMARIZE (ALL (Winesales), Wines[WINE],

DateTable[YEAR])

RETURN

AVERAGEX (SummaryTable, [Total Sales])

You can see in Figure 15-32 that on average, the yearly sales for our wines is

$457,423. To understand this average, you could create a Clustered Column chart visual

plotting wines sales in each year. If you then display an average analytical line,4 this will

show the same value that you have calculated in the measure.

4 For information on working with the analytical lines, visit https://docs.microsoft.com/en-us/
power-bi/transform-model/desktop-analytics-pane

Chapter 15 Understanding Context transition

https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-analytics-pane
https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-analytics-pane

268

Figure 15-32. Using SUMMARIZE and context transition to calculate the yearly
average for all wines. This would be the average calculated by the “Analytics”
average line

In the “Yearly Average” measure, the “Total Sales” nested measure uses context

transition to calculate sales for each combination of WINE and YEAR in the virtual table

generated by SUMMARIZE. The AVERAGEX function will find the average of the values

returned by the context transition. Note the use of the ALL function on the Winesales

table to remove the filter coming from the WINE column and the YEAR column in the

Matrix visual. Remember that unless you use ALL, the SUMMARIZE function creates a

summary table of values within the current filter context.

Alternatively, if we put this measure into a table that didn’t use the WINE or YEAR

column, we would not require the ALL function, as you can see in Figure 15-33 where we

are using the REGION column instead. Here, we are analyzing the average of the total

yearly sales of wines in each region.

Yearly Average =

VAR SummaryTable = SUMMARIZE (Winesales , Wines[WINE], DateTable[YEAR])

RETURN

AVERAGEX (SummaryTable, [Total Sales])

Chapter 15 Understanding Context transition

269

Figure 15-33. The “Yearly Average” measure calculated for regions

Having calculated the average yearly sales for all wines in all the years, you may want

to calculate the average yearly sales for each wine. Perhaps again, this is to calculate the

variance from the average. If this is the case, this is the code you would require:

Yearly Average Each Wine =

VAR Summarytable =

 SUMMARIZE (ALLEXCEPT (Winesales, Wines[WINE]), DateTable[YEAR])

RETURN

 AVERAGEX (Summarytable, [Total Sales])

The reason that we can use the ALLEXEPT function in this context will be explained

in Chapter 18 when we explore the concept of table expansion. All we need to note here

is that by using ALLEXCEPT, the filter has been removed from the YEAR column leaving

the filter on the WINE column. Therefore, this enables us to pass the average across sales

in every year for each wine. This measure would then calculate the variance, but only at

the YEAR grain:

Variance from Average Each Yr =

IF (

 HASONEVALUE (DateTable[YEAR]),

 [Total Sales] - [Yearly Average Each Wine])

Chapter 15 Understanding Context transition

270

You can see the outcomes of the “Yearly Average Each Wine” and “Variance from

Average Each Yr” measures in Figure 15-34.

Figure 15-34. The “Yearly Average Each Wine” and “Variance from Average Each
Yr” measures

In this chapter, you have learned to use context transition to produce aggregations on

measures as opposed to aggregations on row-level values. You now also appreciate the

importance of dimension tables in these calculations, that they are used to group and

aggregate the data at the dimension granularity. You have also learned that virtual tables

play a significant part in these calculations, enabling you to generate ad hoc summary

groups over which to harness the power of context transition.

Chapter 15 Understanding Context transition

271
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_16

CHAPTER 16

Leveraging Context
Transition
In the last chapter, you learned how context transition enables you to programmatically

aggregate data into dimensions and virtual tables. You could then author expressions

that grouped and aggregated data at this higher granularity. Once you have learned the

skill of using DAX in this way, the world of DAX opens up to you considerably. You will

now be able to author more complex calculations that enable you to gain deeper data

insights. In this chapter, you will be applying your knowledge of context transition to

solving the following data analysis questions:

How do I

• Rank entities?

• Bin measures into numeric ranges?

• Calculate top or bottom N percent using dynamic parameters?

• Find like for like sales across my customer base?

• Calculate running totals in a table using a calculated column?

• Calculate differences in values in the previous row in a

calculated column?

In generating these insights, you will learn transferrable skills and techniques that

you can take on board, extend the ideas, and apply them to your own data.

https://doi.org/10.1007/978-1-4842-8188-8_16

272

 Ranking Data: Looking at RANKX
You have learned that by combining iterating functions with measures (which implicitly

call CALCULATE), you can reap the benefits of context transition. Let’s take this

opportunity to look at another iterating function, RANKX.

The RANKX function has the following syntax:

= RANKX (table, expression, value, order, ties)

where:

table is the table that you want to iterate to rank items. This table is often generated

by the ALL function, so ranking is performed on all the rows of the table, not just those in

the current filter.

expression is the measure or expression to be used to rank the items.

value is optional and is used to compare items to be ranked (rarely used).

order is optional – ASC (1 is the lowest rank) or DESC (1 is the highest rank). The

default is DESC.

ties is optional and is either Skip or Dense as follows:

Skip where the next rank value after a tie is the rank value of the

tie plus the count of tied values. For example, if 5 values are tied

with a rank of 11, then the next value will receive a rank of 16 (11 +

5). This is the default value when the ties parameter is omitted.

Dense where the next rank value after a tie is the next rank value.

For example, if 5 values are tied with a rank of 11, then the next

value will receive a rank of 12.

Here is an example of RANKX syntax:

= RANKX (ALL (Wines), [Total Sales] , , ASC)

As its name suggests, we can use this function to rank our entities by a specific

measure, for example, to rank our wines by the “Total Sales” measure; see Figure 16-1.

Chapter 16 Leveraging Context transition

273

Figure 16-1. Ranking wines by “Total Sales”

This is DAX code for the “Rank Wine” measure:

Rank Wine =

IF ([Total Sales],

RANKX (ALL (Wines), [Total Sales]))

This measure first checks that there is a value for “Total Sales”; otherwise, items with

blank values will be considered in the evaluation, such as “Lambrusco” wine that has no

sales. If a sales value is present, the measure builds a virtual Wines table containing all

the rows from the table using ALL. It then uses context transition to calculate the “Total

Sales” value, iterating every row. Finally, it ranks the sales value in the current filter

against all the values in the table returned by ALL, returning their rank value.

Let’s take a look at another example of using RANKX. You may, for instance, want to

rank your financial quarters by sales in each year as shown in Figure 16-2.

Chapter 16 Leveraging Context transition

274

Figure 16-2. Using RANKX to rank financial quarters

In the Matrix visual in Figure 16-2, the first ranking evaluation is for “Qtr 1” in “2017”,

filters being applied to the DateTable accordingly. Here, you must use the ALL function

to generate a virtual table containing a column of all four values in the QTR column

of the DateTable (i.e., “Qtr 1”, “Qtr 2”, “Qtr 3”, “Qtr 4”) for “2017”. This is so that the sales

values for all four quarters in that year can be ranked using context transition. This is the

measure you can create here:

Rank by Qtr =

RANKX (ALL (DateTable[QTR]), [Total Sales])

However, if you put this measure into a Matrix visual, you will notice that the

YEAR column is ranked as “1” as there is only one subtotal value to rank. To avoid this

irrelevant value, you can use the HASONEVALUE function to return only a value for the

QTR column:

Rank by Qtr #2 =

 IF (HASONEVALUE(DateTable[QTR]),

 RANKX (ALL (DateTable[QTR]), [Total Cases]))

Chapter 16 Leveraging Context transition

275

Note We are using the aLL function inside ranKx in our examples shown before,
but remember that you may require the aLLseLeCteD function instead if you have
slicers on your canvas.

We will be meeting the RANKX function again later in this chapter when we use it

to rank our customers. However, the most important takeaway from this section is how

RANKX, as an iterating function, is used with a measure and, therefore, evokes context

transition.

 Binning Measures into Numeric Ranges
A common requirement when analyzing data in Power BI is binning the results of a

measure into numeric ranges. Consider the visual on the left in Figure 16-3. It is telling us

that we have nine customers whose “Total Sales” values are greater than 800,000. In the

Table visual on the right, we can see who these customers are.

Chapter 16 Leveraging Context transition

276

Figure 16-3. Binning “Total Sales” into numeric ranges

The starting point for this analysis is to generate a parameter table that defines the

ranges you require. You learned how to create parameter tables in Chapter 12 when we

explored the SELECTEDVALUE function. To generate the parameter table, use the Enter
Data button on the Home tab. We’ve called this table “Bins for Sales”, and you can see

it in Figure 16-4. As with all parameter tables, it’s not related to any other tables in the

data model.

Chapter 16 Leveraging Context transition

277

Figure 16-4. The “Bins for Sales” parameter table

Next, as a calculated column in Data view, in the “Bins for Sales” table, we could

author this expression that will count the number of customers whose sales fall between

the range values:

No. of Customers Column =

COUNTROWS (

 FILTER (

 Customers,

 [Total Sales] >= 'Bins for Sales'[MinValue]

 && [Total Sales] <= 'Bins for Sales'[MaxValue]))

You can see the results of this expression in Figure 16-5.

Figure 16-5. Start by binning the customers into a calculated column

Chapter 16 Leveraging Context transition

278

Let’s take a closer look at the evaluation of “No. of Customers Column”. Because we

are using a calculated column, the “Bins for Sales” table is iterated, and the values for

“MinValue” and “MaxValue” in the current row will be used in the calculation. The “Total

Sales” measure used by the FILTER function evokes context transition in the Customers

table whereby it returns each customer’s total sales value in memory, and it is this value

that is used to compare to the range value sitting in the current row of the “Bins for

Sales” table. The COUNTROWS function then counts the number of rows in the virtual

Customers table generated by FILTER. In Figure 16-6, we step through the evaluation of

this expression.

Figure 16-6. The evaluation of the “No. of Customers Column” calculated column

 1. The expression iterates the “Bins for Sales” table. FILTER

generates a virtual Customers table that is filtered by using the

range values in the current row of the “Bins for Sales” table.

 2. COUNTROWS counts the rows in the virtual Customers table.

 3. The value returned by COUNTROWS is calculated in the current

row of the “Bins for Sales” table.

However, we don’t want these values sitting in a calculated column; we want

them in a measure that we can put into a Table visual so we can slice and dice the

data. We learned in Chapter 5 how we can often convert an expression evaluated in

a column into an expression evaluated as a measure. There, we took this expression,

Chapter 16 Leveraging Context transition

279

“Winesales[CASESSOLD] * RELATED (Wines[PRICEPERCASE]))”, and wrapped it

inside SUMX. We can do the same with our calculated column, remembering that it is

the “Bins for Sales” table that must be iterated by SUMX:

No. of Customers with these Total Sales =

SUMX (

 'Bins for Sales',

 COUNTROWS (

 FILTER (

 Customers,

 [Total Sales] >= 'Bins for Sales'[MinValue]

 && [Total Sales] <= 'Bins for Sales'[MaxValue])))

You can then place a Table visual on your canvas and populate it with the “Range”

column from the “Bins for Sales” table. Next, place the “No. of Customers with these

Total Sales” measure into this table as in Figure 16-3.

 Calculating TopN Percent
In this example, you will put into practice all the knowledge of DAX you’ve learned so far

and author a complex measure.

The challenge is to find a way to dynamically browse your best and worst performing

customers. The requirement is to do this by finding the topN and bottomN percent of

customers by sales, where the “top” and “bottom” and “N” are dynamically selected via

slicers. You would also like to browse customers’ sales by any entities from dimension

tables such as by salespeople or by regions.

You can see in Figure 16-7 that we’ve solved this scenario. In the Table visual, you can

see that we are looking at the bottom 10% of customers by sales for salesperson “Abel”.

Chapter 16 Leveraging Context transition

280

Figure 16-7. Top or bottom percent of customers by sales

The measure “Top/Bottom PC Customers” is a compelling example of using context

transition within a DAX expression to gain insights into your data, and you can now

discover how to re-create this example for yourself.

There are two steps to setting up this analysis:

 1. Create the slicers to select which percentage and whether top

or bottom.

 2. Create the measure to find the top or bottom percent selected in

the slicers that will also respond to the Salesperson slicer.

 Create the Slicers
The “Top or Bottom” and “Percent” slicers use parameter tables. We’ve called these

tables “Select Percent” and “Select Top or Bottom”, and both tables contain just a single

column, “Top or Bottom” and “Percent”, as shown in Figure 16-8.

Chapter 16 Leveraging Context transition

281

Figure 16-8. The parameter tables used for top/bottom and percent

Use the columns from these two tables to populate two slicers.

