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Introduction

Up and Running with DAX for Power BI is a condensed self-teaching resource for 

learning DAX inside Power BI Desktop. DAX (Data Analysis Expressions) is the formula 

language of Microsoft Power BI and was first introduced in 2009 as the programming 

language of the Excel add-in, Power Pivot, from which Power BI was born. With the 

ever-increasing adoption of Power BI as the preferred data analytics platform, the ability 

to use DAX is fast becoming a necessary requirement to find and share the important 

insights into your data. This book is a concise guide for non-technical users that focuses 

on the core concepts that underpin this language, taking you from zero knowledge to 

being able to use DAX to write the challenging calculations that are often necessary for 

reporting on your data.

If you need to use DAX, there is quite a lot of help out there: books, videos, and 

experts with a lot of opinions and copious examples of mind-boggling DAX code that, to 

use, you can simply copy and paste without ever understanding how it works. Yet even 

with the help of these resources, the DAX mantra continues: “DAX is difficult”! But this 

is a misconception, and it’s the first barrier to learning DAX that you will encounter. 

Although there is no doubt that DAX can often be challenging to understand, labelling 

it “difficult” might appear as an excuse for those people who haven’t made the effort to 

understand what goes on under the hood.

When you have shaken off the misconception that DAX is difficult and decided you 

want to understand how DAX works, currently, there are two hurdles you will face, both 

of which this book tackles. Firstly, many resources have been written specifically with 

the DAX developer or other highly skilled technicians in mind. However, the intended 

audience for this book is either Excel users or people with no technical or coding 

background. In fact, it’s aimed at someone probably just like you who simply wants to get 

on with their day job while still becoming a competent user of DAX. In this book, little 

technical knowledge is assumed. Difficult concepts are explained with easy-to-follow 

examples that everyone can understand, and the content is structured to gradually build 

up confidence in working with DAX. The second obstacle you will encounter is that most 

books on DAX can be considered as “reference works.” For example,  
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The Definitive Guide to DAX1 comprises over 700 pages covering every aspect of DAX in 

meticulous detail. You may feel that using such works as “teach yourself” resources is a 

daunting prospect because the abundance of information fast becomes overwhelming. 

To get up and running with DAX, it’s not necessary to wade through copious pages on 

rarefied DAX functions and the technical aspects of the language. There are just a few 

mandatory concepts that must be fully understood before DAX can be mastered, and it’s 

on these concepts that this book focuses. You will also probably want to learn DAX from 

something more easily consumable and less of an investment in your time. This is why I 

felt there was a need for a more concise approach to explaining the DAX language.

To get the most from the information contained in this book, being a competent user 

of Power BI Desktop will be an advantage. This includes the ability to create data models 

and generate reports using Power BI’s data visualizations. However, where specific 

knowledge of these areas is required, I have provided links to the relevant information 

for you to self-explore. You will find that within each successive chapter, the book builds 

on the knowledge gained and the skills learned, and by the final chapters, you will have 

acquired the necessary understanding of DAX to author complex calculations.

In Chapters 1 to 3, we cover the precursor knowledge that’s required before you 

can begin to author DAX expressions, such as understanding the structure of your data 

model and using DAX syntax. You will then be able to create some basic calculated 

columns and measures. You will find that up to this point, DAX is definitely easy! It’s 

then in Chapter 4 that we broach the first major DAX concept, which is the evaluation 

context. Here, we look at the distinct ways in which calculated columns and measures 

are calculated. We then move you on in Chapter 5 to the second important concept, 

understanding iterators, where calculations are performed on each row of a table, just as 

you would copy down on Excel formulas.

You will take a big leap forward in your understanding of DAX in Chapter 6, where 

you meet the most important of all DAX functions, CALCULATE. It’s at this juncture 

that you will start to use DAX as a programming language, where the outcomes of your 

expressions happen in memory. At this point too, DAX veers well away from Excel 

conceptionally, and you will begin to author more powerful calculations than the simple 

sums and averages of basic measures.

In Chapter 7, we explore the idea of table expressions that are used to generate 

in-memory virtual tables. As you move into more advanced areas of DAX, you will start 

1 Marco Russo and Alberto Ferrari (2020), The Definitive Guide to DAX, 2nd ed, [Microsoft Press]

InTroduCTIon
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to appreciate that most DAX expressions involve generating these virtual tables. These 

are typically subsets of real tables and are used to programmatically filter the data in 

preparation for aggregations via the DAX measure. At this point, you may feel that 

DAX is definitely getting a little more challenging. This is because you can’t see virtual 

tables, you just have to imagine them, and the inner workings of expressions are mostly 

hidden from us. Once you have completed Chapter 8 where we take a detailed look at 

the ALL function that, along with CALCULATE, comprises most DAX expressions, you 

are now ready to use DAX to solve a wide variety of data analysis scenarios. For example, 

in Chapter 9, you will learn to compare data over time periods, and in Chapter 12, you 

are taken through the creation of user-driven calculations using parameter tables. In 

Chapter 14, you will discover how to make dynamic comparisons across categories of 

data, such as finding which customers who bought product “X” also bought product “Y”.

Chapter 15 will bring you to the most challenging of all DAX concepts to understand. 

This is the concept of context transition where you will learn to perform aggregations 

at higher granularities. Once you have mastered the use of this concept, the list of data 

insights you can now uncover greatly increases. You will be able to rank customers or 

products by sales, bin totals into numeric ranges, dynamically find top or bottom percent 

by value, and find the average total sales over years, quarters, and months. In fact, most 

DAX calculations you author will use context transition in some way.

It may seem odd that it’s not until you are almost at the end of your journey through 

DAX that we tell you at last how DAX really works and how it all fits together. The 

reason for this is that it’s not until you reach Chapter 18 that you will have the skills 

to understand the last DAX concept, that of table expansion. Although this concept is 

mostly theoretical, once you know how the data model functions behind the scenes 

when your expressions are evaluated, the knowledge you have gained throughout this 

book will now all fall into place. In Chapter 18, finally, all the pieces of the DAX jigsaw fit 

together, and you are now a fully fledged DAX expert.

Finally, on a personal note, I’ve written the book that I wish had been around when I 

was first learning DAX, which was back in the days when Power Pivot was first launched. 

There was very little to help me, and I’ve never forgotten the many hours of deciphering 

DAX code that it took me to get to the position of thinking “yes, I can do this!” I’m hoping 

that, with the help of this book, it will be an easier journey for you and that this book will 

be a useful resource as DAX becomes as mainstream as Excel formulas.

InTroduCTIon
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Let’s not lose sight either of the objective of learning DAX, which is not an end in 

its own right. It’s not so you can impress your colleagues by showing off your skills in 

writing copious lines of DAX code. No, the objective of learning DAX is as a means to an 

end. It is to enable you to analyze your data in ways that give you those insights that up to 

now you’ve been struggling to find.

“The goal is to turn data into information, and information into insight.”2

If you want to follow along with the examples we’ve used in this book, these are the 

files you will need:

Chapters 1 to 9        -  1 DAX Sample Data.pbix

Chapter 10         -  2 DAX Blanks & Zeros.pbix

Chapters 11 to 13       -  1 DAX Sample Data.pbix

Chapter 14         -  3 DAX USERELATIONSHIP.pbix

Chapters 15 and 16        -  1 DAX Sample Data.pbix

Chapter 17         -  4 DAX LOOKUPVALUE.pbix

    5 DAX TREATAS.pbix

Chapters 18 and 19        -  6 Expanded Tables.pbix

2 Carly Fiorina, former president and chair of Hewlett-Packard Co, ”Information: the currency of 
the digital age,” Oracle OpenWorld, San Francisco, December 6, 2004

InTroduCTIon
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CHAPTER 1

Show Me the Data
The key to understanding DAX is getting to grips with the challenging concepts that 

underpin the expressions. Most DAX expressions you’ll write will amount to only a few 

lines of code, but it’s what goes on under the hood that is the secret to understanding 

their evaluation. For example, take this DAX expression:

=MAXX ( Customers, [Total Sales] )

It comprises a function, a table name, and a measure name. It should be simple 

to understand. However, to unravel the calculation behind this expression, you would 

need to have a firm grasp of the following concepts: row context, filter context, iterators, 

and context transition. With DAX, the devil is definitely in the detail. This is why you 

can’t just copy and paste other people’s expressions, hack them around, and hope for 

the best that they’ll work. You’ll find it difficult to learn DAX using this approach. You 

must concentrate on the core principles of the function language. You’ll find that DAX 

becomes less difficult to understand if you simply pay attention to the detail.

However, before we can start writing code, we must begin our journey into the 

language of DAX with the mandatory preparatory work.

Note If you would like a detailed explanation of the DAX language and when it 
first appeared, its history is here: https://en.wikipedia.org/wiki/Data_
analysis_expressions.

It would, for instance, be impossible to create the correct DAX expressions without 

understanding the structure and shape of the data that lies beneath. This is because the 

construct of your expressions will depend directly on the arrangement of the tables in 

your data model. This is why any DAX expert will say to you “show me the data” before 

they attempt to write the relevant DAX code.

https://doi.org/10.1007/978-1-4842-8188-8_1
https://en.wikipedia.org/wiki/Data_analysis_expressions
https://en.wikipedia.org/wiki/Data_analysis_expressions
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Therefore, in this chapter, you will familiarize yourself with the data we will be using 

in our DAX examples throughout this book, and we will pay particular attention to the 

structure of this data. You will learn the various terms that are used to describe the 

constituent parts and the major precepts that underpin the structure. Only when you 

understand these principles can you move on to author DAX code.

Our sample data1 comprises a fictitious sales scenario and what better product 

to sell than wine (perhaps a more attractive prospect than selling cycles or electrical 

equipment).2 In everything that follows in this book, you must imagine that you’re 

engaged in selling this product, and by using DAX to analyze your sales through 

the metrics that matter to you, you’ll gain insights into your data that can help drive 

successful business results and profitability.

Note I appreciate that your data may not be sales related. However, our wine 
sales data is generic data. It comprises the names of entities, numbers, and dates, 
and your data will be no different from this.

We’ve imported six tables into Power BI Desktop as follows:

Winesales – Records our sales transactions.

Wines – Records the names and details of the wines we sell.

Customers – Who we sell our wines to.

SalesPeople – The people making the sales.

Regions – Our customers are grouped into these regions.

DateTable – Records every date, starting from the first day of the 

month when sales start and ending with the last date in the current 

financial year, categorizing these dates into year, quarter, and month.

Note As we’ll discover later, it’s simpler to have single-word table names, and 
that’s why we’ve named the tables “Winesales”, “SalesPeople”, and “DateTable”.

1 To follow along with the examples, use the Power BI Desktop file “1 DAX Sample Data.pbix”.
2 This is a reference to the ubiquitous sample data, “AdventureWorks” and “Contoso Corporation” 
used by many books on DAX

CHAPTer 1  SHoW Me THe DATA
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Our tables are related in many-to-one relationships as shown in Figure 1-1.

Figure 1-1. The data model that is used throughout this book

To view these relationships, click on the Model button on the top left of the report 

canvas. This view shows the relationships between the tables, and this structure is 

known as the data model.
You will observe that the DateTable, SalesPeople, Customers, and Wines tables are 

all related to the Winesales table. Notice the “1” and “*” to denote the one side and the 

many side, respectively. The columns used to create the relationships have the same 

column names in both tables; for example, WINE ID in the Wines table is related to 

WINE ID in the Winesales table. The Regions table is the odd one out in that it’s not 

directly related to the Winesales table but indirectly via the Customers table.

CHAPTer 1  SHoW Me THe DATA
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If you would like more information on creating relationships between tables in 

Power BI Desktop, follow this link:

https://docs.microsoft.com/en-us/power-bi/desktop-create-and-manage-

relationships

 Stars and Snowflakes
One thing you may notice about our data model is that its structure is simple. As has 

already been mentioned, one of the key aspects of DAX, and what newbies to DAX 

often overlook, is that the details of your DAX expressions will be inextricably tied 

to the structure of the model. The simpler the model, the more straightforward the 

calculations. There is nothing more worrying to a DAX expert than coming across an ill-

contrived data model because it probably means they will need to author more complex 

DAX expressions. We look later at examples of using DAX to overcome anomalies in the 

data model, but why make it difficult for yourself? Perhaps then, we should take a closer 

look at the structure of our model and see why I’ve described it as “simple.”

Let’s start by considering the tables that comprise the model. In a Power BI data 

model, a table should be either one of two types, either a fact table or a dimension as 

described in the following sections.

 Fact Tables
This type of table stores “events.” The term “event” is used loosely here to describe 

activities such as sales, orders, or survey results. Fact tables answer the question what? 

That is, what are you analyzing in your report? You can identify the fact table by asking 

yourself these three questions:

 1. Which table holds the data that you want to analyze in your report?

 2. If you delete this table, will the remaining tables still be related to 

other tables in the data model?

 3. Which table sits on the many side of all the other relationships?

Let’s answer these questions using our data. We want to report on our sales that 

are recorded in the Winesales table. If we delete the Winesales table, we’ll just have 

unrelated tables floating around in Model view. The Winesales table sits on the many 

CHAPTer 1  SHoW Me THe DATA
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side of all the other relationships. Clearly, the Winesales table is our fact table. By 

definition, fact tables sit on the many side of a many-to-one relationship. Another 

attribute of the fact table is that its data will change frequently and it’ll probably have 

many more rows than a dimension.

 Dimensions
These tables store the descriptions of the entities in your model. Dimensions answer the 

question how? That is, how do you want to analyze your data? In our data model, we can 

analyze our sales by wines, salespeople, customers, regions, and dates using the data in 

the columns within these tables. The data in dimensions does not necessarily change 

regularly, and dimensions tend to have fewer rows than fact tables.

There’s no table property that you set to configure the table type as a dimension or a 

fact table. It’s determined by which side of the relationship the table sits on. Tables that 

sit on the “one” side are always dimension-type tables, while tables that are only related 

on the “many” side are fact tables.

The reason it’s so important to distinguish between these two different types of 

tables is that they support two different types of behavior in the data model, as follows:

• Dimension tables support grouping and filtering.

• Fact tables support summarization.

As we’ll learn later, DAX measures are usually designed to summarize data from the 

fact table that’s been grouped and filtered by a dimension table.

 The Star Schema
You’ll notice in Model view that we’ve placed the fact table in the middle of the view 

and arranged our dimensions around the fact table. This arrangement can be described 

as a star shape, giving a name to the structure, star schema. In a perfect star schema, 

all dimensions are directly related to the fact table. There is an imperfection in our 

data model because the Regions table is a dimension related to another dimension. 

Dimensions that are not directly related to a fact table but are indirectly related via 

dimension tables are described as snowflake dimensions. You can imagine that if we had 

a number of dimensions related to other dimensions in chains outward from the fact 

table, the schema would more resemble a snowflake.

CHAPTer 1  SHoW Me THe DATA
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Because data is infinitely variable, the tables in your data model may not be arranged 

obediently in a perfect star schema. Having multiple fact tables, for instance, isn’t 

necessarily a problem. The thing to bear in mind, however, is that the more your model 

diverges from a star schema, the more you will need DAX to manage it. We will be 

resolving problems inherent in the structure of the data model later in this book when 

we explore the CROSSFILTER and TREATAS functions where we will create “virtual” 

relationships.

As we’ll discover when we learn to control filters and more specifically calculate 

distinct counts, it can be difficult to work with dimensions that are not related directly to 

the fact table. Therefore, it sometimes makes sense to integrate a snowflake dimension 

into its parent table and therefore tidy up the schema back to a star, a process known as 

denormalization. You can find more information on this and star schemas generally here:  

https://docs.microsoft.com/en-us/power-bi/guidance/star-schema.

One thing that Power BI prevents is ambiguity in the data model, where there are 

multiple paths through which filters can propagate. Therefore, if you attempt to relate a 

dimension to two or more other dimensions, this will result in an inactive relationship 

being created, indicated by a dotted line. For example, in Figure 1-2, we’ve related the 

SalesPeople dimension to both the Customers dimension and the Regions dimension, 

and this results in an inactive relationship between SalesPeople and Regions.

CHAPTer 1  SHoW Me THe DATA
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Figure 1-2. An inactive relationship is created to avoid ambiguity

We look at the concept of ambiguity and working with inactive relationships in later 

chapters, but for the moment, let’s just be thankful that we aren’t allowed to do anything 

that impedes the normal mechanism of the model.

 Finding Nonmatching Values
A question that is often asked is what happens when there are missing values in the 

linking columns used to create relationships. There are two different scenarios here, 

taking the Wines dimension as our example:

CHAPTer 1  SHoW Me THe DATA
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 1. You have values in the WINE ID column in the Wines dimension 

that don’t exist in the WINE ID column in the Winesales fact table.

 2. You have values in the WINE ID column in the Winesales fact 

table that don’t exist in the WINE ID column of the Wines 

dimension.

Let’s take scenario #1 first. Understanding this situation allows us to answer the 

following question: Which wines haven’t we sold? When you build a visual that takes a 

column from a dimension and summarizes a column from the fact table, you will only 

see items where there’s a match for values in the linking columns. By default, all visuals 

remove items where there is no value to show.

Note For information on building Power BI visuals, including the Table visual 
shown in Figure 1-3, visit

https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-
report-add-visualizations-i

For example, in Figure 1-3, which uses the WINE column from the Wines dimension 

and summarizes CASES SOLD from the Winesales table, we only see the wines where 

there’s a match for the values in the WINE ID column in both tables. In other words, 

we’re only seeing the wines we’ve sold.