 Create the Measure to Find the Top or Bottom Percent
Selected in Slicers
The measure used in the “Top/Bottom PC Customers” uses many skills you have learned

so far in this book. Let’s think through what will be required of you to arrive at the correct

DAX code for this measure.

• You will use variables throughout the expression to separate each

part of the evaluation.

• You will use the SELECTEDVALUE function to harvest the values

selected in the slicers, either “Top” or “Bottom”, and the percentage to

be calculated.

• The percentage selected is used to find the base rank. For example,

if 10% is chosen in the slicer and there are 84 customers who have

sales, you must find customers whose rank is less than 8.4. You will

rank customers descending for top ranked customers (top = 1) and

ascending for bottom ranked customers (bottom = 1). Therefore, you

will be finding a rank less than 8.4 in both cases.

• Using context transition and the RANKX function, you will rank the

customers, top or bottom, according to their “Total Sales” value.

• Because there are customers with no sales that will be ranked by

default when finding bottom percent, you must filter the Customers

table so only customers who have sales are ranked.

Chapter 16 Leveraging Context transition

282

• Using the FILTER function, you will filter top or bottom customers

whose rank is, for example, less than 8.4, if finding 10%.

• Because the measure must return a scalar value, you must now

calculate the “Total Sales” measure for the filtered customers.

• Lastly, you must write a calculation that returns “Total Sales” for

either the top or the bottom ranked customers depending on the

slicer selection.

This is the measure that you can now author (we have added a comment under each

part of the expression to explain the purpose of the code):

Top/Bottom PC Customers =

VAR PercentToFind =

 COUNTROWS (ALL (Customers)) * SELECTEDVALUE ('Select

Percent'[Percent])

-- Harvest the percent using the slicer selection

VAR TopOrBottom =

 SELECTEDVALUE ('Select Top or Bottom'[Top or Bottom])

-- Harvest whether top or bottom using the slicer selection

VAR RankCustsTop =

 RANKX (ALL (Customers), [Total Sales])

-- Rank the customers descending by Total Sales value (Top = 1)

VAR RankCustsBottom =

 RANKX (FILTER(ALL (Customers),NOT(ISBLANK([Total Sales]))), [Total

Sales],, ASC)

-- Rank the customers ascending by Total Sales value (Bottom = 1) but only

if they have sales

VAR FindCustsTop =

 FILTER (Customers, RankCustsTop <= PercentToFind)

-- Filter top customers whose rank is less than or equal to the

PerCentToFind

VAR FindCustsBottom =

 FILTER (Customers, RankCustsBottom <= PercentToFind)

Chapter 16 Leveraging Context transition

283

-- Filter bottom customers whose rank is less than or equal to the

PerCentToFind

VAR CalcSalesTop =

 CALCULATE ([Total Sales], FindCustsTop)

-- Calculate “Total Sales” for top ranked customers

VAR CalcSalesBottom =

 CALCULATE ([Total Sales], FindCustsBottom)

-- Calculate “Total Sales” for bottom ranked customers

RETURN

IF (HASONEVALUE (Customers[CUSTOMER NAME]),

-- This tests that the evaluation is not for the Total Row.

IF (TopOrBottom = "top", CalcSalesTop, CalcSalesBottom),

--The calculation for rows not in the Total row

 CALCULATE ([Total Sales],

 ALLSELECTED (Customers[CUSTOMER NAME])))

--The calculation for the Total Row

Note the “RETURN” expression that executes different code if the calculation is for

the Total row. This is to resolve the problem of users selecting “Bottom” percent and no

value showing in the Total row. This is because the Total row is evaluated in the same

way as the evaluation for each customer. Therefore, the Total row value, which is always

greater than the individual sales values, is given a bottom ranking of 85 (if there are 84

customers with sales), because the bottom ranking is ascending (higher values get a

larger ranked number). The Total row, therefore, fails the ranking bottom test performed

by FILTER, and so there is no data to show in the Total row.

You must, therefore, author a different expression for the Total row to ensure that

the Total row sums the total sales for the customers shown in the visual. To test that the

evaluation is not for the Total row, you can use the HASONEVALUE function. You can

then use the ALLSELECTED function to calculate the “Total Sales” value for just the

customers shown in the visual.

However, we have not yet resolved the problem, because you will note that at this

stage, the Total row shows the total sales for all customers for “Abel”; see Figure 16-9.

Chapter 16 Leveraging Context transition

284

Figure 16-9. The Total row is not correct

This is because the ALLSELECTED expression calculates the “Total Sales” measure

independently of the ranking calculation, and so there is no filter on the Customers table

for ALLSELECTED to remove. Therefore, to place a filter on the Customers table, you can

use a visual-level filter, populate it with the “Total Sales” measure, and set the filter to

“Show items when the value is not blank”; see Figure 16-10.

Figure 16-10. The Total row is correct if you provide a visual-level filter for
ALLSELECTED to remove

Chapter 16 Leveraging Context transition

285

Finally, you can change the slicer selections, and the measure recalculates

accordingly, finding your best and worst customers using our great DAX friend, context

transition.

You may feel that the dynamic ranking of customers that we have achieved here has

been quite a daunting experience. It would appear that once you have “cracked” the

obvious calculation of ranking the customers, there were then unexpected problems that

arose, such as how the Total row must be evaluated. Let me tell you now, this is par for

the course. This is true DAX in action, and you are beginning to appreciate that what you

must do above all else is think it through. Why is my expression returning correct results

most of the time but then odd results only sometimes? Always think through exactly how

your measure is being evaluated and, particularly, the evaluation context in which it has

been placed.

 Calculating “Like for Like” Yearly Sales
Using SUMMARIZE
We have been analyzing our customer sales values in a variety of ways throughout this

book. One of the more insightful metrics, however, we have yet to explore is calculating

like for like sales to make more accurate comparisons between our customers.

Let’s start by setting up the scenario. We want to analyze our customers’ sales of

“Chianti” wine in the years 2019, 2020, and 2021. The problem with multiselecting years

in a slicer is that our “Total Sales” measure will filter customers with sales of “Chianti” in

any of the selected years and not sales in all of them; see Figure 16-11.

Chapter 16 Leveraging Context transition

286

Figure 16-11. Multiselecting years returns customers with sales in any of the
selected years, not all the selected years

However, we’d like to select a range of years in a slicer and find out which customers

bought “Chianti” in all the selected years so we can compare like for like on the total. For

instance, in Figure 16-11, we can see that in the years 2019, 2020, and 2021, “Burningsuit

Ltd” had sales in all three years for “Chianti” but “Ballard & Sons” only had sales in 2020

and “Barstow Ltd” in 2021. Therefore, the total sales for those three years would not be

like for like when considering these three customers’ sales of “Chianti”.

The visual that provides the analysis we require is shown in Figure 16-12. Here, we

have selected “Chianti” wine and years 2019, 2020, and 2021 in the slicers, and the table

visual shows sales for only customers who have sales of “Chianti” in all those years.

Chapter 16 Leveraging Context transition

287

Figure 16-12. Calculating like for like sales in 2019 to 2021 for “Chianti” wine

To understand the code we must author that calculates such sales, we will pick the

calculation apart into its constituent steps:

 1. Identify customers who have sales in the selected years of the

selected wine.

 2. Calculate in how many of those years selected in the slicer the

customer has sales.

 3. Filter customers who have sales in the same number of years as

the number of years selected in the slicer.

Let’s take step #1 and explore how we identify those customers that have sales in the

selected years. For this, we must digress a little and revisit the SUMMARIZE function

to learn more. In the previous chapter, you learned how you can use SUMMARIZE to

generate a virtual table grouping columns from different tables. However, as one of

the arguments inside SUMMARIZE, you can optionally include an expression to be

evaluated for the rows returned in the virtual table. Therefore, to identify in which of the

Chapter 16 Leveraging Context transition

288

selected years our customers have sales, we could write the following measure where

we have highlighted the two arguments used for calculating the total sales for each

customer in each year:

No. of Years that Customers have Sales =

 COUNTROWS (

 SUMMARIZE (

 Winesales,

 Customers[CUSTOMER NAME],

 DateTable[Year],

 "Sales", [Total Sales]

)

)

We will now work through the details of the “No. of Years that Customers have Sales”

measure. We are using SUMMARIZE to create the virtual table shown in Figure 16-13. We

don’t see all the years for every customer because this table is evaluated in the current

filter of the Matrix visual that it occupies; for instance, “Ballard & Sons” only has sales in

2020; see Figure 16-14.

Figure 16-13. The virtual table generated by SUMMARIZE in the “No. of Years
that Customers have Sales” measure

Chapter 16 Leveraging Context transition

289

You can see that the SUMMARIZE function includes an expression called “Sales”

which will return the “Total Sales” measure. The name that you give to this column

inside SUMMARIZE (e.g., “Sales”) is purely arbitrary.

We can now put this measure into a Matrix visual with CUSTOMER NAME in rows

and YEAR in columns (Figure 16-14). We are also slicing by “Chianti” wine and years

2019, 2020, and 2021. You can see that it returns “1” for every customer that has sales of

“Chianti” in the selected years.

Now for step #2 where we must calculate in how many of those years selected in the

slicer a customer has sales. Remembering that the columns WINE, CUSTOMER, and

YEAR are providing the filter context, we must remove the filter from YEAR so we can

Figure 16-14. The “No. of Years that Customers have Sales” measure in a
Matrix visual

Chapter 16 Leveraging Context transition

290

look at our customers’ sales of “Chianti” for all the years selected in the slicer. We can use

CALCULATE with ALLSELECTED on the DateTable to do this job and simply nest our

SUMMARIZE expression inside CALCULATE:

No. of Years that Customers have Sales #2=

CALCULATE (

 COUNTROWS (

 SUMMARIZE (

 Winesales,

 Customers[CUSTOMER NAME],

 DateTable[Year],

 "Sales", [Total Sales]

)

),

 ALLSELECTED (DateTable[Year])

)

We can see the values this measure returns in Figure 16-15.

Chapter 16 Leveraging Context transition

291

Figure 16-15. The “No. of Years that Customers have Sales #2” measure evaluated
in the Matrix visual

We already know from Figure 16-13 that “Ballard & Sons” has only bought “Chianti”

in 2020 so they only have sales in one of the years selected in the slicer.

To complete the calculation in step #3, we can filter the Customers table to contain

only those customers whose number of years returned by the “No. of Years that

Customers have Sales #2” measure equals the number of years filtered in the slicer

and return the “Total Sales” value for these customers. This is the “Like for Like Sales”

measure that we’ve used in the visual in Figure 16-14 that returns the result we need:

Like for Like Sales =

CALCULATE (

 [Total Sales],

 FILTER (

 Customers,

Chapter 16 Leveraging Context transition

292

 [No. of Years that Customers have Sales #2] =

 COUNTROWS (ALLSELECTED (DateTable[Year]))

)

)

Figure 16-16 shows this measure evaluated in a Matrix visual.

Figure 16-16. The “Like for Like Sales” measure evaluated for “Chianti” wine

In the preceding scenario, where we have calculated like for like sales, you may have

noticed the absence of any reference to context transition when working through the

evaluation of the measures we built using SUMMARIZE. In fact, these measures do not

use context transition. SUMMARIZE is not an iterating function, and in the absence

of an iteration, context transition cannot occur. The method that SUMMARIZE uses to

calculate its “expression” argument is complex, and its explanation is beyond the scope

of this book. However, the behavior of the “Total Sales” measure in the expressions using

SUMMARIZE is indistinguishable from context transition to most DAX users. That is,

we have generated a summary table, and the “Total Sales” measure is calculated at that

granularity. This is why I have included this example in this chapter.

Chapter 16 Leveraging Context transition

293

 Using Context Transition in Calculated Columns
Understanding context transition allows you to write more challenging calculated

columns too. What you will learn in this section is that by using CALCULATE in

calculated columns, you are released from the constraints of the row context where you

can only calculate values for the current row. We can now harness the power of context

transition to programmatically create filters on tables and so pass calculations across

these filtered rows in calculated columns.

 Calculating Running Totals
You have already learned how to calculate cumulative totals using measures in Chapter 9

(see Figure 9-10) and Chapter 15 (see Figure 15-10). However, we now have a different

cumulative total we would like to find, and that is a running total of the quantity in the

CASES SOLD column; see Figure 16-17. Using variables and context transition makes

this calculation straightforward. This is the DAX calculated column you can create:

CUMULATIVE TOTAL =

VAR MyDate = Winesales[SALE DATE]

VAR MyFilter =

 FILTER (Winesales, Winesales[SALE DATE] <= MyDate)

RETURN

 CALCULATE (SUM (Winesales[CASES SOLD]), MyFilter)

The variable “MyDate” finds the value in the SALE DATE column sitting in the

current row. The variable “MyFilter” uses the FILTER function to create a virtual

table filtering the rows where the SALE DATE is on or before this date. Using context

transition, CALCULATE can use this new filter generated by the virtual table to sum the

CASES SOLD for these filtered rows.

Chapter 16 Leveraging Context transition

294

Notice the use of the variable “MyDate” to find the date in the current row. Before

variables were introduced into DAX in 2015, we had to use a function called EARLIER to

do this job, as follows:

CUMULATIVE TOTAL =

CALCULATE (

 SUM (Winesales[CASES SOLD]),

 FILTER (Winesales, Winesales[SALE DATE] <=

 EARLIER (Winesales[SALE DATE]))

)

I think you’ll agree that the calculated column using the variable is a lot easier to

create and understand.

 Calculating the Difference from the Value
in the Previous Row
You have learned that calculated columns use the row context in their evaluation where

the values used by the expression are the values sitting in the current row. However, a

common question that is often asked is how to find values in another row. For example,

you may be asked to calculate the number of days between sales transactions as in the

“DAYS DIFFERENCE” calculated column in Figure 16-18.

Figure 16-17. The “CUMULATIVE TOTAL” in a calculated column

Chapter 16 Leveraging Context transition

295

To do this calculation, we need to find the SALE DATE that is in the previous row.

This is the expression for the calculated column:

DAYS DIFFERENCE =

VAR MyDate = Winesales[SALE DATE]

VAR PreviousDate =

 CALCULATE (

 MAX (Winesales[SALE DATE]),

 FILTER (WineSales, Winesales[SALE DATE] < MyDate))

RETURN

 IF (PreviousDate, MyDate - PreviousDate)

The variable “MyDate” finds the value of SALE DATE sitting in the current row, for

example, 7 January 2017. The variable “PreviousDate” uses CALCULATE and so invokes

context transition that will apply a filter to the rows. Using the FILTER function, a virtual

table is created filtering the rows where the SALE DATE is before “MyDate” (i.e., all the

rows with dates up to and including 6 January 2017). CALCULATE then calculates the

latest date (using the MAX function) in the virtual table (6 January 2017). Therefore, this

date is the date immediately before the date in the current row. The RETURN statement

checks for the presence of a previous date and then subtracts the date in the current row

from the date generated by “PreviousDate”. The value returned is a date, so the last step

is to change the data type to a whole number.

Figure 16-18. The “DAYS DIFFERENCE” calculated column

Chapter 16 Leveraging Context transition

296

By working through the examples contained in this and the previous chapter, you

have learned how to use context transition to author more complex and challenging

expressions. However, you are still sitting on the tip of the iceberg of calculations that can

be achieved using context transition. You’ll find your own reasons to benefit from using

this aspect of DAX, and you will no longer find the behavior of context transition in any

way “strange” or “surprising,” and that’s because you now understand it.

Chapter 16 Leveraging Context transition

297
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_17

CHAPTER 17

Virtual Relationships:
The LOOKUPVALUE
and TREATAS Functions
Our data model comprises well-defined physical relationships between the tables,

generating a star schema. However, there is another type of relationship we can create,

and that’s a “virtual” relationship. A virtual relationship is a DAX expression that

simulates the behavior of a physical relationship defined in the data model. In this

chapter, you will learn to create virtual relationships that can resolve problems created

by anomalies in the data model. Such anomalies can exist for the following reasons:

• When a relationship does not exist, for example, when using a

lookup table.

• The relationship between tables is not part of a star or

snowflake schema.

• When a relationship cannot be created because there are duplicate

values in both of the columns you want to relate.

Specifically, we will delve into the outcomes of using two functions that create

virtual relationships: LOOKUPVALUE and TREATAS. In fact, these two functions are very

different. LOOKUPVALUE returns a value, usually from a different table, that is looked

up based on search criteria that are provided by the function. TREATAS, on the other

hand, is a table function that returns a virtual table that can be used to filter another

table. However, they’re both used in situations where it’s not possible to use a physical

relationship, and that’s why we’ve consolidated them into this chapter.

https://doi.org/10.1007/978-1-4842-8188-8_17

298

 LOOKUPVALUE Function
We’ve already learned that we can use the RELATED function to pull values through

from the one side of the relationship into the many, just in the same way that the

VLOOKUP function works in Excel. However, RELATED only works if you have a

many-to-one relationship in place. Let’s look at a situation where it would not be

possible to use RELATED.1

The situation is this; currently, our wines have a single price per case, but we now

want our wines to have different prices according to different price bands. We’ve added

another table to our model that records the price bands of the wines in a table called

“Prices”, shown in Figure 17-1.

Figure 17-1. The Prices table records the price band and price per case for
each wine

Now, when we make a sale of any wine, the price band is also recorded in the

transaction in the Winesales fact table; see Figure 17-2.

1 To follow along with the examples, use the Power BI Desktop file “4 DAX LOOKUPVALUE.pbix”.

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

299

Figure 17-2. Each transaction records the price band

In Figure 17-3, you can see that relating wines to their prices in a many-to-one

relationship using the WINE ID column is straightforward.

Figure 17-3. The Prices table can be related to the Wines table in a many-to-one
relationship

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

300

However, how would you find the price of each transaction in the Winesales table?

You can’t use RELATED because this function can only populate values from the “one”

side of the relationship into the “many” side and the Prices table sits on the “many” side.

But more importantly, the price depends on two criteria: the wine and the price band.

In this scenario, the relationship between the tables isn’t going to help you. In fact, you

don’t need the relationship between Wines and Prices at all. What you can do here is

create a “virtual” relationship using LOOKUPVALUE in a calculated column.

The LOOKUPVALUE function has the following syntax:

= LOOKUPVALUE(result column name , search column name1, search value1,
search column name2, search value2 etc.)

result column name is the column whose value you want to be returned.

search column name is the column where you want to match the first “search

value.” Usually, this is a column from a different table, but it can be in the same table.

search value is the value to search for in “search column name.” This can be a value

in a column or any single value.

The “search column name” and “search value” can be repeated for as many pairs of

matching values as you need.

This is the calculated column we need and you can see the result in Figure 17-4:

WINE PRICE =

LOOKUPVALUE (

 Prices[PRICE PER CASE],

 Prices[WINE ID], Winesales[WINE ID],

 Prices[PRICE BAND], Winesales[PRICE BAND]

)

This is the same calculated column with comments:

WINE PRICE =

LOOKUPVALUE (

 Prices[PRICE PER CASE],

--the price to return into the Winesales table from the prices table

 Prices[WINE ID], Winesales[WINE ID],

--look in the WINE ID column of the Prices table to match the WINE ID in

the current row of the Winesales table

 Prices[PRICE BAND], Winesales[PRICE BAND]

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

301

-- AND look in the PRICE BAND column of the Prices table to match the PRICE

BAND in the current row of the Winesales table

)

Notice in the calculated column, we need to match both the WINE ID and the

PRICE BAND, and this is where LOOKUPVALUE becomes particularly useful. The

LOOKUPVALUE function allows you to find values in unrelated tables by matching

values in any number of columns.

At this juncture, we must let you know that the code you have just written using the

LOOKUPVALUE function is now a little outdated. Prior to the introduction of variables,

it was the simplest way to achieve this outcome. However, the following code using

variables and CALCULATE is an alternative approach:

WINE PRICE #2 =

VAR currentwine = Winesales[WINE ID]

VAR priceband = Winesales[PRICE BAND]

RETURN

CALCULATE (VALUES (Prices[PRICE PER CASE]),

 Prices[PRICE BAND] = priceband,

 Prices[WINE ID] = currentwine)

Figure 17-4. The WINE PRICE calculated column using LOOKUPVALUE

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

302

There is no discernable difference in the performance of “WINE PRICE #2”, so it is a

personal choice as to which expression you prefer to use.

Finally, let’s give the last word to Alberto Ferrari in his blog on the LOOKUPVALUE

function here: www.sqlbi.com/articles/introducing- lookupvalue/

“If your search list is made up of only one-column, then LOOKUPVALUE is pretty

much never your best option. Indeed, when searching for a single column, a relationship is

always better: it is faster and provides a clearer structure to the model. When on the other

hand you search for multiple columns, then LOOKUPVALUE comes in handy.

Another scenario where LOOKUPVALUE is preferable over a relationship in the model

is when the condition you set is not a single column, but instead a more complex condition

based on multiple columns. In that case, LOOKUPVALUE provides greater flexibility than

a relationship.”

 The TREATAS Function
To understand the requirement for the TREATAS function, we must consider the

following problem that has now arisen in our data model.2 We have added a Targets table

to our model that records each salesperson’s yearly targets; see Figure 17-5.

2 To follow along with the examples, use the Power BI Desktop file “5 DAX TREATAS.pbix”.

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

http://www.sqlbi.com/articles/introducing-lookupvalue/

303

Figure 17-5. The Targets table

We would like to compare our salespeople’s yearly sales with their targets, as in

Figure 17-6 where we are looking at sales in 2021.

Figure 17-6. Reporting on salespeople’s yearly targets

The Targets table is related to the SalesPeople table (using the SALESPERSON

ID column from both tables) in a many-to-one relationship as shown in Figure 17-7.

Because we will be using the Winesales table and the DateTable, we’ve also shown how

these are related in the model.

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

304

Figure 17-7. The Targets table is related to the SalesPeople table

We could create a measure to calculate the target values:

Target =

SUM (Targets[TARGET])

and then show the “Target” and “Total Sales” measure in a visual that includes the

SALESPERSON column from the SalesPeople table and the YEAR column. However,

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

305

from which table will we take the YEAR column, from the DateTable or from the Targets

table? It’s here that we meet the problem of how to get both the “Target” value and the

“Total Sales” value in the same visual against each year. We get different calculations

depending on which table the YEAR comes from, as shown in Figure 17-8.

Figure 17-8. Taking the YEAR column from either the DateTable or the Targets
table won’t work

If the YEAR column comes from the DateTable, the “Total Sales” measure is

correct but not the “Target” measure. If the YEAR column comes from the Target table,

the targets are correct but not the total sales. If we now consider our data model in

Figure 17-9, we can identify the problem.

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

306

Figure 17-9. Filtering YEAR in the DateTable filters the fact table, but filtering
YEAR in the Targets table does not filter any other tables

If we take YEAR from the DateTable, the YEAR filter is propagated to the Winesales

fact table filtering “Total Sales” for each year (shown by the tick), but this filter is not

propagated onward to the Targets table via the SalesPeople table (shown by the crosses)

to filter the targets in each year. If we take YEAR from the Targets table, this filters the

YEAR in the Targets table but won’t propagate to the Winesales table to filter sales

(shown by the crosses).

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

307

One solution would be to create a relationship between the YEAR field in the Targets

table and the YEAR field in the DateTable. If we do this, filtering the YEAR in the Targets

table would filter the YEAR in the DateTable, and this would propagate to the fact table.

The issue, however, is that in both the DateTable and the Targets table, values in

the YEAR column are duplicated, so if we attempt to make this relationship, we will

generate a many-to-many relationship prompting this warning message, as shown in

Figure 17-10.

Figure 17-10. You will get a warning if you attempt to create a many-to-many
relationship

We are told that such a relationship will have a “significantly different behavior”

and it should not be used unless you understand the consequences of your actions.

Be that as it may, this would resolve the problem because it would set a bidirectional

filter. However, now is the time to take on board the conclusions at which we arrived

in Chapter 13 regarding bidirectional filtering. Any changes to your data model that

push it further away from the star schema structure are never to be recommended.

Besides, there is another, much simpler approach, and that is to resolve the problem

using DAX and the TREATAS function. This function will take the result of a table

expression and use it to filter a column (or columns) from an unrelated table

and this filter expression can be used in the filter argument of CALCULATE.

TREATAS has the following syntax:

= TREATAS (table expression , column1, column2 etc.)

table expression is any expression that returns a table.

column1, column2 etc. is one or more existing columns that must match the

columns in the table expression that will receive the filter from the table expression.

We can now create this measure:

Target #2 =

CALCULATE (

 SUM (Targets[TARGET]),

 TREATAS (VALUES (DateTable[YEAR]), Targets[YEAR])

)

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

308

Notice the VALUES function used as a table expression to create a one-column table

(often with only one row) containing the YEAR value from the DateTable in the current

filter context, which is “2017” in the first evaluation. This one-row, one-column table is

used to filter the YEAR column in the Targets table to equal “2017” and this is the filter

used by CALCULATE. In Figure 17-11, you can see how this plays out in memory. The

virtual one-column, one-row table (or multirow table in the evaluation of the Total row)

containing the YEAR from the DateTable in the current filter context is used to filter the

YEAR column in the Targets table. It’s important therefore that we use the YEAR column

from the DateTable in the visual.