CHAPTer 1  SHoW Me THe DATA
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How can we see the wines we haven’t sold in this visual? To do this is straightforward 

and requires no DAX. In the Visualisations pane, in the Values bucket, click on the drop-

down of the column from the dimension, for example, the WINE column, and select 

Show items with no data. You’ll now see a blank value beside items that have no match 

in the fact table, in our case, “Lambrusco” wine. This tells us that we haven’t sold this 

wine; see Figure 1-4.

Figure 1-3. By default, you only see items where there are matching values in the 
linking columns

CHAPTer 1  SHoW Me THe DATA
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Figure 1-4. Finding the items for which there is no data

If we look at the Wines dimension in Data view (click the button above Model on the 

left of the report canvas), we will see that “Lambrusco” has a WINE ID of 14. Examining 

the values in the WINE ID column of the Winesales table using the filter shows there is 

no WINE ID 14 in this column; see Figure 1-5.

CHAPTer 1  SHoW Me THe DATA
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Figure 1-5. The fact table does not contain the value from the dimension in the 
linking column

As the name of the “Show items with no data” option implies, it can be used 

whenever you want to see items where there is no calculation to show, for example, 

where a measure doesn’t return a value for an item. It doesn’t mean there is never a 

value to show, as in the case of “Lambrusco” wine; rather, it means that the current filters 

on the model result in there being no value to show.

Let’s now move on to scenario #2 where there are values in the WINE ID column of 

the Winesales fact table that don’t exist in the WINE ID column of the Wines dimension.

Note The sample file does not contain the data described in scenario #2. 
However, Figure 1-6 shows you what this data would look like.

You can see in Figure 1-6, we have just this scenario. The wine ID’s shown have no 

match in the Wines dimension.

CHAPTer 1  SHoW Me THe DATA



12

When such values occur in your data, you’ll see the outcome in any visual as soon 

as you take a column from the dimension and analyze a column from the fact table, as 

shown in Figure 1-7, where we have put the data into a Table visual and also a slicer. 

Here, we have a “blank” wine name that represents all the WINE ID values in the fact 

table for which there are no matches in the dimension. You’ll also see the same outcome 

in a slicer even though it doesn’t use the relationship and only shows values from the 

dimension.

Figure 1-6. Values in the fact table that are not in the dimension

CHAPTer 1  SHoW Me THe DATA
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Figure 1-7. The “Blank” entry shows there are values in the fact table that don’t 
match to values in the dimension

The “Blank” entry is a result of what we sometimes refer to as “dirty data.” Why are 

there values in the fact table for which there is no match in the dimension? How are you 

going to resolve this scenario? This is a question that only the data modeler can answer, 

and ultimately the solution lies in correcting the data at its source.

We hope you appreciate how important it is to identify nonmatching values in your 

data and to understand that you don’t need DAX to do this. Finding out where there’s no 

data can be equally as valuable as knowing where there is, and the star schema allows us 

to do this.

In this chapter, you have familiarized yourself with the data we will be using 

henceforth. You also now understand concepts that underpin the data model and how 

it comprises fact tables and dimensions related to many-to-one relationships. The 

simplest structured data model is the star schema where dimensions are related directly 

to the fact table. However, it is possible to have dimensions indirectly related to the fact 

CHAPTer 1  SHoW Me THe DATA
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table via other dimensions creating snowflake dimensions. This is mandatory precursor 

knowledge to understanding DAX because what you will learn as we progress through 

this book is that many DAX calculations will involve manipulating the tables in the data 

model, and in doing so, the way the tables are structured is paramount.

CHAPTer 1  SHoW Me THe DATA
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CHAPTER 2

DAX Objects, Syntax, 
and Formatting
Now that you understand the structure of the data we’ll be using throughout this book, 

the next step is learning how to construct DAX expressions. In this chapter, we will 

compare and contrast DAX expressions to Excel formulas as this will provide context 

for your knowledge. You will learn to reference the objects used in DAX expressions, the 

syntax of the expressions, and how you can format your DAX code, making it easier to 

read and debug.

To follow along with the examples in this chapter, in the Data view of Power BI 

desktop, select the Winesales table in the Fields list, and on the Table Tools tab, click the 

New Column button. This will display the DAX “formula bar” as shown in Figure 2-1.

https://doi.org/10.1007/978-1-4842-8188-8_2
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Figure 2-1. To follow along with the examples, use the New Column button

The first similarity to Excel is the “formula bar” that pops up when you create new 

columns or measures. We will start to type some expressions into the formula bar 

presently. However, at this stage, you don’t need to know what the expressions are 

calculating. You are just learning how to type the correct syntax.

 DAX Syntax
Notice on the left, just like Excel, the formula bar has a Cancel button (the cross) and 

an Enter button (the tick). However, the formula bar is in effect a code editor and can 

extend to many lines if the SHIFT + ENTER key combination is pressed (see the section 

below on Formatting). This is why, unlike the Excel formula bar, each line of the DAX 

code editor is numbered. You will, for instance, notice that in Figure 2-1, we are on line 1.

The next parallel with Excel is that DAX expressions are constructed in the same 

way as Excel formulas. For example, all DAX expressions begin with an equals sign, and 

commas separate the arguments of functions. Also, just like Excel, DAX expressions are 

case insensitive; it makes no difference in what case you type your DAX code.
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However, one of the major differences between DAX and Excel is that in DAX, you 

can’t reference “cells.” The only two objects that are referenced in DAX expressions are 

tables and columns.

You reference a table by just naming it. For example, to count the rows in the 

Winesales table, this would be this expression:

= COUNTROWS ( Winesales )

Notice that when you start to type this expression into the DAX editor, just like Excel, 

the DAX editor matches what you’re typing in a list of suggestions. This list is referred to 

as the DAX IntelliSense; see Figure 2-2. Just click on a suggestion in the IntelliSense list to 

place it into your code. You can’t put anything into your expression that isn’t on the list.

Figure 2-2. The DAX IntelliSense list

Also notice in the COUNTROWS expression that spaces have been used before and 

after the brackets. Typing spaces is arbitrary as they will be ignored by the DAX editor 

and can be used wherever you feel they improve the clarity of the expression (see the 

section below on Formatting).

If the table name contains a space, the table name must be surrounded with 

single quotes:

= COUNTROWS (  'Wine Sales' )

To reference a column, you surround the column name with square brackets ( [ ] )  

and always precede the column name with the table name. For example, to sum the 

CASES SOLD column in the Winesales table, this would be the expression:

= SUM ( Winesales[CASES SOLD] )
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As mentioned before, in DAX, there is no such thing as a cell, only tables and 

columns.

Table 2-1 shows a comparison of equivalent Excel formulas and DAX expressions, 

and you can see how similar the syntax is between the two.

Table 2-1. Comparing Excel formulas and DAX expressions

Excel DAX

=iF ( b2 > 50 , “yes” , “no”)

When this formula is copied down, the “B2” 
will change relatively to “B3, B4, B5 etc.”

=iF ( Winesales[Cases sOLD] > 50 , “yes” , “no” )

Used in a calculated column, this expression is 
automatically applied to the entire column.

= sUm ( Winesales[Cases sOLD] )

This uses Excel Table syntax where the  
table is named “Winesales” and the  
column is named “CASES SOLD”.

= sUm ( Winesales[Cases sOLD] )

Used in a measure or in a calculated column to 
find total cases in the CASES SOLD column in the 
Winesales table.

Another contrast between Excel and DAX is the way you reference “AND” and 

“OR”. In Excel, you use the AND() and OR() functions. In DAX, you typically use these 

operators instead; AND is && (double ampersand) and OR is || (double pipe).

Note you’ll find the pipe symbol “|” on your keyboard at the bottom left, above 
the backslash and to the right of shiFt.

Table 2-2 shows a comparison of using “AND” and “OR” in Excel formulas and DAX 

expressions.
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Table 2-2. Contrasting AND and OR in Excel and DAX

Excel DAX

anD anD

= iF ( anD ( Winesales[@Cases sOLD] > 50, 

Winesales[@Cases sOLD] < 100 ), “yes” , “no” )

Using Excel Table syntax where the table is named 
“Winesales” and the column is named “CASES SOLD”
Note the use of the “@” to denote “the current row.”

= iF ( Winesales[Cases sOLD] > 50

&&

Winesales[Cases sOLD] < 100 ,

“yes” , “no” )

Used in a calculated column.
Using the value in the current row is 
implicit in calculated columns.

Or Or

= iF ( Or ( Winesales[@saLespersOn iD] = 2 , 

Winesales[@saLespersOn iD] = 6 ),

“yes” , “no” )

Using Excel Table syntax where the table is 
named “Winesales” and the column is named 
“SALESPERSON ID”

= iF ( Winesales[saLespersOn iD] = 2

||

Winesales[saLespersOn iD] = 6 , “yes” , 

“no” )

Used in a calculated column.

Note DaX does have an anD function and an Or function, but in DaX, these 
functions only accept two arguments, so it’s usually better to use the operators.

A single ampersand (&) is used in DAX as the concatenation operator, just as it is 

in Excel.

 DAX Formatting
Before we start authoring DAX expressions in earnest, let’s get into some good habits 

concerning the formatting of our DAX code. Consider the two expressions in Figure 2-3. 

They are the same expression but with two different layouts.
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Figure 2-3. Comparing unformatted and formatted expressions

Question: Which layout makes the DAX code easier to understand? I think you’ll 

agree that it’s the second layout where we have separated the code onto different lines. 

In the DAX editor, you can use the keyboard combination SHIFT + ENTER to move onto 

a new line and use the TAB key to indent lines. Spaces can be used for clarity. It’s also 

recommended that you start nested functions on a new line and close brackets at the 

same indent of the function it closes.

To add comments to your code, use the following:

-- – Single line comment (double dash)

// – Single line comment (double forward slash)

/* – Start a multiline comment (forward slash and asterisk)

*/ – End a multiline comment (asterisk and forward slash)

However, there are no hard and fast rules about how to format your DAX code. 

Whatever works for you.

If you want to quickly format your untidy DAX code, use the DAX formatter here:

https://www.daxformatter.com/

You can also find more information and guidelines on best practices here:

https://www.sqlbi.com/articles/rules- for- dax- code- formatting/
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You should now be able to type your DAX code correctly. Use square brackets to 

reference columns and always precede your column references with the table name 

where the column resides. You understand that in DAX, we often use “AND” and “OR” 

operators rather than the equivalent functions used in Excel. Using separate lines in 

the code editor will greatly improve the clarity of the expression. However, DAX doesn’t 

care how your code is formatted. It will execute your code however dire the layout of the 

expression looks!

This chapter concludes our preparatory work before we can move on to author DAX 

expressions and generate calculations. The next step is to understand that in DAX, we 

work with different types of expressions, and this will be the focus of the next chapter.
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CHAPTER 3

Calculated Columns 
and Measures
In the previous chapter, you learned the syntax used by the DAX language, and now you’re 

ready to write your first DAX expressions. In DAX, there are three types of expression: 

calculated columns, measures, and calculated tables. However, in this chapter, we will 

only be addressing the first two types (we look briefly at calculated tables in Chapter 15).

Note You already know that DAX is the acronym for “Data Analysis Expressions.” 
However, we often refer to “DAX expressions” because it seems clearer to do so.

Firstly, you will learn how to write calculations using the calculated column. This 

will be the part of DAX that will be intuitive to you, particularly if you are an Excel user. 

Calculated columns will seem no different to you than using Excel formulas. When we 

move forward to learn how and why we need DAX measures, however, things may become 

a little more challenging. One of the biggest hurdles when learning DAX is understanding 

the difference between the calculated column and the measure, and this is something 

that we will also be exploring in this chapter. For instance, the same DAX expression that’s 

used in a calculated column can’t typically be used in a DAX measure, but perversely, 

most DAX expressions used in measures can be put into a calculated column.

 Calculated Columns
When learning DAX, most people understand expressions that are entered into 

calculated columns because they are very similar to creating Excel formulas, 

particularly if you use formulas in Excel tables. In DAX, you will find many of your 

favorite Excel functions, such as IF, TODAY, ROUNDUP, and SUM, that can be used in a 

calculated column.

https://doi.org/10.1007/978-1-4842-8188-8_3
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This is why newbies to DAX mistakenly think that DAX is just like Excel and create a 

plethora of calculated columns when they really should be creating measures, which are 

more efficient in every way. The thing to understand about the calculated column is that, 

just like copying down on an Excel formula, the calculated column is evaluated for every 
row in the table and therefore can be process heavy. We will see that this is very different 

from how measures are evaluated.

 Creating Simple Calculated Columns
To create our first DAX expression in a calculated column, let’s take a very simple 

calculation and multiply the CASES SOLD values in the Winesales table by 10 percent. In 

Chapter 2, you learned how to create a new column. Ensuring that the Winesales table 

is selected in Data view, you click on the New Column button on the Table Tools tab. In 

the DAX editor, enter the following expression:

10 PC of Cases = Winesales[CASES SOLD] * 0.1

When you’ve finished typing, you can press the enter key, or you can click on the tick 

to the left of the DAX editor. Your calculated column called “10 PC of Cases” is created 

and joins the Fields list; see Figure 3-1.

Figure 3-1. The calculated column joins the Fields list
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Let’s now see how we can use the IF function in DAX in a calculated column. We 

could, for instance, add a column in the Winesales table that’s populated with either 

“Team A” or “Team B.” This column will group our salespeople as follows: Salespeople 

with IDs 1, 3, and 6 are in Team A, and other salespeople are in Team B. We’ll call this 

new column “Team”.

In the DAX editor, enter this code noting the use of the double pipe for “OR”:

Team =

IF (

      Winesales[SALESPERSON ID] = 1

       || Winesales[SALESPERSON ID] = 3

       || Winesales[SALESPERSON ID] = 6,

    "Team A",

    "Team B"

)

Similarly, you could group the values in the CASES SOLD column into “High” and 

“Low” volume where high volume is any sales where CASES SOLD is between 50 and 400 

by using this DAX expression, noting the use of the double ampersand for “AND”:

Volume =

IF (

    Winesales[CASES SOLD] >= 50

        && Winesales[CASES SOLD] <= 400,

    "High",

    "Low"

)

Creating these calculated columns has been an easy introduction to DAX because, 

as we’ve seen, the expressions are very similar to formulas in Excel. The reason we’ve 

included these calculated columns here is because they’re simple examples that teach 

you DAX syntax and that every Excel user can do.
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However, we wouldn’t recommend you do such calculations here.1 There’s a more 

efficient way to create these columns, and that’s to generate them in Power Query using 

Power Query's conditional column.

 Looking at the RELATED Function
So we’ve established that there are common functions to both Excel and DAX such as 

the IF function. However, if using calculated columns isn’t always the most efficient way 

to generate data, why would we need to use them? There are some functions that are 

specific to DAX and give us reasons to author our DAX expressions in the context of a 

calculated column. One of these functions is the RELATED function.

This function returns a value from a related table and is similar in purpose to the 

VLOOKUP function in Excel. However, RELATED will only return values from the one 

side of the relationship to the many side. For example, if you want to show the customer 

names related to the CUSTOMER ID’s in the Winesales table, you could use this DAX 

expression in a calculated column in the Winesales table:

Customer Name from Customers Table =

                             RELATED ( Customers[CUSTOMER NAME] )

You will now see the names associated with each CUSTOMER ID in the calculated 

column; see Figure 3-2.

Figure 3-2. The RELATED function returns values from related tables

1 The reason for this is that calculated columns have to be recalculated whenever the data is 
refreshed. This can have a big impact on the efficiency and performance of the report. You can 
find more information on this topic here: https://docs.microsoft.com/en-us/power-bi/
guidance/import-modeling-data-reduction
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Often, the generation of the calculated column using RELATED where you populate 

values from related tables is used solely for ad hoc reasons. Once you have the customer 

names alongside their transactions, you’ll find it’s often easier to cross-check your data 

analysis. Once the column has served its purpose, it can be removed.

Note If these were Excel tables and we wanted to populate the Winesales Excel 
table with the customer names in the Customers Excel table, we would use the 
VlooKup function in the Winesales Excel table like this:

=VlooKup ( [@CustomEr ID] , Customers, 2, 0)

the “@” symbol means “use the value in the current row of the Excel table.” using 
the value from the current row is implicit in DAX calculated columns.

You can also use RELATED to pull through values from indirectly related tables into 

the fact table. For example, the Regions table is related to the Customers table that is in 

turn related to the Winesales table as shown in Figure 3-3.

Figure 3-3. The Regions table has an indirect relationship to the Winesales table

Therefore, we could populate each REGION name alongside each sales transaction 

in the Winesales table by using this code (see Figure 3-4):

REGION NAME = RELATED ( Regions[REGION] )

CHAptEr 3  CAlCulAtED Columns AnD mEAsurEs



28

Figure 3-4. Using RELATED to return the Region names

Notice that we’ve named this column REGION NAME to distinguish it from the 

REGION column in the Regions table.

Let’s look more closely at the RELATED function. You should understand that you 

can only use this function in the following two circumstances:

 1. The tables must be related.

 2. Only values from tables on the one side of a relationship can be 

returned to tables on the many side.

The act of populating values from tables that sit on the one side of a relationship into 

tables that sit on the many is called denormalization. For instance, in the example in 

Figure 3-4, we’ve denormalized the Regions table by extracting the values in the REGION 

column into the Winesales table using RELATED. There are at least three advantages in 

doing this:

 1. You now know in which Region each sales transaction was made.

 2. If you need to use the region names in a visual, you can use 

the calculated column in the Winesales table. Therefore, you 

no longer need to see the Regions table in Report view. If this 

is the case, you can hide the Regions table. To hide a table in 

Report view, right-click the table name in the Fields list in either 

Data view or Model view, and select Hide in report view; see 

Figure 3-5.
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 3. You can perform a distinct count on the REGION NAME 

column in the Winesales table to calculate how many different 

Regions we’ve sold our wines in. We’ll do this calculation later, 

but because the sales transactions must be directly associated 

with the regions in which they were made, this would be a difficult 

expression if we left the REGION values in the Regions table.

Figure 3-5. Hiding tables in Report view

Understanding the RELATED function allows us to do another mandatory 

calculation in our data model. Perhaps you’ve noticed that although we have a Winesales 

table, we have no sales values. However, we can now calculate them. We can multiply the 

CASES SOLD column in the Winesales table with the PRICE PER CASE column in the 

Wines table, and because the Winesales table is related to the Wines table in a many-to- 

one relationship, we can use RELATED to do this.
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We’re going to look at two different methods of using RELATED to calculate the Sales 

revenue values.

For method #1, we could create two calculated columns. The first column, called 

“PRICE”, uses RELATED to populate the PRICE PER CASE values into the Winesales 

table. The second column multiplies the “PRICE” column by the CASES SOLD column 

and is called “Sales”:

PRICE =

RELATED ( Wines[PRICE PER CASE] )

SALES =

Winesales[CASES SOLD] * Winesales[PRICE]

Method #2 requires just one calculated column. You can use RELATED to find the 

PRICE PER CASE values from the Wines table for each row in the Winesales table in 

memory and then multiply by CASES SOLD. In other words, you don’t need to see the 

price of each wine before you multiply it by the CASES SOLD values:

SALES =

Winesales[CASES SOLD] * RELATED ( Wines[PRICE PER CASE] )

What many people who are new to DAX would now think is that the SALES 

calculated column has solved the problem of calculating total sales values in a visual on 

the report canvas. For instance, we can now use this column in the Values bucket of a 

visual to find the total sales for each wine; see Figure 3-6.
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Figure 3-6. Using the SALES calculated column in the Values bucket to sum 
the sales

However, this is probably not such a great idea. Think about it; firstly, the calculated 

column will be evaluated for every row in the Winesales fact table and recalculated 

whenever the data is refreshed. That’s a lot of processing if you have millions of rows in 

your fact table.

Secondly, when you put this column into a visual containing items from dimensions, 

it performs another calculation to sum these values for each item from the dimensions. 

Does this sound a very efficient way of doing this calculation? Probably not. The upshot 

of inefficient data models is that reports built on the top of them become slow to refresh 

and render (refer to Footnote 1 where there is a link for more information on this topic).

Therefore, the question now is the following: If you shouldn’t use a calculated 

column for the sales calculation, what should you use?

This is where measures can help us. We will revisit our sales calculation in Chapter 5, 

and rather than using a calculated column to perform the evaluation, we will be using a 

measure. But for now, we’re going to leave calculated columns behind us (we will revisit 

the calculated column later in this book when we explore some complex expressions 

that require their use). If you’re an Excel user, you’ll feel quite at home creating 

calculated columns using the DAX functions that have a replica in Excel. Nevertheless, 

CHAptEr 3  CAlCulAtED Columns AnD mEAsurEs



32

you probably won’t have the same comfortable feeling when you come to writing DAX 

measures. This is where DAX becomes a little more challenging, so let’s move forward 

and learn how to author DAX measures.

 DAX Measures
We’re now ready to look at the second type of DAX expression, the measure. There 

are two types of measures that you can use in visuals: implicit measures and explicit 

measures (however, we don’t normally call them “explicit measures,” just “measures” but 

implicit measures are always named accordingly). What’s the difference between 

implicit and explicit measures? Well, let’s start with the implicit measure first.

 Implicit Measures
If you’ve created any Power BI visual, you’ve created an implicit measure. Have you 

ever wondered what the sigma symbol ( ∑ ) beside a numeric column in the Fields list 

means? It has a more precise purpose than signaling a column containing numbers. 

The sigma indicates that when you put this column into the Values bucket of a visual, 

the data in this column will automatically be aggregated. This is what we mean by an 

implicit measure.

The sigma normally indicates that the column will be summed, but you can 

perform other aggregations such as averages or find the maximum or minimum value 

by changing the function on an ad hoc basis. To do this, use the drop-down beside the 

column name in the Values bucket and, for example, change this to “Average” as shown 

in Figure 3-7 where the steps to generate an implicit measure have been numbered.
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Figure 3-7. Creating an implicit measure

 1. The column CASES SOLD has a sigma beside it – ∑.

 2. When this column is put into the Values bucket, it defaults to 

SUM, but you can change the function to AVERAGE by using the 

drop-down.

 3. The implicit measure has calculated the average CASES SOLD 

for the items displayed in the visual, in this case, each wine.

However, there are several drawbacks to using implicit measures. Consider these 

scenarios:

• You may want to rename the implicit measure “Average of CASES 

SOLD” to something more concise. You can do this by double- 

clicking on the entry in the Values bucket, but you would have to 

repeat this every time you use an implicit measure and then want to 

rename it.

• If you rename the implicit measure, the name of a measure in the 

visual won’t match the column name in the Fields list.
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• Although you normally want to use the SUM function, you often 

want to use AVERAGE as well. You would have to keep changing the 

function to AVERAGE.

• In some visuals, you might like to format an implicit measure with 

two decimal places and sometimes with no decimal places. You 

would not be able to have different numeric formatting for the 

implicit measure in different visuals.

• What if you want to calculate 10 percent of the sum of the CASES 

SOLD values for each wine, or indeed, any calculation on the total 

values? You can't do this using an implicit measure.

This is the trouble with implicit measures; they just don’t make the grade. So let’s 

move the focus of this chapter to what we’re really here for, and that’s to learn how to 

create our own explicit measures using DAX.

 Explicit Measures
If you create your own measures rather than relying on implicit measures, these are 

some of the benefits:

• You’ll have more control over the aggregation performed by the 

measure and be able to name it accordingly.

• You’ll be able to use different numeric formatting for different 

measures.

• Explicit measures will become a constituent part of the data model. 

Your measures will join the Fields list, and you, or people using your 

data, can use and reuse the measures whenever you need to visualize 

a particular calculation.

• By using DAX, you can go far beyond just simple aggregations of your 

data. You can perform complex calculations to get to the insights you 

really need.

So let’s bite the bullet and create our first DAX measures. Once we’ve done this, we 

can then answer the pressing question that has yet to be answered, and that is what 

exactly is a measure?
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Before we start, however, we need to find a place to store our measures. Explicit 

measures are table agnostic and can be stored in any table. However, it makes sense to 

create a table that will hold only measures.

 Creating a Measures Table
To do this, on the Home tab, click on the Enter Data button. In the Create Table pane, 

give your table a name, for example, “Measures Table” (you can’t name the table 

“Measures” because this is a reserved word), and load the table.

When you put a measure into this table and delete the column that’s there, a 

“measures” icon will display beside the table in the Fields list, and the table will move to 

the top of the list; see Figure 3-8.

Figure 3-8. The Measures table will sit at the top of the Fields list

However, it’s not mandatory to store your measures in a separate table. Some data 

modelers prefer to store measures in the fact table or in the table from where the data is 

being used by the measure.

 Creating Simple DAX Measures
The first measure we’re going to construct will replace the implicit measure that 

calculates the sum of the CASES SOLD. To create this measure, in Report view, right- 

click on your Measures table in the Fields list and select New measure from the shortcut 

menu. You could instead click on the New Measure button on the Home tab. However, if 

you use this method, ensure that the table you have selected in the Fields list is the table 

where you want to put your measure.
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Tip If your measure is accidentally stored in the wrong table (or you just want to 
move it), use the Fields list in Model view where you can drag and drop measures 
between tables.

Once you have selected New measure, the DAX editor will appear at the top of the 

screen as it did when we created calculated columns. In the DAX editor, in front of the 

equals sign ( = ), name your measure, for example, “Total Cases”, and type the following 

DAX expression:

Total Cases =

SUM ( Winesales[CASES SOLD] )

You can see this expression in the DAX editor in Figure 3-9.

Figure 3-9. Your first DAX measure in the DAX editor

Press the Enter key and your measure will display in the Measures table. You can 

now delete “Column1” from this table.

Note DAX measure names are not case sensitive and can contain any 
characters. However, we would recommend restricting your measure names to 
containing just letters and/or numbers and spaces. We would also recommend that 
you keep the names of tables, columns, and measures simple and straightforward. 
I particularly like Chris Webb’s blog on this topic: https://blog.crossjoin.
co.uk/2020/06/28/naming- tables- columns- and- measures- in- 
power- bi/

DAX measures are only calculated when they are used, so you must put the measure 

into the Values bucket of a visual before you can see the calculation. For example, in 

Figure 3-10, in a Table visual, we’ve used the WINE column from the Wines dimension 

and then dragged the “Total Cases” measure into the Values bucket of the visual.
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Figure 3-10. Measures are calculated when they are used

One of the great advantages of using explicit measures is that the numeric formatting 

is stored with the measure. To format a measure, select the measure by clicking on it 

in the Fields list, and the measure expression shows in the DAX editor. Then, on the 

Measures tools tab, in the Formatting group of commands, you can select the numeric 

formatting you require, for example, a thousands separator; see Figure 3-11.

Figure 3-11. Use the Formatting group of commands on the Measures tools tab to 
format your measure
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Let’s create our second measure, this time to calculate the average cases sold as 

follows:

Avg Cases =

AVERAGE ( Winesales[CASES SOLD] )

Another analysis you may need to perform on your data is calculating “how many,” 

for example, the number of sales for each different wine. In other words, we need to 

count the number of rows in the Winesales table for each wine shown in the visual.  

The implicit measure that we could use here uses the DAX COUNT function that counts 

the number of values in the column you reference (for more information on the COUNT 

function, visit https://docs.microsoft.com/en- us/dax/count- function- dax). 

However, we want to count the number of rows, and therefore, only an explicit measure 

will do the job we want. The DAX function we need is the COUNTROWS function whose 

name describes its purpose. This function accepts a table as its only argument which is 

the table whose rows you want to count, so this would be the expression:

No. of Sales =

COUNTROWS ( Winesales )

One of the benefits of creating these simple measures is that you can use them 

to analyze any items from any dimension. As you generate visuals, taking items from 

different dimensions, the measures will consistently recalculate accordingly. For 

example, in Figure 3-12, we’re using our measures in three Table visuals showing data 

from the following dimensions:

• WINE from the Wines dimension

• SALESPERSON from the SalesPeople dimension

• REGION from the Regions dimension
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Figure 3-12. Measures are calculated according to the data comprising the visual

Our final example of a simple DAX measure will accomplish an insightful calculation 

that would be difficult to repeat in Excel, that of the distinct count. In DAX, we have 

an aggregate function for this job. Its name is DISTINCTCOUNT, and we can simply 

reference the column required for the analysis. Let’s discover how many different 

customers we sold our wines to by authoring this measure:

Distinct Customers =

DISTINCTCOUNT ( Winesales[CUSTOMER ID] )

While we’re focusing on the DISTINCTCOUNT function, remember that we created 

this calculated column in the Winesales table:

REGION NAME =

RELATED ( Regions[REGION NAME] )

CHAptEr 3  CAlCulAtED Columns AnD mEAsurEs



40

We can use this calculated column to create a measure to calculate in how many 

different regions we’ve sold our wines:

Distinct Regions =

DISTINCTCOUNT ( Winesales[REGION NAME] )

Figure 3-13. Using the DISTINCTCOUNT function

You will observe in Figure 3-13 that we’ve sold “Bordeaux” to 57 different customers 

and “Champagne” to 53 different customers. We’ve sold “Rioja” in 17 different regions.
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 What Exactly Is a Measure?
We’ve created a few simple explicit measures, but we still haven’t answered the 

following question: What is a measure? The answer, like measures themselves, is not 

a straightforward one. A measure is a DAX expression that is used in a Power BI visual 

to return a scalar value and is evaluated in a specific filter context. In other words, DAX 

measures filter the rows of tables and typically perform an aggregation on the filtered 

data to return a scalar value (which is a single value) that is visualized in the report.

Note not all DAX measures perform aggregations. As we will see later, some DAX 
measures can return text values. nevertheless, they will be scalar in nature in that 
they will return a single value.

For example, a typical DAX measure might sum the values in a column containing 

quantities (e.g., the “Total Cases” measure) where the rows in the fact table are filtered 

for each year, and this analysis is visualized in a column chart where each year's totals 

(e.g., 2021) can be seen; see Figure 3-14.

Figure 3-14. Measures typically aggregate filtered data
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Let’s take a closer look at these three aspects of the measure:

 1. All visuals on the report canvas use measures.

 2. Measures return scalar (single) values.

 3. Measures are calculated where a filter has been placed on the 

data model. This is known as the filter context and is the subject of 

the next chapter.

 All Report Visuals Use Measures

When we authored our calculated columns, these are seen in Data view and 

they returned a value for every row in the table. A measure, on the other hand, is used 

in Report view and is placed in the Values bucket of a visual. All visuals use measures in 

the Values bucket even if they are implicit measures (which, as already described, is a 

numeric column that you’ve dragged into the Values bucket).

Note there is an exception to this rule. the Key Influencers visual is best used 
with a non-aggregated column, rather than a measure. For more information 
on the Key Influencers visual, visit my blog: www.burningsuit.co.uk/
blog/2020/01/the- key- influencers- visual- versus- strictly- 
come- dancing/

Another way to think of measures is that they are report-level calculations as opposed 

to the row-level calculations that you create in calculated columns.

 Measures Return Scalar Values

All Power BI visuals are reporting tools that group and aggregate your data, just like an 

Excel pivot table or pivot chart. Therefore, to understand this aspect of the measure, let’s 

put our Excel hats on and remind ourselves that in Power BI, Table and Matrix visuals are 

the equivalents of Excel pivot tables. For instance, consider the values in the Table visual 

in Figure 3-15.
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Figure 3-15. The value identified sits in the equivalent of the “Values” area of an 
Excel pivot table and would be in a “cell”

If this were an Excel pivot table, the “Total Cases” values would be sitting in the 

“Values” area of the pivot table, and every value returned by the calculation would be 

sitting in a “cell.” We’ve identified the “cell” for “Bordeaux” wine that holds the value of 

54,070 being returned by this measure:

Total Cases =

SUM ( Winesales[Cases Sold] )

What does this value represent? It represents the sum of the values in the CASES 

SOLD column for all the rows in the Winesales table that equate to “Bordeaux” wines.

If the same data were sitting in an Excel pivot table, we could double-click on 

this value and drill through to display these rows on a separate sheet, as shown in 

Figure 3-16.
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Figure 3-16. In an Excel pivot table, you can drill through

We can’t drill through on the value in the Power BI Table visual, but nevertheless, 

the measure in memory does the same. It filters a set of specific rows from a table. In our 

example, it filters the rows in the Winesales table for “Bordeaux” wines. However, the 

result of the measure must sit in the “cell” of the Table visual just as it sits in the cell of 

the pivot table. Therefore, the measure must return a scalar value. Typically, this would 

mean that the measure must aggregate the data; for example, sum the cases sold for 

“Bordeaux” wines.
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Note normally, a scalar value would be a single numeric value, but measures 
can return single text values as well, so here, the term “scalar” is used in a more 
general sense to mean a single value of any data type.

We’ve established that measures must return scalar or single values, a concept that 

we’re sure you think is straightforward and easy to understand, but at some point, you’ll 

attempt to create measures that return errors that look like that shown in Figure 3-17.

Figure 3-17. This error message displays when there is no aggregation

The error message in Figure 3-17 reads:

“A single value for column ‘CASES SOLD’ in table ‘Winesales’ cannot be determined. 

This can happen when a measure formula refers to a column that contains many values 

without specifying an aggregation such as min, max, count, or sum to get a single result.”

What is the reason for this error message? There is no aggregation in the measure; it’s 

just multiplying two values.

Another example of where a measure does not return a scalar value is shown in 

Figure 3-18. Here, the VALUES function is being used in a Table visual (we look at the 

VALUES function in a later chapter). The measure should return a scalar value, which it 

does when evaluating individual rows in the Table visual, but when calculating the Total 

row of the visual, it returns multiple values, and so an error message is displayed when 

the measure is put into a Table visual that has the Total row turned on.
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Figure 3-18. Some measures return a table of values

The error message reads:

“A table of multiple values was supplied where a single value was expected.”

Even the most hardened DAX experts can be caught out by creating measures that 

don’t return scalars!

In this chapter we have explored the difference between calculated columns and 

measures. You understand that calculated columns are row level calculations while 

measures are used in all visuals and are calculations that are performed at report 

level.  However, we’re still missing an explanation of the third and most important 

ingredient of the DAX measure, that all measures are evaluated in a specific filter context. 

To understand what is meant by this, you will need to move forward to the next chapter 

where we will focus on the context in which our expressions are evaluated and why this 

is so important in understanding DAX measures.
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CHAPTER 4

Evaluation Context
You have learned to author simple calculated columns and measures, but one of the 

most fundamental questions for DAX users is how these two types of expression differ. 

At this stage, you understand that calculated columns are row-level calculations and 

that measures are calculations that are performed at the report level. However, we need 

to be more specific regarding this differentiation, and you need to understand that 

the definitive difference lies in the context in which the expressions are evaluated. In 

calculated columns, expressions are evaluated in the row context; in measures, they are 

evaluated in the filter context. It is the latter of these that will be the main focus in this 

chapter. Once you understand the implications of the filter context, the implications of 

the row context are more readily understood.