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

309

Figure 17-11. The evaluation of the TREATAS function

 1. The first argument in TREATAS uses the VALUES function to

create a virtual table containing the YEAR column from the

DateTable in the current filter context, for example, “2017”.

 2. The second argument in TREATAS defines the YEAR column in

the Targets table as the column to receive the filter from the virtual

table generated by VALUES.

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

310

When putting the “Target #2” measure into a table visual, alongside the YEAR

column from the DateTable, we get the result we’ve been looking for; see Figure 17-12.

Figure 17-12. Using TREATAS returns the correct result for the target value

In this chapter, you have learned to manage anomalies in the data model by

implementing virtual relationships using DAX. This is always a better strategy than

using bidirectional filtering and many-to-many relationships. Therefore, you need no

longer be daunted by the fact that you can’t create the recommended many-to-one

relationships in your model. Be aware, however, that virtual relationships using DAX are

never better than “real” many-to-one relationships and should only be used where no

other option is possible.

Chapter 17 Virtual relationships: the looKupValue and treatas FunCtions

311
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_18

CHAPTER 18

Table Expansion
In this chapter, you will learn how to reference expanded tables in your DAX code and

explore how this knowledge can help you manage the limitations imposed on you by the

structure of your tables within the star schema. The concept of table expansion is the

final piece in the jigsaw of understanding how DAX works.1 This implies there is some

precedence in the importance of DAX concepts. However, just as in a jigsaw, it’s only

when all the pieces have been fitted do you see the whole picture, and we can at last

reveal to you the truth about how DAX works, and any misconceptions you currently

hold can now be dispelled.

The starting point in understanding table expansion is to remind you of the DAX

verity; filters only propagate from the one side of a relationship to the many, unless

you use the CROSSFILTER function to programmatically change the filter direction.

Within this verity, you have also probably assumed, although it has never been stated

unequivocally, that relationships between tables use a “primary” and a “foreign” key

to perform a “lookup” from the dimension table to the fact table to enable filtering. For

example, a filter on the Wines dimension will use the WINE ID column in the Wines

table to “lookup” the same value in the WINE ID column of the Winesales table. This is

probably how you think filter propagation works. It’s not that this theory is wrong; it’s just

that it’s not complete, and it’s this misunderstanding that we will resolve in this chapter.

Before we move forward, however, we must take a closer look at the data model in

the companion file for this chapter, “6 DAX Expanded Tables.pbix”. You will notice there

is an additional table related to the Regions table called Region Group, and this table will

become important in the following sections; see Figure 18-1.

1 To follow along with the examples, use the Power BI Desktop file “6 DAX Expanded Tables.pbix”.

https://doi.org/10.1007/978-1-4842-8188-8_18

312

Figure 18-1. Please note there is an additional table, Region Group, in the data
model that is related to Regions

The importance of understanding table expansion lies in the fact that we can, at last,

explain to you how filters in a data model really work and not an approximation of how

they work. Armed with this knowledge, you will learn how to leverage table expansion

to resolve the inherent problem in the data model of how to “reach” dimension and

snowflake tables to perform aggregations at the larger grain. We will also be explaining

why using functions such as RELATED and CROSSFILTER that can do a similar job is not

always fit for purpose.

However, prior to tackling the challenging ideas behind table expansion, we must

first revisit the knowledge already gained regarding the context in which filters are

evaluated. If we do this, you will discover that there are some details behind filter

propagation that may currently be eluding you.

Chapter 18 table expansion

313

 Revisiting Filters
Despite rigorous explanations in this book, there remain some aspects of filters

generated by DAX that remain nonsensical. Consider these two questions:

 1. How is it possible that you can filter the fact table by using values

in dimensions that don’t exist in the fact table?

 2. How can the ALL function inside CALCULATE when it’s applied to

the fact table remove filters that aren’t placed on the fact table?

Let’s start by considering the first of these incongruities; we place filters on columns

in dimensions that don’t exist in the fact table. For this, we need to revisit what we

already know regarding column filters.

 Column Filters Revisited
Throughout this book, you have authored measures using CALCULATE similar to this:

Abel's Cases =

CALCULATE ([Total Cases], Salespeople[SALESPERSON] = "abel"

)

Did you ever stop to ask: How can this measure cross-filter the Winesales table

using the SALESPERSON column in the SalesPeople dimension, when Winesales only

contains the SALESPERSON ID? To answer this question, we must delve deeper into the

nature of column filters.

In Chapter 7, you learned that column filters are more efficient than table filters

and should always be used in preference where possible. However, at that stage in your

knowledge of DAX, we weren’t able to tell you the complete story of column filters and

therefore gave you only an approximation of how column filters work.

Now in this chapter, we do not hide anything from you and state this fact: in DAX,

all filters are table filters. This statement may come as a surprise to you considering that

we took such pains to distinguish between column filters and table filters in that earlier

chapter. Now we are saying that column filters are table filters too!

The complete explanation as to why column filters are more efficient than table

filters is not that you are placing a filter directly on a column, but that the virtual table

generated by a column filter is more efficient than the virtual table generated by an

Chapter 18 table expansion

314

explicit filter expression. This is quite a challenging concept, and so we must again dig

more deeply.

Let’s start by considering this measure that generates a filter on the SALESPERSON

column of the SalesPeople table:

Abel's Cases =

CALCULATE ([Total Cases], SalesPeople[SALESPERSON] = "abel")

In the evaluation of this measure, the DAX engine in memory converts this column

filter to this expression:

Abel's Cases Real =

CALCULATE (

 [Total Cases],

 FILTER (ALL (SalesPeople[SALESPERSON]),

 SalesPeople[SALESPERSON] = "abel")

)

If we look at this code, we can see that DAX, using the ALL function, generates a one-

column table comprising a distinct list of salespeople’s names. This table is then iterated

by FILTER to find the value that equates to “Abel”, and this filtered table is then used to

filter the Winesales table accordingly; see Figure 18-2.

Chapter 18 table expansion

315

Figure 18-2. The “real” evaluation of the “Abel’s Cases Real” measure

 1. The DAX engine uses FILTER to generate a one-column table

containing the distinct values in the SALESPERSON column.

FILTER iterates this table to filter “Abel”.

 2. The filtered virtual table generated by FILTER is used to filter the

Winesales table.

Let’s look at another example of a column filter by exploring the evaluation of this

measure:

Cases GT 350 =

CALCULATE ([Total Cases], Winesales[CASES SOLD] > 350)

DAX converts this filter to the following:

Cases GT 350 Real =

CALCULATE (

Chapter 18 table expansion

316

 [Total Cases],

 FILTER (ALL (Winesales[CASES SOLD]),

 Winesales[CASES SOLD] > 350)

)

This code generates a virtual table containing a distinct list of the cases sold values

in the Winesales table. In our data, this table will therefore contain 409 rows for FILTER

to iterate. We can see how this expression is always going to produce a more efficient

evaluation than using a table filter as in this measure:

Cases GT 350 =

CALCULATE (

 [Total Cases],

 FILTER (Winesales, Winesales[CASES SOLD] > 350)

)

Here, FILTER must iterate all the rows in the fact table, which will be 2,207 iterations

of our Winesales fact table (the fact table often contains millions of rows).

At this juncture, we can also revisit the “Sales for Red or French #1” measure that we

authored in Chapters 6 and 7:

Sales for Red or French #1=

CALCULATE (

 [Total Sales],

 Wines[TYPE] = "red"

 || Wines[WINE COUNTRY] = "France"

)

We noticed that the problem with this measure was that if there were filters on either

the TYPE or the WINECOUNTRY column, the filter didn’t work (refer to Figure 6-10). We

can, at last, explain why. It’s because DAX converts the measure internally to this:

Sales for Red or French #1=

CALCULATE (

 [Total Sales],

ALL (Wines[TYPE], Wines[WINE COUNTRY]),

FILTER(Wines,

 Wines[TYPE] = "red"

Chapter 18 table expansion

317

 || Wines[WINE COUNTRY] = "France"

)

)

Therefore, filters are always removed from the TYPE or WINECOUNTRY column

because of the presence of ALL.

Now that you understand that column filters are converted to table filters and that all

filters are table filters, we seem no further on in answering the question we posed before.

In the “Abel’s Cases Real” measure, we are filtering the SALESPERSON column in the

SalesPeople table, but the Winesales table only contains the SALESPERSON ID column,

so how can the filter propagate from the SalesPeople table to the Winesales table? We’ll

leave you hanging onto this thought while we explore the second example of nonsensical

filters. How can the ALL function applied to the fact table remove filters that aren’t

placed on the fact table?

 The ALL Function Revisited
In Figure 18-3, on the evaluation of the “Total Cases” measure, we know filters have been

placed on the WINE and SALESPERSON columns, propagating filters from the Wines

and the SalesPeople dimensions to the Winesales fact table, respectively. We’ve then

used the “All Winesales” measure to remove these filters:

All Winesales =

CALCULATE ([Total Cases], ALL (Winesales))

Chapter 18 table expansion

318

Figure 18-3. Filters have been placed on the WINE and SALESPERSON columns,
not on the fact table. The ALL function removes filters from the fact table

We learned in Chapter 8 that the ALL function, when nested inside CALCULATE,

removes filters. But there are no filters on the Winesales fact table to remove, only cross-

filters. The filters have been placed on columns in the dimensions, so how can ALL

remove filters from the Winesales table when there are no filters to remove?

 Expanded Tables Explained
To answer these probing questions and to truly grasp the behaviors of DAX filters,

you must understand table expansion. When a measure is evaluated, many-to-one

relationships allow table expansion to take place. Table expansion results in the creation

of virtual tables by the DAX engine that include the columns of the base table and then

expand into all the columns from related tables on the one side of the relationship. The

DAX engine then uses the expanded table to group by values in the expanded table’s

columns and apply filters accordingly. Therefore, every table has a matching expanded

version of itself that is generated in memory that contains all its own columns plus any

Chapter 18 table expansion

319

columns from tables that are related to it, which are on the one side of the relationship

either directly or indirectly. Relationships only exist to generate expanded tables.

Therefore, we can now talk about both base tables and expanded tables in our

data model. Base tables are just our tables. Expanded tables are our base tables that

also contain all the columns from tables that are related to them. In our model, for

example, we have three tables that will expand: Winesales, Customers, and Regions. The

Winesales expanded table will contain all the columns from all the tables in the model.

The Customers expanded table will include all the columns from the Regions dimension

and the Region Groups dimension. The Regions expanded table will include all the

columns from the Region Groups dimension. In Figure 18-4, we have redesigned our

data model to show what it might look like in memory on the evaluation of a measure.

Notice there are no relationships between the tables because relationships only exist to

generate expanded tables.

Chapter 18 table expansion

320

Figure 18-4. The Winesales, Customers, and Regions tables all expand on the
evaluation of measures

Once a filter is applied to a column, all the expanded tables containing that column

are also filtered. Consider Figure 18-5, which shows the virtual expanded tables and base

tables in Model view. We’re looking at what happens when we filter the SALESPERSON

column from the SalesPeople base table or the REGION GROUP column from the Region

Groups base table.

Chapter 18 table expansion

321

Figure 18-5. How tables are expanded in the data model

 1. Filtering SALESPERSON from the SalesPeople base table filters

the Winesales expanded table.

 2. Filtering REGION GROUP from the Region Groups base table

filters the Regions expanded table, the Customers expanded table,

and the Winesales expanded table.

So now we can answer the first of the questions we posed. How can a value in

the SALESPERSON column in the SalesPeople dimension filter the Winesales fact

table when that value doesn’t exist in the Winesales table? Now you understand that

it does exist in the Winesales table. It exists in the Winesales expanded table. When

we place a filter on the SALESPERSON column, both the SalesPeople base table and

the Winesales expanded table are filtered accordingly. Another example would be a

Chapter 18 table expansion

322

filter on the REGION GROUP column in the Region Groups base table. Notice that this

filters the REGION GROUP column in the Regions, the Customers, and the Winesales

expanded tables.

Relationships only exist to expand tables; they are not used to filter tables. Any

reference to a table in a DAX expression is always a reference to the expanded table,

where applicable.

Now let’s answer the second question. How can filters be removed from the

Winesales table when it has no direct filters on it? When we use ALL inside CALCULATE

to remove filters from a table, it removes filters from the expanded table, if applicable.

This includes any columns from dimensions related to the expanded table and therefore

includes columns where the filter was originally generated. So the expression “ALL (

Winesales)” will remove any filters from any of the base tables related to Winesales,

which includes the entire data model.