 The Filter Context
In the last chapter, you learned that measures are report-level calculations and that they 

must return a scalar value. This brings us to the third and most important aspect of the 

measure, and that is that all DAX measures are evaluated in a specific filter context. To 

understand what is meant by a “specific filter context,” let’s compare these two different 

measures:

Total Cases =

SUM ( Winesales[CASES SOLD] )

Total Stores =

SUM ( Customers[NO. OF STORES] )

You can see the evaluation of these measures in Figure 4-1, but why does the first 

measure return different values for each wine but the second measure return the 

same value? The reason is the filter context that’s active when both these measures are 

evaluated.

https://doi.org/10.1007/978-1-4842-8188-8_4
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Figure 4-1. Measures will return different values or the same value because of the 
filter context that is active

When a measure is placed into any visual, before the measure is evaluated, the DAX 

engine in memory places filters on tables in the data model depending on three factors:

 1. The column or columns placed in the visual that group and 

categorize the data

 2. The columns in slicers that are filtering the data in the visual

 3. Any columns placed in the Filters pane that are filtering the data in 

the visual

These three factors come together to generate the filter context for the evaluation of 

the measure. We can’t see these filters on the data model. We just have to imagine them.
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Note the filtering of the data model happens in memory and is hidden from us. 
therefore, in the Figures below and throughout this book, where we’re simulating 
what happens in memory, the in-memory tables have a dashed border to 
distinguish them from the tables you can see in Data view.

In our Table visual in Figure 4-1, only factor #1 is relevant (there are no slicers or 

other filters).

 Evaluations Using a Single Filter
The column in the visual that’s grouping the data is the WINE column from the 

Wines dimension. The first value in this column to be calculated is the total cases for 

“Bordeaux” wine.

Before the “Total Cases” measure calculates the value for “Bordeaux,” a filter is 

placed in memory on the Wines dimension to filter “Bordeaux” wines. If we could see 

the filter on this table, it might look something like Figure 4-2.

Figure 4-2. The in-memory Wines dimension that has been filtered to one row

If we examine the data model (Figure 4-3), we can see that the Wines dimension 

is related to the Winesales fact table in a many-to-one relationship. The arrow tells us 

that if the Wines dimension is filtered, this filter is propagated onward to the Winesales 

fact table.
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Figure 4-3. Filters propagate from the Wines dimension to the Winesales fact table

Therefore, the Winesales fact table is now cross-filtered to only contain sales for 

“Bordeaux” wine that has the WINE ID that equals 1; see Figure 4-4. Notice there is no 

filter in the WINE ID column in the Winesales table because the filter on the Winesales 

table is a cross-filter that is generated only through filter propagation.

Figure 4-4. The fact table is cross-filtered via the dimension
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This is the only filter affecting this visual, so the measure now sums the CASES SOLD 

column for “Bordeaux” wines and returns 54,070.

The evaluation of the measure then moves on to “Champagne” and repeats 

the process of filtering the Wines dimension and cross-filtering the Winesales fact 

table using a different filter context each time. In the next evaluation, for instance, 

the WINE column from the Wines dimension now equals “Champagne” and so now 

returns 49,158.

Note experienced Dax users will know that this explanation of the filter context 
in action is a close approximation of what happens in memory and not exactly 
what happens. however, this explanation is easily understood at this stage of your 
knowledge and will serve you well for the time being. We will reveal what really 
happens under the hood later in this book.

And so on for all the wines in the WINE column of the Table visual. Every evaluation 

of the “Total Cases” measure is evaluated in a different filter context.

There is a way that we can prove that our Wines dimension, in memory, is filtered 

to one row on the evaluation of a measure that analyzes each wine. We can create this 

measure that counts the rows of the Wines dimension:

No. of Wines = COUNTROWS ( Wines )

If we put this measure into a Table visual containing the WINE column from 

the Wines dimension, the measure will return 1 for the evaluation of each wine; see 

Figure 4-5.
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Figure 4-5. The “No. of Wines” measure returns 1 because the Wines dimension 
has been filtered down to one row for each evaluation

Notice too how “Lambrusco” wine returns a value because this measure filters only 

the Wines dimension and no other tables are involved.

 Calculation in the Total Row
This now brings us to the calculation for the Total row of the visual, which returns 

423,224; see Figure 4-6.

Figure 4-6. The Total row is evaluated in a different filter context
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This value is not the sum of the total values for each wine shown in the visual. When 

the measure is evaluated for the Total row, the filter is removed from the WINE column 

of the Wines dimension, so the expression is evaluated for all wines. In other words, it’s 

our expression “= SUM ( Winesales[CASES SOLD] )” calculated in yet another different 

filter context.

 Evaluations Using Multiple Filters
Let’s create some more filters that affect the Table visual. For instance, we could include 

a slicer using the SALESPERSON column from the SalesPeople dimension1 and also have 

the REGION column from the Regions dimension in a page-level filter2; see Figure 4-7.

Figure 4-7. Filters are now placed on the Table visual from the slicer and the page- 
level filter

1 For information on working with slicers, visit https://docs.microsoft.com/en-us/power-bi/
visuals/power-bi-visualization-slicers
2 For information on working with the Filters pane, visit https://docs.microsoft.com/en-us/
power-bi/create-reports/power-bi-report-filter?tabs=powerbi-desktop
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We’ve filtered salesperson “Abel” and region “Argentina”. You can see that the Total 

Cases value for “Bordeaux” is now 265 because the filter context has changed; WINE 

equals “Bordeaux”, SALESPERSON equals “Abel”, and REGION equals “Argentina”. Again, 

we can imagine how these tables might look in memory; see Figure 4-8.

Figure 4-8. The in-memory tables filtering the Table visual

You will notice, however, that the Total Stores measure is still returning the same 

value for every wine (i.e., 79). We will explain why presently.

Again, we can examine the data model (Figure 4-9) and can see how these filters 

propagate through the model and always arrive at the Winesales fact table, which is then 

cross-filtered accordingly.

Figure 4-9. Filters propagate through the data model and always arrive on the 
fact table
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Notice how the Regions table creates a “snowflake” in the schema because it’s 

indirectly related to the fact table via the Customers dimension. You can see how this 

arrangement of tables works; if the Regions table is filtered, for example, for “Argentina”, 

this filter is propagated through to the Customers dimension, so customers in Argentina 

are now filtered in memory. This filter is then propagated onward to the fact table.

Depending on how the visual is constructed and what filters affect the visual will 

determine the outcome of the measure. This now brings us to the “Total Stores” measure 

shown in Figure 4-1. Notice it returns the same value of 1,181 for every wine and also in 

the Total row. This measure is summing the NO. OF STORES column in the Customers 

dimension. The Customers dimension has no filter on it when this measure is evaluated. The 

only filter is on the Wines dimension. Therefore, for the evaluation of every wine, the measure 

sums the values in the NO. OF STORES column in the Customers table for all the customers.

Looking again at the data model (Figure 4-10), we can see that if the Wines 

dimension is filtered, this filter is propagated to the fact table (shown by the tick), but the 

filter is not propagated onward to the Customers dimension (shown by the cross), as the 

arrow always points from the one side of the relationship into the many.

Figure 4-10. Filters do not flow from the fact table to dimensions

Note Well, how do you correctly calculate the number of stores in which 
each wine has been sold? one thing not to do, tempting though it is, is to edit 
the relationship to a “bidirectional” filter. instead, you can use the Dax function 
CroSSFilter to programmatically reverse the direction of the filter propagation. 
We look at the CroSSFilter function later in this book.
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The filter context underpins all DAX measures and is the reason why it’s so 

important to distinguish between the two different types of table, dimension tables and 

fact tables, because they play two different roles in the evaluation of the measure:

• The role of dimension tables is to group the data and to propagate 

filters through the data model into the fact table.

• The role of fact tables is to summarize subsets of data that have been 

cross-filtered from dimensions.

DAX measures typically summarize data in the fact table that’s been cross-filtered by 

dimension tables.

So next time you’re wondering “why is my measure returning incorrect values,” 

it’s probably not the expression that’s at fault; it’s more likely because you haven’t 

understood the current filter context in which the measure has been evaluated.

 The Row Context
The filter context is not the only evaluation context that DAX uses. There is another 

evaluation context called the row context. Row context is applicable in any DAX 

expression that iterates the rows of a table where the expression is bound to the values in 

the current row. All calculated columns are evaluated in the row context and this is how 

they differ from measures, which are always evaluated in the filter context. However, just 

to make life difficult, some measures will use both the filter context and the row context 

in their evaluation. Also, there are some calculated columns whose row context can 

be turned into a filter context. We will be exploring these ideas as we move forward in 

this book.

To understand the row context, let’s again refer to what we know about Excel 

formulas. In an Excel table, the formula is “copied down” where it is calculated for every 

row in the column. An “@” character is used in the formula to denote using the values in 

the current row. This is essentially what the row context is in DAX. When using the row 

context, the DAX expression iterates over every row in the table, and the values used in 

the expression are the values sitting in the current row; see Figure 4-11.
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Figure 4-11. Both Excel table formulas and DAX calculated columns use values 
from the current row, known as the “row context” in DAX

We can understand that calculated columns would normally use the row context, 

but measures can also use the row context in their evaluation. But surely the nature of all 

DAX measures is to group and summarize data, not to perform row-level calculations. 

Well, measures can perform row-level calculations too, and this is where the behavior of 

iterators comes in, a concept we will explore in the next chapter.

However, let’s now summarize what you have learned in this chapter, and that is that all 

measures use the filter context in their evaluation. The filter context refers to filters that will 

be placed on the data model by the evaluation of the measure and depends on the construct 

of the visual in which the measure will be calculated and on any filters that impact on the 

visual. You now know also that there is a second evaluation context, the row context, where 

the DAX expression scans a table and performs row-level calculations as in the case of the 

calculated column. Understanding the two evaluation contexts that differentiate measures 

from calculated columns is the first major DAX concept that you have learned. Some people 

who have been using DAX, perhaps for some length of time, are often not able to explain 

this fundamental difference between measures and calculated columns.

Chapter 4  evaluation Context



59
© Alison Box 2022 
A. Box, Up and Running with DAX for Power BI, https://doi.org/10.1007/978-1-4842-8188-8_5

CHAPTER 5

Iterators
There is a group of functions in DAX that are referred to as iterators, and from their 

name, we can infer that these functions iterate tables in the evaluation of a DAX 

expression. Any DAX function that ends in an “X” is an iterator, such as the “X” 

aggregators: SUMX, AVERAGEX, MAXX, MINX, COUNTAX. There are also “X” iterating 

functions that aren’t aggregators such as CONCATENATEX and RANKX. Just to make life 

even more confusing, there are iterating functions that don’t end in “X” such as FILTER 

and ADDCOLUMNS.

We will explore the FILTER, CONCATENATEX, and RANKX functions later. The 

ADDCOLUMNS function is beyond the remit of the book, but hopefully it will be 

something you self-explore as your knowledge of DAX increases. The focus of this 

chapter will be the aggregating iterators: SUMX, AVERAGEX, MAXX, MINX, and 

COUNTAX.

Aggregating iterators have two arguments: the table to be iterated and the expression 

that is to be evaluated for each row of the table, the result of which will then be 

aggregated. These functions create a row context inside the measure by iterating the 

table referenced by the function, and each row in the table is “visited” in memory by the 

measure. Remember that the measure will have generated a filter context first, so the 

table being iterated may have a filter or cross-filter on it.

https://doi.org/10.1007/978-1-4842-8188-8_5
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Figure 5-1. The SUMX function iterates the cross-filtered fact table and performs a 
row-level calculation that is then summed by the measure

For example, consider the measure “10 PC Increase Total” being evaluated in 

Figure 5-1. Here, we are using the aggregating iterator SUMX in the measure to multiply 

in memory the CASES SOLD value in each row of the fact table by 1.1. The results of 

these row-level calculations are then aggregated to return a scalar value returned by the 

measure, for example, 59,477.00 for “Bordeaux” wine. In a similar way, we could have 

used AVERAGEX or MAXX or any of the iterating aggregators.

Measures that include iterating functions use the row context in their iteration and 

then use the filter context to generate the scalar value.

Let’s move forward now and explore these aggregating iterators in more detail, 

starting with SUMX.
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 The SUMX Function (and Other “X” Functions)
Now that you understand the purpose of DAX iterating aggregators, let’s get to know 

one of the major iterating functions in DAX, and that’s the SUMX function. We can then 

move on to explore other “X” aggregators.

SUMX returns the sum of an expression evaluated for each row in a table and has the 

following syntax:

= SUMX ( table, expression )

where:

table is the table where you want to perform the calculation.

expression is the calculation you want to be performed for each row in that table.

Here’s an example of the SUMX syntax:

= SUMX ( Winesales, Winesales[CASES SOLD] * 0.1 )

To illustrate the use of SUMX, let’s start with this rather unrealistic but easy-to- 

understand scenario. We have been asked to find any CASES SOLD value that is greater 

than 100 and increase this value by 20%; otherwise, we only increase the value by 10%. 

Perhaps this is some strange way of predicting next year’s volume of cases sold, so 

we’ll call this calculation “Next Yr Cases”. We then want to see what the “Next Yr Cases” 

value would be for each of our wines.

If we didn’t know how to use SUMX, we would probably do this calculation in a 

clumsy way using both a calculated column and an implicit measure. We might create 

this calculated column using the IF function as shown in the following and then use an 

implicit measure by dragging the calculated column into the Values bucket of a Table 

visual; see Figure 5-2.
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Figure 5-2. Creating a calculated column to be used as in implicit measure isn’t 
efficient

But let’s think this through. We don’t need to first create a calculated column to see 

the increased value for each row and then in another step sum this value for each wine, 

using an implicit measure. We can do it all in one go using SUMX. If we do this, the 

requirement for the calculated column is redundant; we can just use the measure. This is 

the real benefit because measures are always more efficient than calculated columns.

This is the explicit measure using SUMX that we can use instead of the calculated 

column/implicit measure combination:

Next Yr Cases Measure =
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SUMX (

    Winesales,

    IF ( Winesales[CASES SOLD] > 100,

        Winesales[CASES SOLD] * 1.2,

        Winesales[CASES SOLD] * 1.1

    )

)

How does the SUMX measure work?

We know that SUMX sums the expression evaluated for each row in the table. The 

first argument in SUMX references the table where the calculation will be performed, 

in our case, Winesales. The second argument is the calculation you want to be done in 

memory for each row in this table. This is our expression using IF that SUMX calculates 

in memory by iterating every row. It then sums the results of this calculation, in this case, 

for each wine (because that’s the current filter context for the evaluation of the measure).

Now that we have discovered the SUMX function, we can revisit a calculation we 

learned to author in Chapter 3, and that’s the “Sales” calculation that’s currently sitting in 

a calculated column; see Figure 3- 6. Do you remember we created this column using the 

RELATED function?

Sales =

Winesales[CASES SOLD] * RELATED ( Wines[PRICE PER CASE] )

We then used this column in an implicit measure to find the total sales, but this 

wasn’t the most efficient way of accomplishing this task. Well, now we can write a 

measure that will be our definitive “Total Sales” calculation using SUMX, as follows:

Total Sales =

SUMX (

    Winesales,

    Winesales[CASES SOLD] * RELATED ( Wines[PRICE PER CASE] )

)

This is a much cleaner way to calculate our Total Sales. The SUMX function iterates 

the Winesales table, and for every row in the current filter context, it multiplies the value 

in the CASES SOLD column with value in the PRICE PER CASE column of the Wines 

table (using RELATED to find the price of the wine in the current row context). It then 

sums the results of these row-level calculations for each wine.
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Tip select a measure and use the Measure tools tab and the Formatting group to 
format your measures in the currency of your choice.

In a similar way, if you want to find the maximum sales or the average sales, the DAX 

measures would be these respectively:

Max Sales =

MAXX (

    Winesales,

    Winesales[CASES SOLD] * RELATED ( Wines[PRICE PER CASE] )

)

Avg Sales =

AVERAGEX (

    Winesales,

    Winesales[CASES SOLD] * RELATED ( Wines[PRICE PER CASE] )

)

You can see the results of these measures in Figure 5-3.
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Figure 5-3. Measures using SUMX, AVERAGEX, and MAXX

Let’s explore another example of using AVERAGEX by calculating the average price 

that our customers have paid for their wines. We need to first find the price of every 

transaction (in the current filter context) in the Winesales table and then calculate the 

average of these prices, so the measure would look like this:

Average Price =

AVERAGEX (

    Winesales,

    RELATED ( Wines[PRICE PER CASE] )

)

The “Average Price” measure uses the RELATED function to calculate the price of 

each transaction in memory, and AVERAGEX then averages these prices. You can see the 

results of this measure in Figure 5-4.
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Figure 5-4. Calculating the average price that customers paid for their wines

This may seem a simple measure, but even some experienced DAX users struggle 

to get it right, so let’s explain its evaluation. We can see in Figure 5-4 that the filter 

context is on the CUSTOMER NAME column of the Customers dimension and “Black 

River & Co” is the first instance. The Winesales fact table is cross-filtered to contain only 

this customer’s sales. The RELATED function, nested inside AVERAGEX, in memory 

calculates the PRICE PER CASE value from the Wines dimension for each row in the 

Winesales table for “Black River & Co.” The AVERAGEX function then finds the average of 

these prices (it sums the prices and divides by the number of rows in the Winesales table 

for this customer).