Understanding table expansion means we can now clarify certain behaviors in DAX

that we’ve explored but at the time have not been able to fully explain. For example, we

can now truly describe how the RELATED function works.

RELATED doesn’t “lookup” values in related tables but instead allows you to find

columns that already exist in the expanded table. When you use RELATED on the fact

table, for instance, you are shown all the columns from the expanded fact table in the

IntelliSense list; see Figure 18-6.

Figure 18-6. The RELATED function allows you to reference columns from
expanded tables

Chapter 18 table expansion

323

Like RELATED, the ALLEXCEPT and SUMMARIZE functions also allow you to use

the columns in expanded tables. When constructing an expression using these functions,

if you reference a fact table or a snowflake dimension, you are again presented with all

the columns from the expanded table in the IntelliSense list; see Figure 18-7.

Figure 18-7. SUMMARIZE will also reference expanded tables

You may be thinking that knowledge of table expansion is purely theoretical. It

explains certain behaviors regarding filter propagation but doesn’t lead you forward in

constructing more complex DAX expressions. Now is the time to change that perception

of table expansion and to learn how to put your knowledge of expanded tables to

beneficial use.

 Leveraging Expanded Tables
For the most part, the reason you will use table expansion in your expressions is to

“reach” dimensions to perform aggregations on columns within them. You may think

that we’ve already covered this scenario when we looked at the CROSSFILTER function

that enabled you to reverse the direction of filter propagation. The RELATED function

also allows you to pull values from dimensions and snowflake tables into the fact table

to enable such aggregations. However, both these approaches are not best practices for

reasons we will elucidate as you read on.

Chapter 18 table expansion

324

 “Reaching” Dimensions
Let’s see how table expansion can allow you to break free from the limitations imposed

on you by star and snowflake schemas. For this, as we’ve often done before, we’ll work

through a scenario.

You have been asked to calculate in how many different regions you’ve sold each

wine. The Regions table is a snowflake dimension. It is related to the Customers table

that’s in turn related to Winesales. Currently, the only way you can deduce in which

region a transaction was made is through the Customers table; see Figure 18-8.

Figure 18-8. The region in which a transaction was made can only be found
through the Customers table

Chapter 18 table expansion

325

You now know, however, that all the columns in the Regions table are in the

expanded Winesales table. Therefore, one approach would be to create a calculated

column in the Winesales base table using RELATED to find the REGION column from

the expanded Winesales table as shown in Figure 18-9.

Figure 18-9. You can use RELATED in the fact table to show the region name

You could then write the measure “Distinct Regions” using DISTINCTCOUNT on this

calculated column, as shown in the following:

Distinct Regions =

DISTINCTCOUNT (Winesales[REGION])

However, all that’s happening here is that you are accessing the REGION column in

the expanded Winesales table. You also know that calculated columns should be avoided

if possible. There is a better way to calculate the distinct number of regions, and that is

to use CALCULATE with a table filter that will filter the Regions table. To do this, we first

must remind ourselves how we construct the filter arguments in CALCULATE.

You’ve learned that the filter arguments inside CALCULATE can contain a table

expression. But the filter argument doesn’t have to be a table expression; it can just be a

reference to a table. If you reference a table in the filter argument of CALCULATE, this

will always be the expanded table, where applicable.

Chapter 18 table expansion

326

Returning to calculating the number of different regions in which you’ve sold your wines,

you can use the expanded Winesales table that contains the REGION column as the filter

for CALCULATE. If you do this, you can then use a measure to count the rows of the Regions

table that have been filtered via the Winesales expanded table. This would be the measure:

Distinct Regions =

CALCULATE (COUNTROWS (Regions), Winesales)

You must note the simplicity of this expression but the complexity of the concept that

lies behind it and also remember something we stated earlier; with DAX, the devil is in

the detail.

We can see the evaluation of this measure in Figure 18-10.

Figure 18-10. The evaluation of “Distinct Regions” using the expanded
Winesales table

The “Distinct Regions” measure uses the expanded Winesales table in the filter

argument of CALCULATE to filter the Regions base table. In the evaluation of this

measure, we know that the filter on the WINE column in the Wines table will filter

Chapter 18 table expansion

327

the WINE column in the expanded Winesales table. We also know that the expanded

Winesales table contains all the columns in the Regions table. Therefore, the regions

where we’ve sold each wine in the current filter context will also be filtered. The

expanded Winesales table, filtered for each wine in the current filter context, is used

to filter the Regions table accordingly. The Regions table now contains only regions

where the wine in the current filter context was sold and the rows of the filtered Regions

dimension are counted; see Figure 18-11.

Figure 18-11. Base tables and expanded tables used in filter propagation

 1. The WINE column in the Wines table filters the WINE column in

the expanded Winesales table.

 2. The expanded Winesales table contains all the columns in the

Regions table. The filter in the expanded Winesales fact table is

used to filter the Regions table whose rows are then counted.

Chapter 18 table expansion

328

What we can conclude from this measure is that with CALCULATE, you can use an

expanded table to filter a base table.

Let’s look at another example of using expanded tables in our code but this time to

author a more challenging calculation. We are going to repeat the scenario before, in

that you’ve been asked to find the number of different regions where you’ve sold wines,

but this time, you must consider only high-volume regions. You’ve identified that high-

volume regions are any regions where transactions of CASES SOLD are greater than 325.

To do this calculation, rather than using the entire expanded Winesales table as in the

“Distinct Regions” expression, you can use FILTER to filter the expanded Winesales table

(highlighted):

Distinct High Volume Regions=

CALCULATE (

 COUNTROWS (Regions),

 FILTER (Winesales, Winesales[CASES SOLD] >325)

)

When you put this measure into a Table visual, you will find that for “Bordeaux”,

there are 18 regions where there are transactions of CASES SOLD greater than 325 but

when selling “Grenache”, there are only 7 regions; see Figure 18-12.

Figure 18-12. The “Distinct High Volume Regions” measure evaluated in a
Table visual

If we examine the evaluation of the “Distinct High Volume Regions” measure, in

Figure 18-13, you can see that it varies from the “Distinct Regions” measure only in the

additional step where the Winesales base table is filtered. The measure filters the WINE

Chapter 18 table expansion

329

column in the Wines dimension and also filters the expanded Winesales table. The

FILTER function further filters the Winesales base table to rows where CASES SOLD is

greater than 325. The columns from the Regions table are in the expanded Winesales

table and so are also filtered. Counting the number of rows in the Regions table reflects

only the regions filtered in the expanded Winesales table.

Figure 18-13. Base tables and expanded tables used in filter propagation

 1. The WINE column filters the WINE column in the expanded

Winesales table.

 2. The CASES SOLD column in the Winesales base table is filtered

for greater than 325.

 3. The expanded Winesales table contains all the columns in the

Regions table. The filter in the expanded Winesales fact table is

used to filter the Regions table.

Chapter 18 table expansion

330

Knowledge of table expansion also helps to clarify a premise that we have explored

a number of times throughout this book, and that is the difference between table filters

and column filters. Now that we know that table filters will often involve expanded

tables, let’s take the measure we have just authored and compare it with another

measure that looks almost identical. However, one uses a table filter, using an expanded

table, and the other uses a column filter, as shown in the following:

Distinct High Volume Regions Table Filter =

CALCULATE (

 COUNTROWS (Regions),

 FILTER (Winesales, Winesales[CASES SOLD] > 325)

)

Distinct High Volume Regions Column Filter =

CALCULATE (

 COUNTROWS (Regions), Winesales[CASES SOLD] > 325)

You can see in Figure 18-14 that we get different values being returned by similar

measures. The reason for this is that the first measure filters the Winesales expanded

table and the second measure filters only the CASES SOLD column in the Winesales

base table.

Chapter 18 table expansion

331

Figure 18-14. Similar measures can return different results

The correct calculation, “Distinct High Volume Regions Table Filter”, uses the table

filter generated by the FILTER function that filters the expanded Winesales table, filtering

the CASES SOLD column. This also filters the regions in the expanded table, and this is

used to filter the Regions dimension. This measure then counts the rows in the Regions

base table that have been filtered by the Winesales expanded table; see Figure 18-13.

The measure “Distinct High Volume Regions Column Filter” generates a filter only

on the CASES SOLD column in the Winesales base table, and no filters are propagated in

the model. It, therefore, counts all the rows in the Regions table irrespective of any filters

in the Winesales table; see Figure 18-15.

Chapter 18 table expansion

332

Figure 18-15. Base tables and expanded tables used in filter propagation

 1. The WINE column is filtered in both the expanded and base

Wines table.

 2. Filtering a column in the Winesales base table does not propagate

filters to dimension tables.

The takeaway from these examples is that using an expanded table in the filter

argument of CALCULATE enables you to pass filters into dimension and snowflake

tables, in effect reversing the direction of filter propagation. This is because the

expanded table contains the columns from these dimensions that can then be grouped

and filtered. However, a question that must now be answered is the following: What

Chapter 18 table expansion

333

is the difference between using expanded tables and using CROSSFILTER. Isn’t the

end result of using these different methods the same? For instance, we can author this

expression using an expanded table:

Distinct Regions #1 =

CALCULATE (COUNTROWS (Regions), Winesales)

Or we can author this measure using CROSSFILTER that we might assume would

return the same result:

Distinct Regions #2 =

CALCULATE(COUNTROWS(Regions),

 CROSSFILTER(Winesales[CUSTOMER ID],

 Customers[CUSTOMER ID],both),

 CROSSFILTER(Customers[REGION ID],

 Regions[REGION ID],both))

Both these measures will “reach” the Regions table. Clearly, the second measure is a

great deal clumsier than the first, but is there a difference in the evaluation? The answer

is yes, there is, and we will now explain why.

 Table Expansion vs. CROSSFILTER
In Chapter 13, when we explored the CROSSFILTER function, we authored a measure

to sum the NO. OF STORES column in the Customers table to calculate the number

of stores in which we’d sold our wines. Just to remind you, the problem was that filters

don’t flow from the Wines dimension through to the Customers dimension so we

used the CROSSFILTER function to programmatically change the direction of the filter

propagation to a bidirectional filter:

Total Stores =

CALCULATE (

 SUM (Customers[NO. OF STORES]),

 CROSSFILTER (Winesales[CUSTOMER ID],

 Customers[CUSTOMER ID], BOTH)

)

Chapter 18 table expansion

334

However, we didn’t tell you at the time, and neither would you have noticed, but this

measure returns an incorrect value on the Total row; see Figure 18-16.

Figure 18-16. The “Total Stores” measure is not correct in the Total row

Many of the same customers will have bought each wine, so we know that the total of

1,181 will not be the sum of the total values for each wine. However, you might think this

value looks about right and so believe it. The value in the Total row should be the total

number of stores in which we’ve sold all our wines. This value is not correct because in

the Customers table, we have five customers to whom we’ve sold no wines. If we “show

items with no data” in a Table visual where we calculate the “Total Sales” measure, we

can see who they are; see Figure 18-17.

Chapter 18 table expansion

335

Figure 18-17. There are five customers that have no sales

The value of 1,181 shown in the Total row includes the stores for these customers.

We can see these values in the Customers table in the NO. OF STORES column; see

Figure 18-18.

Figure 18-18. Customers with no sales have values in the NO. OF STORES column

We haven’t sold any wine to these customers, so clearly their stores shouldn’t

be included in the total number of stores in which we’ve sold our wines. Our total is

out by 69.

What’s happening here is that the “Total Stores” measure uses a bidirectional filter.

When it arrives at the evaluation of the Total row, the filters are removed from the

WINE column of the Wines dimension, and therefore, there is no filter to propagate

Chapter 18 table expansion

336

to the Customers dimension. With no filters propagated, it sums all the values in the

NO. OF STORES column. In other words, bidirectional filters are only active if filters

are active.

So how do you calculate the correct value of 1,112 in the Total row?

What you must do here is use the expanded Winesales fact table as the filter for the

Customers table. This is because, unlike bidirectional filtering, filters from expanded

tables are always active. When the Total row is evaluated, the expanded Winesales fact

table contains only those customers who have bought wines, and so this will filter the

Customers dimension accordingly.

This is the measure that will give you the correct total:

Total Stores #2 =

CALCULATE (

 SUM (Customers[NO. OF STORES]),

 Winesales

)

You can now see in Figure 18-19 that the Total row now shows 1,112.

Figure 18-19. Using table expansion returns the correct value in the Total row

When working with DAX, not only must you have to have an eye for detail and a

suspicious mind, but you must also understand table expansion.

Chapter 18 table expansion

337

 Using Snowflake Schemas
Understanding table expansion also explains how we can have problems with

“snowflake”-type schemas. This is where there may be a chain of several tables all

related in one-to-many relationships through to the fact table. In our data model,

we’ve extended our Regions snowflake by adding another table, Region Groups, which

is related to Regions via the REGION GROUP ID. We can see in Figure 18-20 how

the Region Groups table is related to the Regions table through the REGION GROUP

ID, the Regions table is related to the Customers table through the REGION ID, and the

Customers table is related to Winesales through the CUSTOMER ID.

Figure 18-20. A snowflake schema comprising Region Groups, Regions, and
Customers

In Figure 18-21, we’ve filtered “South West” Region Group in a slicer and are

showing customers in that Region Group in the Table visual. We’ve attempted to

calculate the total sales for these customers (3,512,539) so that we can use this value

Chapter 18 table expansion

338

as a denominator to calculate the percentage each customer’s sales are of the total for

the “South West” region group. This is the measure we have authored using ALL on the

Customers table:

Total Sales for All Customers in Region Group wrong =

CALCULATE ([Total Sales], ALL (Customers))

As you can see in Figure 18-21, it does not return the correct result, which should

be $3,512,539. You will also notice that because we are removing all the filters from the

Customers table, the Table visual now shows all our customers, not just those in the

“South West” region group.

Figure 18-21. Calculation of the the total sales for all customers in the region
group is not correct

Chapter 18 table expansion

339

Let’s now explain why we get the wrong calculation. When we use ALL inside

CALCULATE to remove filters from a table, it removes filters from the expanded table, if

applicable. This measure, therefore, removes filters from the expanded Customers table

and so also removes filters from both the Regions table and the Region Groups table. It,

therefore, calculates a total for all region groups. The Region Groups table is at the end of

the snowflake of tables, so this is the same value as the grand total sales.

Figure 18-22 shows how removing filters from the expanded Customers table will

also remove filters from Regions and Region Groups.

Figure 18-22. Removing filters from the Customers expanded table removes filters
from Regions and Region Groups

To calculate the correct denominator, there are several ways to modify the original

measure to reapply the filter “lost” on the Customers table. We could, for example, use

ALLEXCEPT to remove the filter on the expanded Customers table except for the filter on

Chapter 18 table expansion

340

the REGION GROUP column (because REGION GROUP is contained in the Customers

expanded table):

Total Sales for All Customers in Region Group #1=

CALCULATE (

 [Total Sales],

 ALLEXCEPT (Customers, 'Region Groups'[REGION GROUP]))

Another approach is to use the filter currently on the Region Groups table that has

been generated by the slicer, which currently is “South West”. This measure will also give

us the denominator we require:

Total Sales for All Customers in Region Group #2 =

CALCULATE (

 [Total Sales],

 ALL (Customers),

 'Region Groups')

In the “Total Sales for All Customers in Region Group #2” measure, the ALL function

removes all the filters from the expanded Customers table, but by using Region Groups

as a table filter in the second filter argument in CALCULATE, this reapplies the “South

West” filter on the expanded Customers table and therefore also filters the Regions table

and the Region Groups table.

Note to remove the customers with no “total sales” value from the table visual,
use a visual-level filter, filtering “total sales” is not blank.

We now get the correct denominator; see Figure 18-23.

Chapter 18 table expansion

341

Figure 18-23. You need to reapply “lost” filters when removing filters from
expanded tables

It would also be possible to use this simpler measure using ALLSELECTED.

Total Sales for All Customers in Region Group #3 =

CALCULATE ([Total Sales], ALLSELECTED (Customers))

What you are seeing in these examples is the perennial problem with “snowflake”-

type schemas. Where you have a chain of tables in many-to-one relationships outward

from the fact table, when you remove filters from tables nearer the fact table by using

ALL inside CALCULATE, you will also remove all the filters up the chain.

In this chapter, we have delved into the final major concept that underpins DAX,

that of table expansion. You have learned that relationships in the data model only

serve to generate expanded tables and that filter propagation works by filtering columns

inside expanded tables, not by performing lookups from dimensions into the fact table.

Knowing about table expansion enables you to author expressions that can use the filter

currently placed on the expanded table and therefore pass filters back to dimension

tables, in effect reversing the direction of filter propagation.

Chapter 18 table expansion

342

You are now about to move on to the last chapter in this book. Congratulations on

getting this far! It hasn’t always been an easy journey, and some DAX expressions we

have investigated together would be demanding to any DAX user. However, you now

understand the four major concepts that underpin DAX:

• Evaluation context

• Iterators

• Context transition

• Table expansion

According to Alberto Ferrari in his blog “7 reasons DAX is not easy,” you are now a

DAX guru!2

However, regarding these concepts, Alberto goes on to say “The thing is: you need to

master them, not only have some basic knowledge of what they are. Moreover, these are

foundational concepts: they have nothing to do with specific functions.”

Let this be the best advice. On the completion of this book, you will not be at the

end of your journey through learning DAX, but only at the end of the beginning. You

must now assimilate your knowledge, work with it, and have the confidence to tackle

challenging calculations that will furnish you with the insights into your data that

truly inform.

However, you still have one chapter to go. In the next chapter, we will be taking

your expert knowledge of DAX to the next level. You will be learning the purpose of the

function CALCULATETABLE.

2 SQLBI.com. 7 reasons DAX is not easy, June 2020. [Online]. Available from www.sqlbi.com/
blog/alberto/2020/06/20/7-reasons-dax-is-not-easy/

Chapter 18 table expansion

http://sqlbi.com
http://www.sqlbi.com/blog/alberto/2020/06/20/7-reasons-dax-is-not-easy/
http://www.sqlbi.com/blog/alberto/2020/06/20/7-reasons-dax-is-not-easy/

343
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_19

CHAPTER 19

The CALCULATETABLE
Function
Now that you are officially a DAX expert, you are ready to confront DAX expressions that

will truly test your knowledge and understanding of DAX. One of the DAX functions that

can only be understood with a clear grasp of how DAX works is CALCULATETABLE, and

this rather obscure function is the last function we will investigate in this book.

CALCULATETABLE operates in all the same ways as CALCULATE except that it

returns a table rather than a scalar value. In other words, it returns a table or table

expression where the filter on the table has been modified in some way. On the face of

it, therefore, CALCULATETABLE should be straightforward to understand. However,

because it returns a table, the question that is often asked is the following: How would

it be used inside measures? The reason we’ve left this function till last is because inside

measures, it becomes particularly useful when used in conjunction with expanded

tables.1

The syntax for CALCULATETABLE is

= CALCULATETABLE (table or table expression, filter1, filter2 etc.)
where:

table or table expression is the table you want to be returned by CALCULATETABLE.

filter1, 2 etc. provides the filter for the table returned by table.

You may think that this function seems remarkably similar to the FILTER function,

and indeed, you can often use CALCULATETABLE in place of FILTER.

1 To follow along with the examples, use the Power BI Desktop file “6 DAX Expanded Tables.pbix”.

https://doi.org/10.1007/978-1-4842-8188-8_19

344

 CALCULATETABLE vs. FILTER
However, CALCULATETABLE, unlike FILTER, modifies the filter context, and this is the

first behavior of this function that we will explore. Let’s compare these two measures:

Sales of Red Wines Filter =

 CALCULATE ([Total Sales],

 FILTER (Wines, Wines[TYPE] = "red")

)

Sales of Red Wines CalculateTable =

CALCULATE ([Total Sales],

 CALCULATETABLE (Wines, Wines[TYPE] = "red")

)

Both these expressions are building a table filter for CALCULATE. The first uses

FILTER to build the table containing red wines, and the second uses CALCULATE

to build a similar table. These two measures return the same values. However,

CALCULATETABLE will modify the filter context. Therefore, if the TYPE column

from the Wines dimension is providing the filter context, it will replace the filter on

TYPE. Therefore, if “White” is the filter, it will be replaced with “Red”. FILTER can only

filter what’s already in the filter context and so returns no value if “White” is the current

filter; see Figure 19-1.

Figure 19-1. CALCULATETABLE will modify the filter context, but FILTER can
only filter within the current filter context

Chapter 19 the CaLCULatetaBLe FUnCtion

345

The CALCULATETABLE function, therefore, becomes useful when you must

generate an in-memory table where the filter context must be modified. In reality,

FILTER and CALCULATETABLE are very different functions even if their output is

sometimes the same. The former creates a virtual table by iterating another table within

the current filter context. The latter also generates a virtual table but uses a new filter

context to build the virtual table.

To illustrate this, let’s build a measure named “Current No. of Sales” that will

calculate the number of sales generated in each region up to the end of the prior month,

the year and month being selected in a slicer; see Figure 19-2.

Figure 19-2. Calculating the number of sales up to the end of the prior month

Chapter 19 the CaLCULatetaBLe FUnCtion

346

There are three steps to this calculation:

 1. First, we must filter the DateTable for all the dates up to the end of

the prior month selected in the slicer e.g., up to but not including

the 1st May 2021.

 2. The filtered DateTable can then be used to filter the Winesales

table to contain only the sales up to the end of the prior month.

 3. We can then use COUNTROWS to count how many sales there are

in the filtered Winesales table.

The question will be the following: Which filter function are we going to use for

step 2 that will generate the DateTable that will filter the Winesales table for the dates

we need? Are we going to use FILTER or CALCULATETABLE? We’ve constructed two

versions of the measure, the first using CALCULATETABLE and the second using FILTER

(highlighted) where we will then have a second inner FILTER function:

Current No. of Sales CalculateTable =

COUNTROWS (

 CALCULATETABLE (

 Winesales,

 FILTER (ALL (DateTable), DateTable[DATEKEY] < MIN (

DateTable[DATEKEY]))

)

)

Current No. of Sales Filter =

COUNTROWS (

 FILTER (

 Winesales,

 FILTER (ALL (DateTable), DateTable[DATEKEY] < MIN (

DateTable[DATEKEY]))

)

)

Chapter 19 the CaLCULatetaBLe FUnCtion

347

The measure using CALCULATETABLE would be the correct measure because if you

attempt to use the measure using FILTER, you get an error, as shown in Figure 19-3.

Figure 19-3. Using FILTER to filter the DateTable returns an error

If we consider that these functions are interchangeable, why does

CALCULATETABLE work, but FILTER does not? To understand the error when using

FILTER, we must look more closely at what the inner FILTER expression is generating

in memory.

 1. The inner FILTER iterates over the DateTable to find all dates up to

the end of the prior month.

 2. The inner FILTER creates a new virtual DateTable containing just

these dates.

 3. The outer FILTER then uses the virtual DateTable to filter the rows

of the Winesales table, iterating each row in the Winesales table

accordingly.

What is the criterion by which each row in the Winesales table will be filtered in

step 3? You can’t filter a row by values in an entire table, and so we get this error:

“The expression refers to multiple columns. Multiple columns cannot be converted to a

scalar value.”

Chapter 19 the CaLCULatetaBLe FUnCtion

348

The table generated by FILTER is the “multiple columns” alluded to in the error

message, and it tells us that if using FILTER, we can only return scalar values for the

criterion to filter rows. It’s not possible to use a table expression in the filter expression of

FILTER, only predicates.

How does the CALCULATETABLE measure differ? In the correct measure:

 1. The inner FILTER iterates over the DateTable to find all dates up to

the end of the prior month.

 2. The inner FILTER then generates a virtual DateTable containing

just these dates.

 3. CALCULATETABLE generates a virtual Winesales table that can

be filtered by the virtual DateTable generated by FILTER. This is

simply a table filter and therefore is used in the same way as any

table filter that would normally be placed inside CALCULATE.

In other words, the virtual table generated by FILTER provides the new filter context

for CALCULATETABLE by which the virtual Winesales table can be filtered. The rows of

the virtual Winesales table can then be counted.

At this stage of exploring CALCULATETABLE, hopefully, you have worked out

that if you want to calculate the “Current No. of Sales”, the following measure, using

CALCULATE, would be much simpler to write and not return an error:

Current No. of Sales =

CALCULATE (

 COUNTROWS (Winesales),

 FILTER (ALL (DateTable), DateTable[DATEKEY]

 < MIN (DateTable[DATEKEY])))

However, we are exploring the difference between CALCULATETABLE and FILTER,

and this measure does not illustrate this. But more than this, make a mental note of the

expression using CALCULATETABLE as it will be a “building block” in more complex

expressions that follow later in this chapter. Here is the expression again that calculates

how many sales in each region there have been up to the end of the prior month:

Current No. of Sales CalculateTable =

COUNTROWS (

 CALCULATETABLE (

Chapter 19 the CaLCULatetaBLe FUnCtion

349

 Winesales,

 FILTER (ALL (DateTable), DateTable[DATEKEY] < MIN (

DateTable[DATEKEY]))

)

)

Specifically, we will be using this expression as a constituent part of the calculations

for “New Regions” and “Returning Regions” later.