 Total Row Grief
This brings us to another common problem for people who are new to DAX: 

understanding the calculation on the Total row of a Table or Matrix visual. People often 

complain that it’s not correct. This is probably because they’ve used the SUM function 

when they should have used SUMX.
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Consider the measures in Figure 5-5 that compare the “Total Sales” measure to 

the “Total Sales Wrong” measure. You can see that for each wine, the “Total Sales” and 

the “Total Sales Wrong” measures both return correct results. But when the measures 

evaluate the Total row, the “Total Sales Wrong” measure shows an incorrect result.

Figure 5-5. The Total row calculation is incorrect for the “Total Sales 
Wrong” measure
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So what is the problem with “Total Sales Wrong” when it evaluates the Total row? 

The problem, as is often the case, will be found within the filter context. Remember what 

we learned earlier; the Total row calculation is not the sum of the total values you see in 

the visual. In the Total row, the measure is evaluated in a different filter context where 

the filter has been removed from the WINE column. So let’s look at how things can easily 

go awry. This is the measure for “Total Sales Wrong”: 

Total Sales Wrong =

SUM ( Winesales[CASES SOLD] ) * SUM ( Wines[PRICE PER CASE] )

Let’s also extract the two constituent expressions into their own separate measures:

Total Cases =

SUM ( Winesales[CASES SOLD] )

Sum Price =

SUM ( Wines[PRICE PER CASE] )

Our “Total Sales Wrong” measure is multiplying the results of these two expressions; 

refer to Figure 5-5.

You can see that the problem lies in using SUM, particularly in trying to sum the 

PRICE PER CASE values. What is the sum of these values? It’s the sum of the price in the 

current filter context. So for the evaluation of each wine, it’s simply the price of the wine, 

for example, $75 for “Bordeaux”; see Figure 5-6.

Figure 5-6. The sum of the price on the evaluation of each wine is the price of 
the wine

Multiplying this value by the sum of the cases sold for each wine gives the correct total 

sales value when evaluating each wine. But for the evaluation of the Total row, the filter 

has been released from the WINE column, so the “SUM ( Wines[PRICE PER CASE] )” 

 expression sums the prices for all the wines and returns $917, see Figure 5-7. It is this 

value that is multiplied by the sum of the cases sold.
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Figure 5-7. The sum of the prices on the evaluation of each Total row

So in the “Total Sales Wrong” measure, the Total row calculation is the sum of the 

prices for all the wines multiplied by the sum of cases for all the wines: 917 x 423,224 = 

388,096,408.

The incorrect expression using SUM sums and then multiplies. The correct 

expression using SUMX multiplies and then sums.

The SUM function should only be used in the simplest of measures to sum the values 

in a single column and never when you want to sum the results of multiplications or 

other calculations. In fact, even when you use the SUM function in a DAX expression, 

this is converted internally by the DAX engine into SUMX.

So for instance, this expression

=SUM ( Winesales[CASES SOLD] )

is converted internally to this:

=SUMX ( Winesales, Winesales[CASES SOLD] )

In learning about iterators and how to use SUMX and the other “X” iterating 

functions, we’re progressing well into more difficult areas of DAX. We’ve also shed light 

on other challenging areas of DAX, such as the filter context and the nature of measures. 

You’ve learned some other important concepts too, understanding the role of fact 

tables and dimensions within the data model, but we’re still only starting out.

The real power behind DAX is still waiting in the wings for us to discover, and that’s 

the use of the function called CALCULATE.
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CHAPTER 6

The CALCULATE Function
CALCULATE is the most important function in DAX. Quite a sweeping statement you 

might think but as soon as you get to grips with CALCULATE, you’ll quickly realize 

that there won’t be many expressions you author in DAX where this function won’t be 

required, even though you might think we’ve done pretty well up to now. In this chapter, 

you will learn how to construct expressions using CALCULATE which you will find 

relatively straightforward. It’s understanding when and why you must use CALCULATE, 

and its purpose inside the measure, that will be more challenging to grasp, and so this 

will be the true focus of this chapter.

 Why You Need CALCULATE
Let’s look at solving a scenario that will explain how CALCULATE can help us. In our 

data model, we have our DateTable dimension that is related to the Winesales fact table 

by the DateTable[DATEKEY}column and the Winesales[SALE DATE] column as shown in 

Figure 6-1.

https://doi.org/10.1007/978-1-4842-8188-8_6
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Figure 6-1. The DateTable dimension is related to the fact table

If we filter on the YEAR column in the DateTable, the filter will propagate to the 

Winesales table to filter the sales for that year. We’ve been asked to carry out a specific 

analysis of our data. For each of our wines, we would like to calculate what percentage 

the total cases sold for 2021 is of the total cases sold for all years as shown in Figure 6-2.
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Figure 6-2. A Table visual showing what percentage the cases sold for 2021 are of 
the total for all years

In other words, in the same visual, we need to have both the “Total Cases” measure 

for all years and the “Total Cases” measure filtered for the year 2021. We can then divide 

“Total Cases” for all years into “2021 Cases” and express this as a percentage.

If you look at the example in Figure 6-3, you can see that we have copied and pasted 

the “Total Cases” measure and named it “2021 Cases”.
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Figure 6-3. We can copy a measure and attempt to apply filters to the 
copied measure

We want to see if we can filter the “2021 Cases” measure to show values for 2021, 

while at the same time the “Total Cases” measure shows values for all years. However, we 

have a problem. If we use a slicer to filter the YEAR column from the DateTable, it filters 

both measures; see Figure 6-4.
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Figure 6-4. Filters are applied to all measures in the visual

It seems that we must find a way to apply different filter contexts for different 

measures in the same visual. However, as yet, any filters being used by a visual, be they 

from the visual itself, from slicers, or from filters in the filters pane, apply the same filter 

to all the measures in the visual. We can’t yet pick and choose which filters affect which 

measures. At the moment it’s all or nothing. This is where the CALCULATE function can 

help us.

Note at this juncture, the slicer filtering the Year column can be removed from 
the canvas as it does not impact the data as required and is now redundant.

CALCULATE evaluates an expression in a modified filter context and has the 

following syntax:

= CALCULATE ( expression , filter1 , filter2 etc. )

Chapter 6  the CaLCULate FUnCtion



76

where:

expression is what you want calculated. This can be a DAX expression or a measure 

that defines an expression.

filter1, filter2, etc. is how you want to filter the expression or measure. You can 

have multiple filters, and these are combined in an “AND” logical statement.

Here are two examples of the CALCULATE syntax:

= CALCULATE ( SUM ( Winesales[CASES SOLD] ), Wines[WINE] = "Bordeaux" )
= CALCULATE ( [Total Cases], Wines[WINE] = "Bordeaux" )

The first example uses an expression in the expression argument, and the second 

uses a measure in the expression argument (highlighted in gray).

This is the first time that we have nested a measure inside a “parent” measure. Note 

that when you type your expression in the DAX editor, if you type a square bracket “ [ ”, 

IntelliSense will list only measures; see Figure 6-5.

Figure 6-5. Typing a square bracket “ [ ” into the DAX editor, lists all your 
measures

CALCULATE takes an expression or a measure and evaluates it in a different filter 

context from the active filters coming through from the visual, slicers, or the filters 

pane. The end result of this new filter context generated by CALCULATE depends on 

the current state of the active filters. This is what is meant by the filter context being 

“modified” in the description of CALCULATE. However, rather than trying to explain 

what CALCULATE does, perhaps it’s easier to work through some examples.
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 Using Single Filters
Back to our scenario. In the Table visual in Figure 6-4, how do we generate a measure to 

calculate the Total Cases for 2021 while retaining the measure that calculates Total Cases 

for all years? This is the measure, using CALCULATE that will do the job:

2021 Cases =

CALCULATE ( [Total Cases], DateTable[Year] = 2021)

Now we can create the final measure that will calculate the percentage that each 

wine’s total cases for 2021 are of the total for all years and format it as percent:

2021 Percentage =

 [2021 Cases] / [Total Cases]

Or better still:

2021 Percentage =

DIVIDE ( [2021 Cases], [Total Cases] )

Note the DiViDe function returns a blank value by default if there is a divide by 
zero error, so using DiViDe is the preferred method of performing divisions.

When we put either of these measures into a Table visual, we can see that the total 

cases for “Bordeaux” wine in 2021 comprised 27.63% of the total cases for “Bordeaux” 

wine for all years (2017 to 2021).

Let’s look more closely at the evaluation of the “2021 Cases” measure in Figure 6-2. 

We can see that coming through from the Table visual, we have a filter on the WINE 

column in the Wines dimension. However, using the “2021 Cases” measure, CALCULATE 

in memory also filters the DateTable dimension so that YEAR equals 2021. This filter is 

then applied to the Winesales fact table alongside the filter coming through from the 

Wines dimension; see Figure 6-6.
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Figure 6-6. How filters propagate for the “2021 Cases” measure:

 1. The current filter context filters each WINE in the Wines 

dimension. This filter is propagated to the Winesales table and 

cross-filters each wine.

 2. The filter provided by CALCULATE programmatically filters the 

DateTable for the year “2021”. This filter is also propagated to the 

Winesales table and so applies a second cross-filter on Winesales.

The thing to note here is that the 2021 filter on the DateTable dimension only affects 

the evaluation of this measure and no other measures in the visual. You can think of 

CALCULATE as being a way to programmatically generate a filter context in memory that 

interacts with active filters coming through from the visual, slicers, and the filters pane.

Let’s now explore some more examples of using CALCULATE. For example, let’s 

calculate the total sales where the CASES SOLD value is greater than 350.

Total Sales for Cases Sold Greater than 350 =

CALCULATE (

    [Total Sales],

    Winesales[CASES SOLD]  > 350

)

 Using Multiple Filters
CALCULATE accepts multiple filter arguments that are combined in an AND logical 

statement. If you require an OR statement, you can use the OR operator or the OR 
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function within a single filter argument inside CALCULATE, and we will be exploring 

both of these scenarios. You can also use more complex filters that require aggregate 

expressions inside the filter arguments of CALCULATE, and we will be moving forward 

to understand these expressions too.

 AND and OR Filters
The following are three more examples of measures that use CALCULATE to modify 

the filter context. Notice how all the filter arguments to CALCULATE are combined in 

an “AND”.

Total Cases in May 2021 =

CALCULATE (

    [Total Cases],

    DateTable[YEAR] = 2021,

    DateTable[MONTH] = "may"

)

Total Cases for Abel in Argentina =

CALCULATE (

    [Total Cases],

    SalesPeople[SALESPERSON] = "abel",

    Regions[REGION] = "argentina"

)

Average Cases for Black Ltd in 2021 =

CALCULATE (

    AVERAGE ( Winesales[CASES SOLD] ),

    DateTable[Year] = 2021,

    Customers[CUSTOMER NAME] = "black ltd"

)

You can see the results of these expressions using the WINE column from the Wines 

dimension in Figure 6-7.
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Figure 6-7. Measures using multiple filters generated by CALCULATE

In the preceding examples, filter arguments in CALCULATE are combined in an 

“AND” statement, for example, cases sold for 2021 AND May. However, what if you 

require a filter that uses “OR”, for example, 2021 OR 2020. Using CALCULATE, filtering 

using “OR” on the same column is straightforward. Filtering using “OR” on different 

columns is a little more challenging, and this is where our calculations will get a little 

trickier. Let’s take the simpler calculations first.

To use “OR” on the same column, you can use the double pipe ( || ) operator within 

the same filter argument, as in these examples:

Total Cases 2020 or 2021 =

CALCULATE ( [Total Cases],

    DateTable[YEAR] = 2021

       || DateTable[YEAR] = 2020

)
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Average Cases Argentina or Australia =

CALCULATE (

    AVERAGE ( Winesales[CASES SOLD] ),

    Regions[REGION] = "argentina"

        || Regions[REGION] = "australia"

)

You can also use the OR function, but unlike Excel, you can only put two parameters 

into the DAX OR function as in this example:

Average Cases Argentina or Australia =

CALCULATE (

    AVERAGE ( Winesales[CASES SOLD] ),

    OR ( Regions[REGION] = "argentina",

        Regions[REGION] = "australia")

)

 Complex Filters
Let’s take another example of an “OR” filter. For example, we may want to find Total Sales 

for red wines OR French wines using the TYPE and WINECOUNTRY columns in the 

Wines table, respectively, and use this to analyze our salespeople’s performance of these 

wines. This would be the expression:

Sales for Red or French #1=

CALCULATE (

    [Total Sales],

    Wines[TYPE] = "red"

        || Wines[WINE COUNTRY] = "France"

)

This measure appears to work just fine as you can see in Figure 6-8.
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Figure 6-8. The “Sales for Red or French #1” measure evaluated for each 
salesperson

However, experienced DAX users would be surprised that this expression was valid 

and would expect an error message as shown in Figure 6-9 that states

“The expression contains multiple columns, but only a single column can 
be used in a True/False expression that is used as a table filter expression.”

Figure 6-9. This error message was removed in the March 2021 update of 
Power BI

This message tells us that referencing two columns from the same table in a single 

filter is not allowed. In fact, the expression using “OR” on different columns has only 

become legitimate since the March 2021 update of Power BI.

However, although it appears to now be valid, there is still an inherent problem with 

it. This expression doesn’t respond correctly to specific filter selections. To show this, we 

have written an alternative measure, “Sales for Red or French #2”, and can now compare 

the two versions of this expression in a Table visual where we are filtering “Red” wines 

via the slicer; see Figure 6-10.
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Figure 6-10. Using “OR” on different columns from the same table doesn’t respond 
correctly to specific filters

You will see that the measure “Sales for Red or French #1” doesn’t respond to filters 

from the slicer that uses the TYPE column from the Wines dimension. It continues to 

calculate sales for both red or French wines disregarding the slicer. The second measure, 

“Sales for Red or French #2”, however, does show just sales for red wines. We will look at 

the details of this measure in the chapter on the FILTER function, but for the moment, 

we have to ask this question: Why has an expression that filters two different columns 

from the same table been invalid until recently, and now that we are allowed to do it, 

why doesn’t it calculate correctly with a filter on the TYPE column?

Let’s look more closely at the problem. When you have a filter on just one column, 

the rows of the table are filtered in memory where the filter criterion on the column 

equates to true. But when you place filters on multiple columns, you can only further 

reduce the rows. For example, once you’ve filtered out the red wines, you can only then 

filter the red wines that are French.

How can we solve this predicament? One way is to ensure that there are no filters on 

either the Wines[TYPE] column or the Wines[WINE COUNTRY] column so that in every 

evaluation, values in both columns are considered. This is the route that DAX takes in 

the expression “Sales for Red or French #1”.
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Note it’s beyond the scope of this chapter to elaborate on the details of the 
“Sales for red or French #1” expression or why it returns errors in the presence of 
certain filters. however, we do uncover the problem in Chapter 18. all we need to 
note at this stage is that the expression doesn’t always return the correct result.

Is there an alternative approach? Perhaps we could try this; rather than applying 

filters directly to columns, we could filter out the rows that we want to evaluate instead. 

For example, we could iterate the rows in the Wines dimension, and if we find a red 

wine, filter the row out, or if we find a French wine, filter that row out too. We could then, 

in memory, build a new virtual table comprising just the rows for wines that are red or 

French. This in-memory virtual Wines table that has been filtered to just the rows we 

need could then propagate that filter to the Winesales fact table, just like the “real” Wines 

dimension filtering the Winesales table. Would that work?

Well yes, it would because in DAX, there is a group of functions called “table” 

functions that generate in-memory virtual tables that, when used inside CALCULATE, 

will propagate filters just like “real” tables. Now that we know this, all that remains 

for us to discover is the name of the table function that will generate our virtual table 

containing just the rows for red or French wines.

Before we find this function, however, there’s a little more learning to be done. We 

need to look more closely at the different types of DAX functions and particularly to 

understand what we mean by “table functions.” Then we can solve our “red or French” 

conundrum.
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CHAPTER 7

DAX Table Functions
A skill that will serve you well when working with DAX is a good imagination. You’ve 

already learned to construct a picture in your mind of the current filters that are 

propagating through the data model. The scanning of tables by iterators can only be 

envisaged, and designing the correct CALCULATE expression is done through inferring 

what filters must be changed. There is yet another aspect of DAX that is hidden from us, 

and that therefore must be imagined. That is the generation of virtual tables. Much of 

your DAX code will involve building in-memory tables that are used in the evaluation 

of the measure. In this chapter, we are going to explore this concept, how we create 

table expressions through the use of table functions, and their purpose in manipulating 

the data model. In doing so, we will be focusing on the most ubiquitous of the table 

functions, and that is the FILTER function.

 Types of DAX Functions
In DAX, we can divide functions into three categories depending on the type of value the 

functions return; see Table 7-1.

https://doi.org/10.1007/978-1-4842-8188-8_7
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Table 7-1. Types of DAX functions

Function 
Type

Example Description

Scalar 
Functions

Return scalar values.

e.g., SUM, COUNTROWS, 

SUMX, CALCULATE

These functions return a scalar or single value and are used 

in all measures.

Table 
Functions

Return virtual tables.

e.g., FILTER, VALUES, 

PREVIOUSMONTH, ALL

Table functions are used to generate “virtual” tables that 

propagate filters through the data model in the same way as 

“real” tables. The virtual tables are typically subsets of rows 

or subsets of columns of the original table, but they can 

expand the number of rows in the case of the ALL function.

Because measures must always return scalar values and 

not tables, table functions are always nested inside scalar 

functions.

CALCULATE 
Modifiers

Modify the filter 

arguments of 

CALCULATE.

e.g., CROSSFILTER, 

USERELATIONSHIP, 

KEEPFILTERS, ALL

We’ll meet this type of function later. These functions 

change the behavior of any filters generated by CALCULATE 

and so are always nested inside CALCULATE. These 

functions don’t return any value.

Note The ALL function is both a Table function and a CALCULATE modifier. We’ll 
look more closely at this later.

How do you know what type of function you are using? The best way is to consult the 

DAX Function Library here: https://docs.microsoft.com/en-us/dax/dax-function-

reference, and it will tell you what a DAX function returns; for example, the FILTER 

function returns “a table containing only the filtered rows,” see Figure 7-1.
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Figure 7-1. Use the DAX Function Library to check the function type

We’ve already explored some scalar functions, and we’ll meet some more in later 

chapters such as the SELECTEDVALUE function. We will also delve into CALCULATE 

modifiers like CROSSFILTER, USERELATIONSHIP and ALL later on. In this chapter, we 

will focus only on table functions.

 Table Functions
Table functions create table expressions and can be used for two purposes:

 1. To generate additional tables in your data model using the New 
Table button. These are referred to as calculated tables. If this is 

your requirement, the recommendation is that new tables are 

generated using Power Query, not DAX.

 2. To generate in-memory virtual tables as part of the evaluation of 

measures.

In this chapter, we will only be considering the latter of these, the generation of 

virtual tables using table expressions inside DAX measures.

Table expressions can be used in measures wherever a function accepts a “table” 

as one of its arguments or as the filter argument inside CALCULATE. Up to now, we’ve 

always referenced an actual table inside functions like COUNTROWS or SUMX, but 

we can use a table expression instead. Inside CALCULATE, we’ve created Boolean 
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expressions as column filters, but we could also use table expressions. When creating 

measures, table expressions are always nested inside functions that return scalar values 

and are never used on their own.

 Examples of Table Expressions
Consider the expressions in Figure 7-2 where, in place of referencing a table, we’re using 

a table expression instead.

Figure 7-2. Examples of table expressions

These examples use a table function called VALUES. You don’t need to know at this 

stage what the VALUES function is doing (we’ll meet VALUES in a later chapter). You just 

need to understand that it’s a table expression being used as the “table” argument or as 

the “filter” argument inside CALCULATE.
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 Why Do We Need Table Expressions?
There are two very different reasons why we use table expressions inside DAX measures.

Nested inside any other function other than CALCULATE, table expressions supply 

the “table” argument and often create subsets of the original table, either subsets of rows 

or subsets of columns. For example, FILTER nested inside SUMX will normally generate 

a table with fewer rows for SUMX to iterate. As we will discover in later chapters, some 

table functions are also used to generate “hybrid” tables that comprise combinations of 

columns from different tables.

On the other hand, as filter arguments inside CALCULATE, table expressions 

generate virtual tables that are used as filters. Understanding the use of table expressions 

as filter arguments inside CALCULATE is a challenging concept to new DAX users, and 

we’ll be exploring this concept in detail as we move through this chapter.

However, we will begin our journey through table functions by understanding the 

use of the most common table function in DAX, and that is FILTER.

 The FILTER Function
The FILTER function returns a table that is a subset of another table and has the 

following syntax:

= FILTER ( table , filter )

where:

table is the table that you want to filter. The table can also be supplied by another 

table function.

filter is the filter you want to apply to the table as a Boolean expression, for example, 

“Wines[TYPE]= "red".

Here is an example of the FILTER function syntax:

= COUNTROWS ( FILTER ( Wines, Wines[TYPE]= "red" ) )

FILTER as a table function can be used to generate table expressions as explained in 

“Why Do We Need Table Expressions?” section. We’ve learned that these functions have 

different behaviors depending on whether they are used to change the shape of the data, 

such as reducing the rows considered by an expression, or whether they are used inside 

CALCULATE. The FILTER function is no exception, so let’s now consider these two 

behaviors.
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 FILTER Used to Reduce Rows
For instance, we could calculate the number of high-volume sales where high volume is 

any transaction where the CASES SOLD value is greater than 300. To do this, we can use 

FILTER nested inside COUNTROWS to count the rows of the filtered Winesales table as 

in the following expression:

No. of High Volume Sales =

COUNTROWS ( FILTER ( Winesales, Winesales[CASES SOLD] > 300 ) )

You can see the result of this measure in Figure 7-3. FILTER can also be nested inside 

SUMX, whereby the number of rows in the table iterated by SUMX will be reduced by 

FILTER. For example, the “Total Sales” measure that we authored in Chapter 5  

could be extended to filter the sales where the volume of cases is greater than 300 

(shown in Figure 7-4):

Cases GT 300 =

SUMX (

    FILTER ( Winesales, Winesales[CASES SOLD] > 300 ),

    Winesales[CASES SOLD] * RELATED (Wines [PRICE PER CASE] ))

Figure 7-3. Using FILTER nested inside COUNTROWS to calculate the number of 
high-volume sales
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Figure 7-4. Using FILTER nested inside SUMX to calculate the sales value where 
cases sold is greater than 300

However, if you want to use this calculation, this is not the best expression for doing 

the job. We will be discovering that FILTER is an iterator, and in this respect, it will scan 

the Winesales fact table that may contain many millions of rows. We will be exploring 

later in this chapter more efficient ways of performing this task.

 FILTER as the Filter Argument of CALCULATE
If FILTER is used in a filter argument of CALCULATE, FILTER generates an in-memory 

table that is used to filter the data model, just as dimensions filter the data model.

Before March 2021, it was a requirement to use the FILTER function inside 

CALCULATE in the following two situations:

 1. When the filter includes more than one column from the 

same table

 2. When the filter includes an expression

However, it is now possible to omit the FILTER function when filtering two or more 

columns in the same table, but depending on slicer selections, the measure can still fail. 

It is also now possible to omit FILTER if the expression is a simple Boolean test using 

an aggregate function, such as AVERAGE, but using any other expression in the filter 

argument still requires the use of FILTER.

For people new to DAX, it is very important to understand that the new syntax, where 

FILTER is no longer required in the situations outlined before, is a recent development 
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(DAX was first introduced in 2009). Any DAX resources you browse or any code you copy 

and paste will most probably be using the old syntax using FILTER.

With this in mind, let’s return to our “Sales for Red or French #1” measure we 

authored when exploring the CALCULATE function in the previous chapter. This was the 

measure:

Sales for Red or French #1 =

CALCULATE (

    [Total Sales],

    Wines[TYPE] = "red"

        || Wines[WINE COUNTRY] = "France" )

This expression returns incorrect results if there is a filter on the TYPE column or the 

WINE COUNTRY column, assuming that if you are slicing, you now want to calculate 

sales only for red wines and French wines, not red or French wines, which is the current 

calculation. If so, the correct values are shown in the “Total Sales” measure on the left in 

Figure 7-5 as this measure is responding to the filters in the slicers.

Figure 7-5. Omitting FILTER can return incorrect results
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Note You will learn later in this book the precise details as to why the “#1” 
measure returns incorrect results when there is a filter on either TYPE or 
WINECOUNTRY.

We established that the root of the problem lies in the fact that we’re using two 

different columns in our filter and indeed in earlier days, we were prevented from 

authoring such code. To resolve this problem, we need to use the table function FILTER 

inside CALCULATE. So let’s now get to grips with how we can use FILTER in this context 

and use it to author the correct version of the measure, “Sales for Red or French #2”:

Sales for Red or French #2=

CALCULATE (

    [Total Sales],

          FILTER ( Wines, Wines[TYPE] = "red"

      ||  Wines[WINE COUNTRY] = "France" )

)

In Figure 7-6, you can see the measure evaluated when put into a Table visual. We’ve 

also included the “Total Sales” measure to provide context and clarity on the evaluation.

Figure 7-6. The calculation of the “Sales for Red or French #2” measure

See Figure 7-7 for a step-by-step guide through the evaluation of this measure. 

In the “Sales for Red or French #2” measure, FILTER is nested inside CALCULATE to 
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provide the filter argument. The FILTER function is an iterator. We met iterators when 

we looked at the SUMX function in Chapter 5. These are functions that scan a table 

on a row-by-row basis and in the case of FILTER perform a test on each row. If the test 

applied by FILTER is true for a row, that row is extracted to a virtual table of its own. This 

virtual table, used as the filter argument to CALCULATE, is then used to propagate filters 

through the model just like a “real” table.
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Figure 7-7. Stepping through the “Sales for Red or French #2” measure 
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 1. The FILTER function iterates the Wines table in memory and 

filters any rows where TYPE = “red” or WINECOUNTRY = 

“France”.

 2. FILTER generates an in-memory virtual table containing only 

those rows where the test is true.

 3. The virtual table generated by FILTER is used as the filter 

argument to CALCULATE to filter the Winesales table.

We’ve been examining the use of the FILTER function to perform an “OR” test on two 

different columns of the same table. Let’s look at another example with the same issue.

Consider the scenario where you want to find the number of sales (i.e., the number 

of rows in the Winesales table) for high profit wines. High profit wines are where wines 

have a price that is three times the cost price. This test involves two columns in the 

Wines dimension, PRICE PER CASE and COST PRICE, and therefore, it’s recommended 

that you use FILTER. These are the measures you can use:

No. of Sales =

COUNTROWS ( Winesales )

No. of Sales of High profit Wines =

CALCULATE (

   [No. of Sales],

   FILTER ( Wines, Wines[PRICE PER CASE] >= Wines[COST PRICE] * 3 )

)

We’ve included the expression for “No. of Sales” that we will nest inside the “No. of 

Sales of High profit Wines” measure. You can see this measure calculated in Figure 7-8.
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Figure 7-8. Finding high profit wines

You will notice again that FILTER can be omitted here because expressions using 

different columns from the same table are now valid. However, take note that if you had 

a filter on either the PRICE PER CASE column or the COST PRICE column, you would 

not see correct values being returned. Therefore, it is recommended that you use FILTER 

nested inside CALCULATE whenever more than one column is being referenced.

However, we also need FILTER whenever we need to use an expression in the filter 

argument in CALCULATE. We’ve set out two examples of this requirement where we are 

calculating the following:

 1. The number of sales where the total sales values are greater than 

20,000. We are using the “Total Sales” measure in the filter test.

 2. The number of sales that are greater than the average sales value. 

To calculate the average sales, we are using the AVERAGEX 

expression that you learned in Chapter 5.

First, we have authored the “wrong” version of the measures that omits the FILTER 

function. These expressions will return error messages. We have then authored the 

correct expressions using FILTER. Therefore, it’s important that you understand that 
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FILTER is required when you use any expression in the filter test of CALCULATE. We have 

highlighted in gray the FILTER expressions to help clarify the code used:

Sales Greater than 20K Wrong =

CALCULATE ( [No. of Sales], [Total Sales] > 20000 )

Sales Greater than 20K =

CALCULATE ( [No. of Sales],

       FILTER ( Winesales, [Total Sales] > 20000 ) )

Sales Greater than Avg Wrong =

CALCULATE (

    [No. of Sales],

    [Total Sales]

        > AVERAGEX (

            Winesales,

            Winesales[CASES SOLD] *

                       RELATED ( Wines[PRICE PER CASE] )

        )

)

Sales Greater than Avg =

CALCULATE (

    [No. of Sales],

    FILTER (

        Winesales,

        [Total Sales]

            > AVERAGEX (

               Winesales,

               Winesales[CASES SOLD] *

                          RELATED ( Wines[PRICE PER CASE] )

            )

    )

)

However, if the requirement is to calculate the number of sales that are greater than 

the average cases sold, this expression does not require FILTER because it’s using the 

simple aggregate function AVERAGE. Since September 2021, we are now allowed to 
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author code that uses the simple aggregate functions, such as AVERAGE or MAX in the 

predicate as follows:

Cases GT Avg =

CALCULATE (

    [No. of Sales],

    Winesales[CASES SOLD] > AVERAGE ( Winesales[CASES SOLD] )

)

However, experienced DAX users would probably prefer to see this measure 

expressed using FILTER:

Cases GT Avg =

CALCULATE (

    [No. of Sales],

    FILTER ( Winesales, Winesales[CASES SOLD]

           > AVERAGE ( Winesales[CASES SOLD] ) )

)

In this section on the FILTER function, you have learned that FILTER generates a 

virtual table that can be used in the filter argument of CALCULATE. This virtual table is 

used to filter the data model just like “real” tables do.

This leads us to another aspect of the FILTER function (and indeed table functions 

generally) that we need to explore in more detail, and that’s the difference between using 

a table expression as a filter inside CALCULATE and using a simple column filter instead.

 Column Filters vs. Table Filters
What you have learned is that in the “filter” argument to CALCULATE, you can supply 

two types of filter: a filter using a column and/or a filter using a table. In short, within 

CALCULATE, there are two ways to modify the filter context: using columns or using 

tables. What you need to understand now is that there will be a considerable difference 

in the evaluation of a measure depending on which type of filter you choose.

So far in this book, the only table function we’ve met is the FILTER function, so we’ll 

use FILTER to illustrate the difference between column filters and table filters but to 

appreciate that it’s relevant to all table expressions used as filters inside CALCULATE.
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Note We’ll be exploring a number of other table functions as we move through 
this book such as ALL, VALUES, and the functions known as “time intelligence.”

Why do we need to distinguish between table filters and column filters? There are 

essentially two reasons why this difference is important:

 1. Because the DAX engine has to generate the virtual tables, table 

filters take longer to process.

 2. Your measure may return a different result depending on the 

filter type.

We will now explore these two scenarios. In the first example, we look at how table 

filters increase the processing weight of the measure. In the second example, we will see 

that table filters can produce different results from column filters.

 Table Filters Are Less Efficient
In this example, let’s take two similar expressions using CALCULATE. The first uses 

a column filter and the second, a table expression as the filter argument. In both 

expressions, we are filtering the rows in the Winesales fact table that contain cases sold 

greater than 300.

Cases GT 300 #1 =

CALCULATE ([Total Sales], Winesales[CASES SOLD] > 300 )

Cases GT 300 #2 =

CALCULATE (

    [Total Sales],

    FILTER ( Winesales, Winesales[CASES SOLD] > 300 )

)

You can see in Figure 7-9 that both these measures return the same result, so how 

does the table filter differ from the column filter? To answer this question, we must look 

more carefully at the evaluation of each of these measures, taking the evaluation of 

“Grenache” wine that returns $310,530 as our example.
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Figure 7-9. The measures return the same result

When measure “Cases GT 300 #1” is evaluated, a filter is placed on the CASES SOLD 

column to filter values greater than 300. The Total Sales values are then calculated for the 

filtered rows of the Winesales table; see Figure 7-10.
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Figure 7-10. Stepping through the “Cases GT 300 #1” measure

 1. The wine “Grenache” is filtered in the WINE column of the Wines 

table and is cross-filtered to the Winesales table that only now 

contains rows for “Grenache”.

 2. The CASES SOLD column in the Winesales table is further filtered in 

memory to contain only the rows for this wine that are greater than 

300. The “Total Sales” measure is then calculated for just these rows.

 3. Note the filter on the CASES SOLD column.

When the measure “Cases GT 300 #2” is evaluated, the FILTER function iterates the 

Winesales table to extract rows where the CASES SOLD is greater than 300 into a virtual 

table (remembering that Winesales is filtered to just contain “Grenache” wines). The 

total sales for the virtual table generated by FILTER are then calculated; see Figure 7-11.
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Figure 7-11. Stepping through the “Cases GT 300 #2” measure

 1. The wine “Grenache” is filtered in the WINE column of the Wines 

table and is cross-filtered to the Winesales table that now only 

contains rows for “Grenache”.

 2. The FILTER function iterates the Winesales table to filter CASES 

SOLD greater than 300 and generates a virtual table.

 3. The “Total Sales” measure is calculated for the rows in the virtual 

Winesales table in memory.

 4. Note there is no filter on the CASES SOLD column because it’s the 

virtual table that has generated the filtered rows.
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Question: Which of these evaluations do you think is more efficient?

If your fact table contains many millions of rows, the FILTER function must iterate 

these rows to build the virtual table. We’re sure you can appreciate that you pay a heavy 

processing price if you use table filters rather than column filters. Marco Russo and 

Alberto Ferrari explain this in more technical terms:

“A side effect of a table filter is that it requires a large materialization to the storage 

engine to enable the formula engine to compute the result.”1

This is why using the table function FILTER to filter the cases sold is not good 

practice because you should be using the column filter.

To further make the point, in this video, Marco Russo takes you through why using 

the FILTER function unnecessarily is not a good idea:

My Power BI report is slow: what should I do? by Marco Russo

Before we leave the subject of the problematic table filters, there is a third version of 

the “Cases GT 300” measure that “newbies” might consider authoring. The expression 

“Cases GT 300 #3” uses SUMX and returns the same values as the previous two versions 

of the measure discussed before:

Cases GT 300 #3 =

SUMX ( FILTER ( Winesales, Winesales[CASES SOLD] > 300 ),

                [Total Sales] )

What is the problem with this expression? You of course now know. The answer 

is it’s inefficient. First, FILTER iterates the fact table to generate a table containing the 

rows to be considered. Then SUMX iterates the table generated by FILTER. That’s a lot of 

iterations!

The recommended expression is always to use a simple filter on the CASES SOLD 

column in the filter argument of CALCULATE.