We’ve established that CALCULATETABLE will modify the filter context when

generating a virtual table, but we haven’t yet found a useful application for this function.

Where CALCULATETABLE really comes into its own is when you reference an expanded

table in this function’s filter argument so that it can then be used as a table filter.

 CALCULATETABLE and Table Expansion
Just as with CALCULATE, you can use expanded tables as filter expressions to modify the

filter context inside CALCULATETABLE. So, for instance, the following table expression

=CALCULATETABLE (Regions, Winesales)

will return a virtual Regions table containing only the rows of this table that are in the

current filter in the expanded Winesales table. If we count the rows of the Regions table

generated by CALCULATETABLE, this would be an alternative way of finding how many

distinct regions we have sales within the current filter context. So these two measures,

both using the expanded Winesales table, return the same values:

Distinct Regions #1 =

CALCULATE (

 COUNTROWS (Regions), Winesales)

Distinct Regions #2=

 COUNTROWS (

 CALCULATETABLE (Regions, Winesales)

By understanding that a table filter inside CALCULATETABLE will use an expanded table

where applicable, we can now use this knowledge to resolve more challenging calculations.

One of these more challenging calculations is finding “new” and/or “returning” entities, such

as new and returning customers or new and returning sales regions.

Chapter 19 the CaLCULatetaBLe FUnCtion

350

 Calculating “New” Entities
Typically, this would involve discovering how many new customers or new sales regions

there are within a specific month, quarter, or year, perhaps further refined by considering

only sales for a specific salesperson.

For example, you have been asked to show in how many new regions your

salespeople have made sales in any given month. You do this by using the following

“New Regions” measure that uses CALCULATETABLE:

New Regions =

VAR CurrentRegions =

 CALCULATETABLE (Regions, Winesales)

VAR PreviousRegions =

 CALCULATETABLE (

 Regions,

 CALCULATETABLE (Winesales,

 FILTER (ALL (DateTable), DateTable[DATEKEY]

 < MIN (DateTable[DATEKEY]))))

RETURN

 COUNTROWS (EXCEPT (CurrentRegions, PreviousRegions))

You can see the result of this measure in the Table visual in Figure 19-4.

Note You could substitute “Customers” for “regions” if you want to find new
customers.

Chapter 19 the CaLCULatetaBLe FUnCtion

351

Figure 19-4. Calculating the number of new regions for each salesperson in
each month

We can appreciate that the “New Regions” measure is quite a challenge to

understand, so let’s separate the three component expressions within the measure as

follows:

 1. The “CurrentRegions” variable

 2. The “PreviousRegions variable

 3. The Return statement

By taking the measure apart, piece by piece like this, we can now explain each

component.

 1. The “CurrentRegions” variable

This variable uses this expression:

CALCULATETABLE (Regions, Winesales)

Here, CALCULATETABLE uses the expanded Winesales table as

the filter for Regions, therefore generating a Regions table that

contains only the regions in which the salesperson (in the current

Chapter 19 the CaLCULatetaBLe FUnCtion

352

filter context) has made sales in the current month (the month in

the current filter context). Let’s take the evaluation for salesperson

“Abel” in “February 2017”, which returns 2, as our example; see

Figure 19-5.

Figure 19-5. The evaluation of the “CurrentRegions” variable for “Abel” in
“February 2017”. 1. The expanded Winesales table contains columns from the
Regions table. 2. The Winesales table is filtered for “Abel”. 3. The Winesales table
is filtered for “February 2017”. 4. The expanded Winesales table is used to filter
the Regions table that now only contains regions where “Abel” has made sales in
“February 2017.” 5. CALCULATETABLE generates a virtual table from the filtered
Regions table

Chapter 19 the CaLCULatetaBLe FUnCtion

353

Let’s now move on to look at the second component.

 2. The “PreviousRegions” variable

This variable uses this expression:

CALCULATETABLE (Regions,

 CALCULATETABLE (Winesales,

 FILTER (ALL (DateTable), DateTable[DATEKEY]

 < MIN (DateTable[DATEKEY]))))

Remember that we used the nested CALCULATETABLE

expression (highlighted) when we calculated the “Current No. of

Sales” measure (see Figure 19-2).

Here, CALCULATETABLE also uses the expanded Winesales table

as the filter for Regions, but this time the expanded Winesales

table has been filtered (using FILTER) to contain only sales up to

the last date of the prior month. This filter is applied on top of the

filters from the SalesPeople table. CALCULATETABLE uses the

filtered expanded Winesales table to generate a Regions table that

contains the regions in which the salesperson has made sales up

to the end of the prior month; see Figure 19-6.

Chapter 19 the CaLCULatetaBLe FUnCtion

354

Figure 19-6. The evaluation of the “PreviousRegions” variable for “Abel” in
“February 2017”. 1. The expanded Winesales table contains columns from the
Regions table. 2. The Winesales table is filtered for “Abel”. 3. FILTER inside
CALCULATETABLE generates a filtered DateTable containing dates up to and
including “31 January 2017”. 4. The DateTable table generated by FILTER is used
to filter the expanded Winesales table. 5. The expanded Winesales table is used to
filter the Regions table that now only contains regions where “Abel” has made sales
up to “31 January 2017”. 6. CALCULATETABLE generates a virtual table from the
filtered Regions table

Chapter 19 the CaLCULatetaBLe FUnCtion

355

So the variables have generated two in-memory tables using

CALCULATETABLE as follows:

CurrentRegions – Holds the regions in which the salesperson has

made sales in the month in the current filter context

PreviousRegions – Holds the regions in which the salesperson

has made sales up to the last date of the prior month in the current

filter context

 3. The RETURN statement

The RETURN statement uses the EXCEPT function to return a

table that contains only the rows of the table in the first argument

that are not in the table of the second argument; see Figure 19-7.

Figure 19-7. The EXCEPT function returns all the rows in the first table that are
not in the second table

COUNTROWS then counts the rows in the virtual table generated by EXCEPT and

returns 2 rows for “Abel” in “February 2017”.

Chapter 19 the CaLCULatetaBLe FUnCtion

356

 Calculating “Returning” Entities
To find “Returning Regions”, which is the regions where salespeople have previously

made sales in any month, we can use the function INTERSECT in place of EXCEPT as

follows:

Returning Regions =

VAR CurrentRegions =

 CALCULATETABLE (Regions, Winesales)

VAR PreviousRegions =

 CALCULATETABLE (

 Regions,

 CALCULATETABLE (Winesales,

 FILTER (ALL (DateTable), DateTable[DATEKEY]

 < MIN (DateTable[DATEKEY]))))

RETURN

 COUNTROWS (INTERSECT (CurrentRegions, PreviousRegions))

The table generated by INTERSECT contains all the rows in the first table that are

also in the second table.

You can see the output of the two measures in Figure 19-8. Note how the Total row

has been removed from the Table visual. The Total values calculated (or the absence

of a value) are correct, but ambiguous. Remember that on the evaluation of the Total

row, filters on YEAR, MONTH, and SALESPERSON will have been removed so the “New

Regions” measure, for example, would calculate how many new regions there were for all

salespeople in all months of all years, which is the same as the total number of regions.

Chapter 19 the CaLCULatetaBLe FUnCtion

357

Figure 19-8. The “New Regions” and “Returning Regions” measures in a Table
visual. Note the absence of the Total row

What lies at the root of these expressions is using CALCULATETABLE to create two

sets of data for comparisons. You can then use EXCEPT and INTERSECT to find either

values that are the same or values that are different respectively; see Figure 19-9.

Chapter 19 the CaLCULatetaBLe FUnCtion

358

Figure 19-9. You can use the INTERSECT and EXCEPT functions to return sets
of values

The benefit of understanding these expressions using CALCULATETABLE is that

they can be repurposed for many different scenarios. For example, rather than finding

new regions in the current month for each salesperson, you could analyze the number of

new customers there are for each wine compared to the previous month, as follows:

New Customers from Previous Month =

VAR CurrentCustomers =

 CALCULATETABLE (Customers, Winesales)

VAR PreviousMthsCustomers =

 CALCULATETABLE (

 Customers,

 CALCULATETABLE (Winesales,

 PREVIOUSMONTH(DateTable[DATEKEY])))

RETURN

 COUNTROWS (EXCEPT (CurrentCustomers, PreviousMthsCustomers))

This measure tells us that for “Bordeaux” wine, in “December 2021”, there were

4 new customers compared to the customers in “November 2021”; see Figure 19-10.

Again, note the evaluation of the Total row, which, although not summing the values for

each wine, is correct because it tells us that there were 13 new customers for all wines in

“December 2021” compared to the previous month. Renaming the Total may make this

value less ambiguous.

Chapter 19 the CaLCULatetaBLe FUnCtion

359

Figure 19-10. The evaluation of the “New Customers from Previous Month”
measure, repurposing the “New Regions” measure

I think you’ll agree that the DAX expressions you’ve authored in this chapter using

CALCULATETABLE and expanded tables bear no comparison in their complexity to the

simple measures using SUM and AVERAGE with which you started out. Throughout this

book, we’ve paid particular attention to how the DAX expressions work, understanding

the detail beneath and getting to grips with the difficult concepts that underpin the DAX

language.

Now all that remains is for you to put your newfound knowledge to good use. Spend

your day finding data to analyze using DAX. Don’t give up if at first things don’t go

your way. Persevere and keep with it. There is no silver bullet; everyone who has ever

mastered DAX has worked hard to get where they are.

But nothing replaces that glowing feeling of finding a solution to a calculation that

you initially thought was impossible to solve.

Happy DAXing!

Chapter 19 the CaLCULatetaBLe FUnCtion

361
© Alison Box 2022
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8

Index

A
Active/inactive relationships

comparison dimension
data table, 224
edit relationship dialog, 222, 223
fact table, 222
measures, 225
slicers, 221, 223
USERELATIONSHIP function, 226
wines dimension, 224

DateTable filters, 219
measures, 218
table relationship, 218
USERELATIONSHIP function, 219

ALLEXCEPT function, 127, 128
ALL function

aggregating totals, 259–265
table expansion, 318

ALL function/variations
ALLEXCEPT function, 127, 128
ALLSELECTED function, 129–131
CALCULATE, 115, 133–143
calculating percentages, 123
data modifier, 110
description, 109
dimensions, 113
dimension table, 117–119
fact tables, 111–117
grand total cases, 116
multiple columns, 126
SUPPLIER column, 120–126
syntaxes, 110

tables/remove filters, 111
TYPE column, 125

ALLSELECTED function, 129–131

B
Bidirectional relationships, 214
BLANK() function, 165–167

C
Calculated columns

AND (&), 25
context transition, 293–296
Excel formulas, 23
expression, 24
fields list, 24
OR (||), 25
RELATED function (see RELATED

function)
CALCULATE function, 71, 133

AND/OR filters, 79–81
complex filters, 81–84
DateTable dimension, 71–73
details, 136
DIVIDE function, 77
error message, 82
evaluation, 137, 138, 140
expressions, 134
FILTER function, 139
filters, 74, 75
in-memory virtual tables, 84
measures, 80

https://doi.org/10.1007/978-1-4842-8188-8

362

modification, 136
multiple filter, 78
OR expression, 83
return different results, 132
similar expressions, 135
single filters, 77, 78
square bracket, 76
SUPPLIER column, 131
syntax, 75
table function, 132
total cases, 73, 74
virtual table, 84
WINE column, 133
Wines dimension, 132

CALCULATETABLE function
FILTER function

calculation, 346
DateTable returns, 347
error message, 348
expression, 347
filter context, 344
modification, 344
virtual table, 345

syntax, 343
table expansion

component expressions, 351, 353
entities, 350–355
evaluation, 352, 354, 355
EXCEPT function, 355
expression, 349
INTERSECT/EXCEPT

expressions, 356–359
COALESCE function, 171, 172
CONCATENATEX function

arguments, 190
COUNTROWS function, 193
multiple selections, 192

parameter tables, 195–198
problem scenarios, 192, 193
SELECTEDVALUE function, 195
TOPN expression, 194
value returns, 190
VALUES function, 194
WINE column, 191

Constants, 178–181
Context transition

aggregated values, 227
aggregating totals

ALL function, 259–265
dimensions, 252–258
matrix visuals, 262
row-level calculation, 253
SUMMARIZE function, 265–270
virtual tables, 259

attributes, 229, 230
calculated columns, 231, 234,

277, 278, 293
CUMULATIVE TOTAL, 294
cumulative totals, 293
DAYS DIFFERENCE, 295
FILTER function, 293
RETURN statement, 295
row context, 294

CALCULATE function, 232
data analysis, 271
definition, 229
description, 227
expressions, 228, 230, 234
filter context, 229
numeric ranges, 275–279
parameter table, 277
RANKX function, 272–275
row context, 228
SUMMARIZE, 285–292
surprising results

CALCULATE function (cont.)