 Table Filters Return Different Results
To understand this aspect of the table filters, let’s consider these two measures, the first 

using a column filter and the second using a table filter:

1 Marco Russo and Alberto Ferrari (2020), The Definitive Guide to DAX, 2nd ed, p. 699 
[Microsoft Press]
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Bordeaux Wines #1 =

CALCULATE (

    SUM ( Winesales[CASES SOLD] ),

    Wines[WINE] = "Bordeaux" )

Bordeaux Wines #2 =

CALCULATE (

    SUM ( Winesales[CASES SOLD] ),

    FILTER ( Wines, Wines[WINE] = "Bordeaux" )

)

You might think that these two measures should return the same result. However, 

if we put these measures into a Table visual that contains the WINE column from the 

Wines dimension (Figure 7-12), we get different results. The measure #1 gives the value 

for “Bordeaux” for every wine, but in #2, we get blanks for any wine other than Bordeaux.

Figure 7-12. “Bordeaux Wines #1” and “Bordeaux Wines #2” in a Table visual 
with the WINE column from the Wines dimension
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So why the difference? Let’s look more closely at the “Bordeaux Wines #1” measure. 

In the first evaluation of this measure, the active filter context is on the WINE column of 

the Wines dimension and is filtering “Bordeaux” in the first instance. This filter is now 

cross-filtered to the Winesales table to sum the CASES SOLD for “Bordeaux”. On the 

next evaluation, “Champagne” is in the filter context. But CALCULATE modifies the filter 

context and replaces the filter on the WINE column from “Champagne” to “Bordeaux”. 

It’s this filter that is now cross-filtered to the Winesales table to sum the CASES SOLD 

for “Bordeaux”. And so on for every evaluation of each wine and also the Total row 

evaluation; see Figure 7-13.

Figure 7-13. CALCULATE replaces the filter on the WINE column so it always 
filters “Bordeaux”

Note As mentioned earlier, at this stage in your knowledge of DAX, this 
explanation of how the filters work is not yet complete, but it will stand you in 
good stead for the time being. We will get to a more accurate explanation later in 
Chapter 18.

This is why the total cases for “Bordeaux” are always returned because CALCULATE 

replaces the filter on the WINE column to “Bordeaux” for the evaluation of each wine.
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Let’s now look at the second measure using FILTER where we get a value returned 

for “Bordeaux” but not for the other wines. This measure uses a table filter:

Bordeaux Wines #2 =

CALCULATE (

    SUM ( Winesales[CASES SOLD] ),

    FILTER ( Wines, Wines[WINE] = "Bordeaux" )

)

The current filter context is on the WINE column of the Wines dimension, filtering 

“Bordeaux” in memory in the first instance. The FILTER function inside CALCULATE 

scans this table looking for the value “Bordeaux” and generates a virtual table containing 

just the “Bordeaux” row. It’s this table filter that is now cross-filtered to the Winesales 

table to sum the CASES SOLD for “Bordeaux”. On the evaluation for “Champagne”, the 

WINE column in the Wines dimension is filtered accordingly. However, the FILTER 

function does not modify the filter context, so the FILTER function inside CALCULATE 

scans this one-row table containing “Champagne” looking for the value “Bordeaux”. It 

won’t find it, and so there is nothing to filter. There is now an empty filter generated by 

FILTER, and an empty filter returns no value; see Figure 7-14. This is why there are no 

values returned by the measure other than for “Bordeaux”.

Figure 7-14. FILTER can’t replace the filter on the WINE column to equal 
“Bordeaux”, so there are no rows filtered other than for “Bordeaux”

The important thing to remember about the FILTER function is that it’s a weak 

function. Unless you use the ALL function that we explore in the next chapter, FILTER 

will only filter the rows that are in the current filter context and will therefore typically 
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return a subset of the original filter. Using column filters inside CALCULATE, on the other 

hand, will replace filters where required.

 Using the KEEPFILTERS Function
This behavior of CALCULATE whereby a column filter is always replaced is, by all accounts, 

rather odd and unintuitive, giving you the same value for every evaluation. The filter 

generated by FILTER, even though it’s a table filter, looks more “normal.” As we’re learning, 

it’s always best to use column filters if possible, so to make the column expression behave 

more intuitively, we can use a function called KEEPFILTERS as in this example:

Bordeaux Wines #1 =

CALCULATE (

    SUM ( Winesales[CASES SOLD] ),

    KEEPFILTERS ( Wines[WINE] = "Bordeaux" )

)

This function modifies the behavior of CALCULATE and prevents it from replacing 

filters. In Figure 7-15, you can see that we now only get a value return for “Bordeaux” for 

the “Bordeaux Wines #1” measure and no value is returned for the other wines.

Figure 7-15. The KEEPFILTERS function prevents CALCULATE replacing filters

In this chapter, you’ve learned to generate virtual tables as part of your DAX 

expressions. These tables are used by measures to manipulate the data model, either 

by returning subsets of “real” tables or to act as in-memory dimensions that propagate 

filters through the data model. You’ve also been warned of the different behaviors of 

table filters and column filters, particularly with respect to using the FILTER function. As 

we move forward and tackle more challenging calculations, this difference will become 

more important. For the moment, however, let’s just remember this:

Always use column filters where you can. Only use table filters where necessary.
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CHAPTER 8

The ALL Function and All 
Its Variations
In previous chapters, we have explored the filter context and how the construct of the 

visual, slicers, and filters all come together to filter the data model on the evaluation of 

a measure. You have learned that with the CALCULATE function, you can modify these 

filters programmatically. What you don’t yet know is how to remove filters so you can 

calculate your own totals and subtotals. But better still, knowing how to remove filters 

means you can programmatically reapply totally different filters than those that are 

currently defining the filter context. Let me introduce you to the ALL function that allows 

you to take control of this aspect of the evaluation of your measures.

On the face of it, the ALL function appears to be an easy function to understand. 

The ALL function returns all the rows of a table, or all the distinct values in a column, 

ignoring any filters that might have been applied. However, what you will be discovering 

in this chapter is that the simplicity of the ALL function belies the fact that it’s one of the 

most challenging DAX functions with which to come to terms. In this chapter, we will be 

delving into this “wolf in sheep’s clothing” function; the objective is to teach you every 

aspect of ALL and all the variations on the ALL function. This will enable you to move 

forward and author more complex measures.

There are at least two reasons why the ALL function is challenging to understand. 

Firstly, there are a number of variations of the ALL function:

• ALLSELECTED

• ALLEXCEPT

• ALLCROSSFILTERED

• ALLNOBLANKROW

You need to know which of these to use and when.

https://doi.org/10.1007/978-1-4842-8188-8_8
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Note The ALLCROSSFILTERED and ALLNOBLANKROW functions are outside the 
remit of this book.

Secondly, ALL (and its variations) has a dual face; it can be used either as a table 

function or as a modifier to CALCULATE, as described in the following:

• ALL as a table function – When used as a table function, ALL 

behaves as described before; that is, it returns all the rows of a table 

or all the distinct values in a column or columns.

• ALL as a modifier – When ALL is used as a top-level filter argument 

in CALCULATE, it acts as a modifier to CALCULATE and removes the 

filters from tables or columns. In other words, it doesn’t generate a 

virtual table.

In fact, ALL is two completely different functions. This is something that many 

inexperienced users of DAX don’t appreciate. This is because mostly, the ALL function 

behaves the way you would expect, whether you use it as a top-level filter argument 

in CALCULATE or nested inside other functions such as FILTER or COUNTROWS. It 

removes filters whether by generating virtual tables containing all the rows or 

by removing filters from tables and columns. However, we will explore later how 

understanding this difference is crucial in understanding the ALL function.

Although I’ve been referring solely to the ALL function here, we will also be exploring 

the ALLSELECTED and ALLEXCEPT functions.

 The ALL Function
The ALL function has the following syntaxes:

= ALL ( table )

where:

table is the table from where you want to clear the filters.

Here is an example of the ALL function syntax, referencing a table:

= ALL ( Winesales )
Unlike other functions that use tables as arguments, you can’t nest another table 

function inside the ALL function; you can only use base tables.

Or you can reference a column.
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= ALL (column 1, column 2, etc.)

where:

column(s) is the column or columns from where you want to clear the filters.

Here is an example of the ALL function syntax referencing a column:

= ALL ( Wines[TYPE] )
The ALL function will have a different impact on the filtering of the data model 

depending on the syntax you use, whether ALL is removing filters from tables or 

removing filters from columns. It will have a different impact yet again if you use ALL to 

remove filters from fact tables or dimensions. Therefore, to make it easier to understand 

the behavior of ALL, we’ll take these three different objects from where ALL can remove 

filters and explore them separately, as follows:

 1. Fact tables

 2. Dimensions

 3. A column or columns

 Applied to the Fact Table
Let’s again consider a scenario. In the visual in Figure 8-1, we’re using this measure to 

calculate the number of sales:

No. of Sales =

COUNTROWS ( Winesales )

We have then calculated the “Grand Total No. of Sales” to act as a denominator 

to calculate the percentage shown in “No. of Sales as Percent of Grand Total”; see 

Figure 8-1.
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Figure 8-1. Using ALL to calculate the percentage of the Grand Total

To arrive at these calculations, first, we need to author a measure that ignores the 

filters coming through from the Wines dimension so we can calculate the number 

of sales for all the wines, 2,207. To do this, we can use ALL as a table function to 

generate a virtual table containing all the rows of the Winesales fact table and then use 

COUNTROWS to count the rows in this table. This is the expression:

Grand Total No. of Sales =

COUNTROWS ( ALL ( Winesales ) )
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Finally, we can then divide the Grand Total into each wine’s total to find the 

percentage, as in the following measure:

No. of Sales as Percent of Grand Total =

DIVIDE ( [No. of Sales] , [Grand Total No. of Sales] )

Let’s explore the impact of adding more filters to the report. In Figure 8-2, we have 

placed a filter on the SalesPeople dimension using a slicer, but you can see that the 

measure using the ALL function always returns the Grand Total regardless of the filter.

Figure 8-2. The ALL function ignores filters from dimensions

To understand the behavior of ALL in this example, we must again consider the filter 

context. On the evaluation for “Bordeaux” wine, there are two active filters: one on the 

Wines dimension filtering “Bordeaux” and one on the SalesPeople dimension filtering 
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“Abel”. However, the ALL function always counts the rows of the virtual table containing 

all the rows of the Winesales fact table ignoring any filters propagating from dimensions; 

see Figure 8-3.

Figure 8-3. The ALL function passed to the fact table generates a virtual fact table 
that is used for all evaluations, and any filters from dimensions are ignored

Let’s look at another example of using the ALL function on the fact table, but this 

time nesting ALL inside CALCULATE. For example, you may want to find the grand total 

of cases sold, again so you could use this value as a denominator to find percentages; see 

Figure 8-4. This would be the measure:
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Total Cases All Winesales =

CALCULATE ( [Total Cases], ALL( Winesales ) )

Figure 8-4. The ALL function nested inside CALCULATE to find the grand total of 
cases sold

You can see how this measure again ignores any filters on the data model.

However, let’s now focus on an expression that you may require that calculates the 

average cases sold for all wines so you can compare this average to the average cases sold 

for each wine. This would be the measure that would find this average:

Avg Cases All Winesales =

CALCULATE( AVERAGE ( Winesales[CASES SOLD] ), ALL ( Winesales ) )

You could then author the following measure using FILTER to calculate the number 

of sales where the cases sold value is greater than the average for all the wines:

No. of Sales Where Cases is GT Avg All Wines =

CALCULATE (
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    [No. of Sales],

    FILTER ( Winesales, Winesales[CASES SOLD]

                              >= [Avg Cases All Winesales] )

)

 In the code for “No. of Sales Where Cases is GT Avg All Wines” the FILTER function 

iterates the Winesales table to filter any rows where the value in the CASES SOLD 

column is greater than the value calculated by “Avg Cases All Winesales”. However, to 

fully appreciate the details of this expression, you need to understand the concept of 

context transition that we will be exploring in a later chapter.

You can see the results of these expressions in Figure 8-5.

Figure 8-5. Calculating the grand total cases sold and the average cases for 
all wines

What you have to understand here is that when ALL is nested inside CALCULATE, it 

doesn’t behave as a table function. Instead, ALL is removing all the cross-filters on the fact 

table and therefore evaluating all the rows of the fact table. We will be exploring this behavior 

in detail as we move through this chapter.
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Using ALL in this way, we’ve been able to find the percentages of the Grand Total. 

However, you may have a different requirement, and that is to calculate percentages 

across filtered items. This brings us to the second place where we can use ALL, and that 

is when it’s passed onto dimensions.

 Using ALL on Dimension Tables
For example, in Figure 8-2, we’ve filtered salesperson “Abel” in the slicer and can see 

the total number of sales for Abel for all the wines is 376. We want to know what the 

individual wine totals are for “Abel” as the percentage of this value. In other words, 

we need to remove the filter on the Wines dimension while retaining the filter on the 

SALESPERSON column in the SalesPeople dimension that is filtering “Abel”.

If we remove a filter from a specific dimension, filters propagating from other 

dimensions into the fact table will be unaffected. Therefore, if we remove the filter 

from the Wines dimension, the filter on the SalesPeople dimension will be preserved, 

therefore calculating the number of sales for all the wines for the filtered salesperson.

However, this measure using ALL on the Wines dimension isn’t correct:

No. of Sales All Wines Wrong =

COUNTROWS ( ALL ( Wines ) )

This measure would generate a table containing all the rows in the Wines dimension 

and then count the number of rows in this table, returning 14 because there are 14 rows 

in the Wines dimension. Remember that the table whose rows we want to count is that 

of the Winesales fact table, filtered to show the sales of all the wines for the salesperson 

selected in the slicer. Therefore, we need to calculate the number of sales in the 

Winesales table which we’ve already done a number of times:

No. of Sales = COUNTROWS ( Winesales)

Because we want to modify the filter context to remove the filter from the Wines 

dimension, we can use the “No. of Sales” measure inside CALCULATE, and then using 

the ALL function as the filter argument in CALCULATE, we can modify the filter context 

as follows:

No. of Sales All Wines =

CALCULATE ( [No. of Sales], ALL ( Wines ) )
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Finally, we can divide to arrive at the percentage:

No. of Sales as Percent of Filtered Value =

DIVIDE ( [No. of Sales] , [No. of Sales All Wines] )

Let’s focus on the measure “No. of Sales All Wines” shown in Figure 8-6. We can 

see it calculates the same value that is sitting in the Total row of the “No. of Sales” 

measure, 376.

Figure 8-6. Removing the filter from a dimension using ALL

In this Table visual, initially, filters are on both the Wines dimension and the 

SalesPeople dimension, but when the “No. of Sales All Wines” measure is evaluated for 

each wine, all the filters are removed from the Wines dimension (because we are using 

CALCULATE), therefore always returning the value for all the wines. Filters from any 

other dimensions, for example, the SalesPeople dimension, are retained; see Figure 8-7.

ChApTER 8  ThE ALL FuNCTION AND ALL ITS VARIATIONS



119

Figure 8-7. The ALL function removes filters from the Wines dimension, but other 
filters are preserved

Perhaps we’re beginning to appreciate that there’s much to understanding the ALL 

function! We’re getting there, but we’re not quite there yet. For instance, consider the 

measure we’ve just been working with:

No. of Sales All Wines =

CALCULATE ( [No. of Sales], ALL ( Wines ) )

It may not be the calculation that you want. The problem is that it removes all the 

filters in the Wines dimension. There will come a time when we need to be more specific 

regarding from which columns in a dimension we need to remove the filters.
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 Using ALL on a Column
Consider the example in Figure 8-8. Both the SALESPERSON column from the 

SalesPeople dimension and the SUPPLIER column from the Wines dimension are being 

filtered by slicers. We’re filtering salesperson “Abel” and supplier “Alliance”. Remember 

that there is also a filter on the WINE column from the Wines dimension filtering each 

wine. However, the “No. of Sales All Wines” is showing the total for Abel for all suppliers, 

376, because the measure removes all the filters from the Wines table including the 

SUPPLIER column.

Figure 8-8. ALL that references a table will remove filters from all columns in a 
table, which may be incorrect

Therefore, the percentage in “No. of Sales as Percent of Filtered Value” would be 

correct if you want to show the percentage “Abel’s” sales of “Alliance” are of “Abel’s” total 

sales for all suppliers (376). However, this would be incorrect if you want to show the 

percentage “Abel’s” sales are of the total sales only for “Alliance” (99). If the latter is the 

goal, we must calculate “Abel’s” total for all the wines that are supplied by “Alliance” (or 

whatever supplier has been filtered), which is 99.
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Let’s look more closely at the problem. The current filter context uses filters on two 

columns in the Wines dimension: WINE and SUPPLIER. If we could see the in-memory 

Wines table for the evaluation of “Chardonnay”, it might look something like Figure 8-9.

Figure 8-9. Filters are on both the WINE column and the SUPPLIER column

The measure “No. of Sales All Wines” removes both these filters and so calculates 

the number of sales for Abel for all wines and all suppliers. Using the ALL function with 

a table name as its argument, whether it’s a fact table or a dimension, will remove all 

the filters from that table. We can, however, use ALL to remove filters from just specific 

columns.

To remedy the problem in Figure 8-8, we need to remove the filter from the WINE 

column but retain the filter on the SUPPLIER column. This is the measure we can create 

to do this:

No. of Sales All Wines #2 =

CALCULATE ( [No. of Sales] , ALL ( Wines[WINE] ) )

You can see that in this measure, we’ve used a reference to the WINE column 

inside ALL, and so ALL removes the filter from this column only. Figure 8-10 shows 

what is happening in memory, and you can see that the filter is retained on the 

SUPPLIER column.