INDEX

363

AVERAGE function, 238–242
calculated columns, 237
cumulative totals, 243
MAX function, 242–247
measures, 247–251
SUMX expression, 249
total cases, 251

TopN percent
analysis, 280
dynamic ranking, 285
parameter tables, 281
requirements, 279
row selection, 283, 284
slicers, 280
top/bottom percent

selection, 280, 281
Wines dimension, 235, 236

COUNTROWS function, 278
CROSSFILTER function, 212, 213, 216, 311

table expansion, 333–336
Current filter context, 183

D
Data analysis expression (DAX)

concepts, 1
data model, 3
expression, 1
formula bar, 16
functions, 86–88
many-to-one relationships, 3
table tools tab, 15

Denormalization, 28

E
Empty values vs. Zero, 165

BLANK() function, 165–167
COALESCE function, 171, 172

ISBLANK function, 168
measures, 169, 170
testing, 169, 170

Excel formulas, calculated
columns, 23

F, G
Filter context

evaluation, 47
factors, 48
fact table, 50
in-memory dimension, 49
measures, 47
multiple filters, 53–56

fact table, 55
in-memory tables, 54
propagation, 54
roles, 56
slicer/page-level filter, 53

propagation, 50
total row, 52
WINE column, 51

FILTER function, 278
CALCULATE

AVERAGE/MAX, 99
calculation, 93
error messages, 97
incorrect results, 92
iterators, 94
measure, 92
profit wines, 97
propagate filters, 94
requirement, 91
requirements, 97
scenario, 96
source code, 98
step-by-step guide, 93, 95

INDEX

364

COUNTROWS, 90
row expression, 90, 91
syntax, 89

Filter propagation
bidirectional filters, 210–213
cross filter, 214–216
CROSSFILTER function, 210, 212
customers table, 210
fact tables, 209
model view, 209

Formatting/unformatting expression, 19, 20

H
HASONEVALUE function, 274

I, J
Implicit measures, 32–34
ISBLANK function, 168
Iterators, 59

aggregating iterators, 59
SUMX function (see SUMX function)
total row

constituent expressions, 68
evaluation, 68
incorrect result, 66, 68
SUM function, 69

K
KEEPFILTERS function, 108

L
LOOKUPVALUE function

approaches, 301
calculated column, 300, 301
definition, 302

many-to-one relationship, 299
syntax, 300
table records, 298
transaction records, 299

M
Measures, 32

benefits, 38
CALCULATE function, 80
COUNTROWS function, 38
definition, 41, 42
dimensions, 38, 39
DISTINCTCOUNT function, 39, 40
editor, 36
error message, 45
Excel pivot table, 44
explicit measure, 34
filtered data, 41
formatting group, 37
implicit measure, 32–34
reporting tools, 42
return scalar values, 42–46
table creation, 35
visuals, 42
visual table, 36, 37

N, O
Non matching values

blank entry, 12, 13
linking columns, 8, 9
scenarios, 7
visualisations pane, 9, 10
Wines dimension, 11

P, Q
Power BI Desktop, 2

FILTER function (cont.)

INDEX

365

R
RANKX function, 272–275
RELATED function, 26

advantages, 28
CUSTOMER ID, 26
denormalization, 28
description, 28
hiding tables, 29
regions table, 27, 28
Sales revenue values, 30–33
VLOOKUP function, 27
Winesales table, 26

Row context, 56, 57

S
SELECTEDVALUE function, 276, 281

current filter, 188, 189
evaluation, 185
expression, 187
multiple items, 187
parameter table, 184
results, 188
slicer filters, 186
syntax, 184
user selections, 186
VALUES function, 204

Start/snowflakes
data model, 4
dimensions, 5
fact tables, 4
inactive relationship, 7
star schema, 5

SUMMARIZE function
calculation steps, 287
context transition

ALLEXEPT function, 269
analytics, 268

calculated column, 269
calculated tables, 266
DateTable, 266
description, 265
measures, 270
syntax, 265
table creation, 267

like/like sales calculation, 287
matrix visual, 289, 292
measure returns, 290
multiselection, 286
virtual table, 288

SUMX function
average price, 66
calculated column, 61, 62
implicit measure, 62
maximum/average sales, 64
RELATED function, 63
row-level calculation, 60
SUMX, AVERAGEX, and

MAXX, 65
syntax, 61
X aggregators, 61

Syntax
AND/OR expression, 19
column name, 17
Excel formulas, 16
Excel formulas/DAX expressions, 18
formula bar, 16
IntelliSense list, 17

T
Table expansion

ALLEXCEPT/SUMMARIZE
functions, 323

ALL function, 318, 319
ALLSELECTED, 341

INDEX

366

base tables, 319
CROSSFILTER function, 333–336
data model, 312, 320, 321
description, 311
expanded tables, 319, 320
expansion results, 318–323
filters

code generation, 316
column information, 313–317
description, 313
real evaluation, 315
WINECOUNTRY column, 316

leverage tables
approaches, 323
base/expanded tables, 327, 329, 332
CALCULATE, 325, 326
CROSSFILTER function, 333
customers table, 324
distinct regions, 326
measures, 331
RELATED function, 325
snowflake dimensions, 324
table visuals, 328

RELATED function, 322
removes filters, 339
snowflake schemas, 337–342

Table functions
column filters

Bordeaux, 107
CALCULATE, 106
description, 99
difference, 100
difference results, 106
less efficient, 100–104
measures return, 101
table filters, 104–108
technical terms, 104

FILTER (see FILTER function)
KEEPFILTERS, 108
scalar functions, 87
table expressions

CALCULATE, 89
calculated tables, 87, 88
filter arguments, 89
VALUES, 88

types, 86–88
Tables, see Active/inactive relationships
Time intelligence functions

annual totals and averages, 156–158
base date, 149, 150
consecutive transactions, 160
cumulative totals, 155, 156
DATEADD, 154
date dimension

built-in option, 145
column option, 149
DATEKEY column, 147
hierarchies, 144–146
options pane, 145
table creation, 146–149
table tools tab, 147

DATESINPERIOD function, 157
DATESYTD function, 154
description, 143
differences (dates), 162, 163
FIRSTNONBLANK/LASTNONBLANK

functions, 158–161
LASTDATE option, 152
LASTNONBLANK/

LASTNONBLANKVALUE
expressions, 161

PREVIOUSMONTH/YEAR, 153
return value, 151
SAMEPERIODLASTYEAR, 153
scalar value, 152

Table expansion (cont.)

INDEX

367

unique dates, 150
VALUES function, 158

TREATAS function
DateTable/Targets table, 305
evaluation, 309
fact table, 306
many-to-many relationship, 307
reporting targets, 303
results, 310
SalesPeople table, 304
syntax, 307
targets table, 302, 303
VALUES function, 308

U
USERELATIONSHIP function, 219

V, W, X, Y, Z
VALUES function

converting columns, 207, 208
edit interactions, 205

error message, 202
lost filters, 205–207
references, 199
requirements, 199
scalar function, 201
table function/

virtual table, 199
table/scalar function, 200–204
total row selection, 202

Variables
advantages, 173
calculated columns, 174
constants, 178–181
declarations, 174
nested measures/

expressions, 176
performance, 174–176
readability, 176, 177
reduce complexity, 177, 178
VAR/RETURN keywords, 173

Virtual relationships, 297
VLOOKUP function, 298

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Show Me the Data
	Stars and Snowflakes
	Fact Tables
	Dimensions
	The Star Schema

	Finding Nonmatching Values

	Chapter 2: DAX Objects, Syntax, and Formatting
	DAX Syntax
	DAX Formatting

	Chapter 3: Calculated Columns and Measures
	Calculated Columns
	Creating Simple Calculated Columns
	Looking at the RELATED Function

	DAX Measures
	Implicit Measures
	Explicit Measures
	Creating a Measures Table
	Creating Simple DAX Measures
	What Exactly Is a Measure?
	All Report Visuals Use Measures
	Measures Return Scalar Values

	Chapter 4: Evaluation Context
	The Filter Context
	Evaluations Using a Single Filter
	Calculation in the Total Row
	Evaluations Using Multiple Filters

	The Row Context

	Chapter 5: Iterators
	The SUMX Function (and Other “X” Functions)
	Total Row Grief

	Chapter 6: The CALCULATE Function
	Why You Need CALCULATE
	Using Single Filters
	Using Multiple Filters
	AND and OR Filters
	Complex Filters

	Chapter 7: DAX Table Functions
	Types of DAX Functions
	Table Functions
	Examples of Table Expressions
	Why Do We Need Table Expressions?

	The FILTER Function
	FILTER Used to Reduce Rows
	FILTER as the Filter Argument of CALCULATE

	Column Filters vs. Table Filters
	Table Filters Are Less Efficient
	Table Filters Return Different Results
	Using the KEEPFILTERS Function

	Chapter 8: The ALL Function and All Its Variations
	The ALL Function
	Applied to the Fact Table
	Using ALL on Dimension Tables
	Using ALL on a Column

	The ALLEXCEPT Function
	The ALLSELECTED Function
	ALL as a Modifier to CALCULATE

	Chapter 9: Calculations on Dates: Using DAX Time Intelligence
	Power BI Date Hierarchies
	Creating a Date Table
	Using Time Intelligence Functions
	Previous Month/Year – PREVIOUSMONTH/YEAR
	Same Period Last Year – SAMEPERIODLASTYEAR
	Values for Any Time Ago – DATEADD
	Year to Date – DATESYTD
	Total to Date or Cumulative Totals
	Rolling Annual Totals and Averages
	Calculating the Last Transaction Date and the Last Transaction Value
	Finding the Difference Between Two Dates

	Chapter 10: Empty Values vs. Zero
	The BLANK() Function
	The ISBLANK Function
	Testing for Zero
	Using Measures to Find Blanks and Zero
	Using the COALESCE Function

	Chapter 11: Using Variables: Making Our Code More Readable
	Improved Performance
	Improved Readability
	Reduced Complexity
	Variables As Constants

	Chapter 12: Returning Values in the Current Filter
	The SELECTEDVALUE Function
	The CONCATENATEX Function
	Using Parameter Tables
	The Values Function
	A Table or a Scalar Function?
	Replacing “Lost Filters”
	Converting Columns to Tables

	Chapter 13: Controlling the Direction of Filter Propagation
	Programming Bidirectional Filters
	Why You Should Never Use Bidirectional Relationships

	Chapter 14: Working with Multiple Relationships Between Tables
	Activating Inactive Relationships
	Comparing Values in the Same Column

	Chapter 15: Understanding Context Transition
	Overview of DAX Evaluations Contexts
	Row Context Revisited
	Filter Context Revisited

	How Row Context Becomes Filter Context
	How Context Transition Can Return “Surprising Results”
	Filters Using AVERAGE
	Filters Using MAX
	Filters Using Measures

	Aggregating Totals Using Context Transition
	Aggregating in Dimensions
	Aggregating in Virtual Tables
	Using ALL to Group Columns in the Same Table
	Using SUMMARIZE to Group Columns from Related Tables

	Chapter 16: Leveraging Context Transition
	Ranking Data: Looking at RANKX
	Binning Measures into Numeric Ranges
	Calculating TopN Percent
	Create the Slicers
	Create the Measure to Find the Top or Bottom Percent Selected in Slicers

	Calculating “Like for Like” Yearly Sales Using SUMMARIZE
	Using Context Transition in Calculated Columns
	Calculating Running Totals
	Calculating the Difference from the Value in the Previous Row

	Chapter 17: Virtual Relationships: The LOOKUPVALUE and TREATAS Functions
	LOOKUPVALUE Function
	The TREATAS Function

	Chapter 18: Table Expansion
	Revisiting Filters
	Column Filters Revisited
	The ALL Function Revisited

	Expanded Tables Explained
	Leveraging Expanded Tables
	“Reaching” Dimensions
	Table Expansion vs. CROSSFILTER
	Using Snowflake Schemas

	Chapter 19: The CALCULATETABLE Function
	CALCULATETABLE vs. FILTER
	CALCULATETABLE and Table Expansion
	Calculating “New” Entities
	Calculating “Returning” Entities

	Index