Figure 8-10. Using ALL on a column removes the filter from that column only

We can now calculate the correct percentage and see this evaluated in Figure 8-11:

No. of Sales as Percent of Filtered Value #2 =

DIVIDE ( [No. of Sales] , [No. of Sales All Wines #2] )

ChApTER 8  ThE ALL FuNCTION AND ALL ITS VARIATIONS



122

Figure 8-11. The correct percentage for sales for “Abel” for “Alliance” supplier

Let’s consider another example where we must use the ALL function to remove the 

filter from a specific column. This is where the requirement is to calculate percentages 

across grouped items. For example, in the Matrix visual in Figure 8-12, there are two 

columns from the Wines dimension in the Rows bucket of the Matrix: WINE COUNTRY 

and TYPE. We’ve calculated the percentage the “Total Cases” values for each TYPE are 

of the “Total Cases” values for each WINE COUNTRY and can see that “White” wines 

constitute 47.02% of “French” wines.1

1 For information on constructing Matrix visuals, visit https://www.burningsuit.
co.uk/7-secrets-of-the-matrix-visual/
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Figure 8-12. Calculating percentages across grouped data

It would then be insightful to create a stacked column chart where we can show 

the total cases for each WINE COUNTRY and TYPE. We could then use the Tooltip, 

populated with our percentage measure to show the percentage breakdown across 

TYPE, as in Figure 8-13.
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Figure 8-13. Stacked column chart showing the percentage breakdown across 
WINE COUNTRY in the Tooltip

These are the measures that are calculated in Figure 8-12.

All Wines Type =

CALCULATE ( [Total Cases], ALL ( Wines[TYPE] ) )

Percentage of Wine Country =

DIVIDE ( [Total Cases] , [All Wines Type] )

Let’s look more closely at how the “All Wines Type” measure is evaluated in the 

Matrix visual. The first evaluation starts with a filter on WINE COUNTRY of “France” and 

a filter on TYPE of “Red”, and this is propagated to the fact table. However, to calculate 

the Total Cases for “France”, the filter on TYPE must be removed so that the measure 

calculates Total Cases for both “Red” and “White” types for “France”. If the filter from the 

TYPE column is removed using ALL, then “France” is the only filter propagated to the 

fact table; see Figure 8-14.
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Figure 8-14. Using ALL on the TYPE column removes the filter from only 
that column

Being able to identify which table and/or column you want to remove filters from 

is key to using ALL successfully. However, consider the example in Figure 8-15 where 

we have four columns in the Rows bucket. To calculate the percentage for each WINE 

COUNTRY, we need to remove the filters from three columns in the Wines dimension, 

that is, TYPE, SUPPLIER, and WINE.
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Figure 8-15. Removing filters from multiple columns

Inside the ALL function, you can reference multiple column names, so you could 

write this measure:

All Wines Type, Supplier & Wine =

CALCULATE ( [Total Cases],

    ALL ( Wines[TYPE], Wines[SUPPLIER], Wines[WINE] )

)

Note Because we are removing the filter from the WINE column, “Lambrusco” 
wine that has no data will appear in the visual. To fix this, use a visual-level filter to 
filter nonblank items.

However, you can appreciate how tedious this could get if you had many columns 

from which you must remove filters. This is where you could use the ALLEXCEPT 

function instead of ALL.
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 The ALLEXCEPT Function
ALLEXCEPT removes all filters in a table except filters that are applied to the columns 

you specify. This can be used for situations in which you want to remove the filters on 

many but not all of the columns in a table.

The ALLEXCEPT function has the following syntax:

= ALLEXCEPT ( table, column1, colum2, etc. )

where:

table is the table where you want to clear the filters from except the filters on the 

columns specified in the next arguments.

column1, column2 are the columns where you want filters preserved.

Here is an example of the ALLEXCEPT syntax:

= ALLEXCEPT ( Wines, Wines[WINE COUNTRY] )

Note that in ALLEXCEPT, unlike ALL, you need to first supply the table name.

Therefore, in the Matrix visual in Figure 8-15, you could author an alternative version 

of the “All Wines Type, Supplier & Wine” measure as follows:

All Except Wine Country =

CALCULATE ( [Total Cases],

    ALLEXCEPT ( Wines, Wines[WINE COUNTRY] )

)

So now we can calculate the percentage:

Percentage of Wine Country #2=

DIVIDE ( [Total Cases] , [All Except Wine Country] )

You might think that surely we’ve exhausted all possible “ALL” variations! We’ve 

looked at removing filters from entire tables, either fact tables or dimensions. We’ve also 

seen how we can remove filters from specific columns and how to remove filters from 

several columns while retaining filters on others. However, there is still another scenario 

that we need to explore. Consider Figure 8-16.
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Figure 8-16. The “Grand Total No. of Sales” measure is not the total for the 
selected wines in the slicer

Here, we have a Table visual into which the WINE column from the Wines dimension 

has been placed. You can see that four wines have been filtered using the slicer. The “No. 

of Sales” measure calculates the number of sales for the selected wines. The “Grand Total 

No. of Sales” measure has also been included and has the following expression:

Grand Total No. of Sales =

COUNTROWS ( ALL ( Winesales ) )

This measure returns the total number of sales for all wines irrespective of the slicer 

selection. This would also be true if the wines filter was generated from a filter placed 

in the Filters pane. If we want to calculate percentages of the total only for the selected 

wines (699 in this case), this “Grand Total No. of Sales” measure is not going to work.

The problem is that the values selected in the slicer come from the same column that 

is put into the Table visual, which is the WINE column. We’re using the slicer to reduce 

the wines shown in the visual. Therefore, we need to find a function that specifically 

finds grand totals for the items that have been filtered in the visual. The function we need 

is called ALLSELECTED.
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 The ALLSELECTED Function
The syntax for the ALLSELECTED function is the same as for the ALL function:

= ALLSELECTED ( table )

or

= ALLSELECTED ( Column 1, Column 2, etc.)

However, if you were to look at the function description in the DAX Function Library, 

you may be a little bemused:

“ALLSELECTED removes context filters from columns and rows in 

the current query, while retaining all other context filters or explicit 

filters. The ALLSELECTED function gets the context that represents 

all rows and columns in the query, while keeping explicit filters and 

contexts other than row and column filters. This function can be 

used to obtain visual totals in queries.”

To be fair, it is very difficult to explain what this function does. It’s much easier to 

look at an example of using it. Therefore, let’s return to our problem of calculating the 

grand total for only the wines selected in the slicer. This is the DAX expression we need:

Grand Total No. of Sales for Selected Wines =

CALCULATE ( [No. of Sales], ALLSELECTED ( Wines[WINE] ) )

You can see this measure and the percentage calculated from it in Figure 8-17.
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Figure 8-17. The ALLSELECTED function calculates the correct grand total

How does this expression work? Well again, let’s consider the current filter context 

for the first evaluation of this measure, that is, “Bordeaux” in the WINE column of the 

Wines dimension. However, ALLSELECTED replaces the filter on the WINES column 

with the filter from the slicer. Therefore, the Wines dimension is filtered to reflect the 

slicer selection; see Figure 8-18.
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Figure 8-18. The ALLSELECTED function replaces the filter to reflect the slicer 
selections

Mostly you can use ALLSELECTED in place of ALL because often you’re using 

slicers or the Filters pane to reduce the number of items shown in visuals. If there are no 

selections from slicers or from the Filters pane, ALLSELECTED will remove all filters, just 

like ALL.

Up to now, we’ve been using the ALL function (and its variations) while not 

considering whether it’s being used as a table function or is being used as a modifier to 

CALCULATE. The “ALL” functions seem to be doing their job, and we’re thankful for that. 

We know that ALL removes filters whether by removing filters from tables and columns 

or by generating virtual tables containing all the rows. However, we are now going to 

focus our attention on the difference between ALL as a table function and ALL as a 

modifier to CALCULATE. Remember how in Chapter 1 we said that when working with 

DAX, the devil is in the detail? Understanding this difference in these two behaviors of 

ALL is a fine example of paying attention to this detail.

 ALL as a Modifier to CALCULATE
To understand this aspect of ALL, let’s consider a scenario that we’ve looked at before, 

which is removing the filter from the WINE column in the Wines dimension while still 

retaining the filter on the SUPPLIER column (see Figure 8-11). This was to calculate the 

number of sales for the selected supplier.
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However, this time we’re going to count the number of wines supplied by “Alliance” 

by counting the rows in the Wines table that are filtered accordingly, using a slicer. To 

do this, we’ve created two similar measures that both use the ALL function on the WINE 

column in the Wines dimension:

No. of Wines #1 =

COUNTROWS ( ALL ( Wines[WINE] ) )

No. of Wines #2 =

CALCULATE ( COUNTROWS ( Wines ), ALL ( Wines[WINE] ) )

However, only one of these measures returns the correct result; see Figure 8-19.

Figure 8-19. Using ALL on a column can return different results

The “No. of Wines #1” measure uses ALL as a table function and generates a one- 

column table of all the distinct values in the WINE column. The measure then counts the 

number of rows in this virtual table and returns 14 rows as shown in Figure 8-20.
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Figure 8-20. ALL as a table function generates a virtual table of distinct values

The “No. of Wines #2” measure uses ALL inside CALCULATE as a modifier and 

therefore removes the filter from the WINES column but preserves the filter on the 

SUPPLIER column. This measure then counts the number of rows in the Wines 

dimension and returns four rows; see Figure 8-21.

Figure 8-21. The ALL function as a CALCULATE modifier removes the filter on 
the WINE column
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This example has been easy to explain. However, the ALL function acting as a 

modifier to CALCULATE can be more challenging to understand, and this is certainly the 

case in the next example we’re going to explore.

We’ve built three measures that calculate the number of sales where the cases sold 

is greater than 300. They’re all using the expression “ALL ( Winesales )” (highlighted 

in gray), and the expressions look much the same. You might therefore expect them to 

return the same result:

No. of Sales Where Cases GT 300 #1 =

CALCULATE ( [No. of Sales],

    ALL ( Winesales ),

   Winesales[CASES SOLD] > 300

)

No. of Sales Where Cases GT 300 #2 =

CALCULATE (

    [No. of Sales],

    FILTER (

    ALL ( Winesales ), Winesales[CASES SOLD] > 300 )

)

No. of Sales Where Cases GT 300 #3 =

CALCULATE (

    [No. of Sales],

    ALL ( Winesales ),

    FILTER ( Winesales, Winesales[CASES SOLD] >300 )

)

However, as you can see in Figure 8-22, whereas measures #1 and #2 return the same 

value, measure #3 returns a different value.
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Figure 8-22. Similar expressions can return different results

These three measures all use ALL on the Winesales table so they should ignore any 

filters on the Winesales table. This is true for measures #1 and #2 (there are 286 rows in 

the Winesales table where CASES SOLD is greater than 300), but what about measure #3? 

In this measure, the ALL function appears to be ignored, and the cross-filter propagated 

from the Wines dimension is retained. Therefore, this measure returns the number of 

sales for each wine where CASES SOLD is greater than 300.

Question: Which of these measures is the odd one out?

You might think measure #3 is the odd one out because it returns a different value. 

However, you could argue that measure #2 is the odd one out because it’s the only 

measure where ALL is being used as a table function. In the other two measures, ALL is 

acting as a CALCULATE modifier.
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To understand this, let’s look at the evaluation of each of these measures in 

more detail.

In this measure

No. of Sales Where Cases GT 300 #1 =

CALCULATE ( [No. of Sales],

    ALL ( Winesales ), Winesales[CASES SOLD] > 350

)

there are two filter arguments in CALCULATE. The first one using ALL is modifying the 

filter to remove filters from the Winesales table. This is evaluated first and produces an 

empty filter. The second filter is a column filter on the CASES SOLD column, filtering 

cases sold greater than 300; see Figure 8-23.
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Figure 8-23. The evaluation of “No. of Sales Where Cases GT 300 #1”

 1. ALL behaves as a modifier to CALCULATE and removes any filters 

or cross-filters on Winesales, including the filter coming through 

from the Wines dimension. This results in an empty filter, and 

therefore, the Winesales table now has no filters on it.
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 2. A new filter is then placed on the CASES SOLD column of the 

Winesales table to filter any cases sold that are greater than 

300. This is the new filter in which the “No. of Sales” measure is 

evaluated and the rows of the Winesales table are counted.

In this measure

No. of Sales Where Cases GT 300 #2 =

CALCULATE (

    [No. of Sales],

    FILTER (

    ALL ( Winesales ), Winesales[CASES SOLD] >350 )

)

there is just one filter argument in CALCULATE supplied by the FILTER function 

(highlighted in gray). Inside the FILTER function, the ALL function generates a virtual 

table of all the rows in the Winesales table, therefore removing the cross-filter from the 

Wines dimension. The FILTER function iterates this virtual table to return the rows 

where CASES SOLD is greater than 300; see Figure 8-24.

Figure 8-24. The evaluation of “No. of Sales Where Cases GT 300 #2”

 1. The current filter context filters each WINE in the Wines 

dimension, and this is cross-filtered to the Winesales table.

 2. The ALL function inside FILTER generates a virtual table of all the 

rows of Winesales, ignoring the wine filter.
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 3. The FILTER function iterates over the virtual Winesales table to 

filter out the rows where CASES SOLD is greater than 300. This is 

the new filter in which the “No. of Sales” measure is evaluated and 

the rows of the virtual Winesales table are counted.

The outcome of this measure is the same as in #1 before. However, you can 

appreciate that the generation of a virtual table is less efficient than simply placing a 

filter on a column. Here is yet another example of paying a heavy processing price when 

using a table filter inside CALCULATE (we’ve looked at this earlier when learning about 

the FILTER function).

In this measure

No. of Sales Where Cases GT 300 #3 =

CALCULATE (

    [No. of Sales],

    ALL ( Winesales ),

    FILTER ( Winesales, Winesales[CASES SOLD] >300 )

)

there are two filter arguments inside CALCULATE. The first, “ALL ( Winesales )”, is a 

CALCULATE modifier. The second, “FILTER ( Winesales, Winesales[CASES SOLD] > 

300”, is a table filter. We need to understand that CALCULATE modifiers are evaluated 

first before any other filter arguments. Let’s take the first argument that is modifying the 

filter context to remove the filters from the Winesales table. This is evaluated first and 

creates an empty filter because all filters on the Winesales table have been removed.

The second filter uses the FILTER function to create a virtual Winesales table. But 

which rows have been filtered in the virtual Winesales table generated by FILTER? We 

have asked FILTER to filter to the rows where CASES SOLD is greater than 300. However, 

remember what we know about the FILTER function. This function filters only the rows 

in the current filter context. So the table generated by FILTER still contains the rows for 

each wine (e.g., only rows for “Bordeaux” in the first evaluation), and these rows are 

further filtered to just rows where CASES SOLD is greater than 350; see Figure 8-25.
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 1. The first argument uses ALL as a modifier to remove the filters 

from the Winesales table. This is evaluated first, and there is now 

an empty filter on the Winesales table.

 2. The filter argument using FILTER is now evaluated separately. 

The Wines dimension is cross-filtered to the Winesales fact table 

filtering each wine.

 3. The FILTER function iterates the Winesales table in the current 

filter context and generates a virtual table containing the rows for, 

for example, “Bordeaux” wine.

 4. It then further filters these rows so only rows containing CASES 

SOLD that is greater than 300 for that wine remain in the table. 

Figure 8-25. The evaluation of “No. of Sales Where Cases GT 300 #3”
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Because the first argument using ALL has produced an empty 

filter, this is the new filter in which the “No. of Sales” measure is 

evaluated and the rows of the virtual Winesales table are counted.

So let’s summarize what we now know about ALL. The ALL function as a table 

function generates a virtual table containing all the rows from a table or all the distinct 

rows of a column or columns. This virtual table containing all the rows can be refiltered 

by FILTER, and this will then propagate filters through the model as in measure 

#2 before.

The ALL function as a modifier to CALCULATE is evaluated first before any filter 

arguments inside CALCULATE. ALL as a modifier removes any filters from a table or a 

column and generates an empty filter. Any other filter arguments of CALCULATE are 

then evaluated and generate the new filter context as in measures #1 and #3 before.

Because ALL has a different behavior when used as a top-level argument to 

CALCULATE, users believed it should have a different name when used in this context. 

As a result, in 2019, a new function was introduced into the DAX Function Library, 

REMOVEFILTERS. This function is synonymous with ALL, but it can be used only as a 

CALCULATE modifier and not as a table expression like ALL.

In this chapter we have explored the ALL, ALLEXCEPT and ALLSELECTED functions 

that are challenging functions with which to get to grips. Regardless of how long you’ve 

been using DAX, the examples described here will always be problematic to understand, 

but it’s only by thinking through the evaluation of these measures, paying close attention 

to the details, can we come to truly understand how DAX works.

Having covered ALL and its variations, we can now move on to look at a group of 

functions called time intelligence functions where paradoxically, the ALL function has 

mostly been made redundant.
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CHAPTER 9

Calculations on Dates: 
Using DAX Time 
Intelligence
Have you ever wanted to compare sales for the current month against sales for last 

month? Or perhaps something a little more ambitious, such as cumulative totals or even 

a rolling monthly average? If the answer is yes, and why wouldn’t it be, calculations 

using date data such as these require the use of a group of DAX functions called “time 

intelligence” functions. Exploring these functions will be the focus of this chapter, and 

you will learn how to design expressions to enable you to evaluate data across different 

granularities of time such as financial years, quarters, months, and even down to the 

day grain. In doing so, you will be able to compare and contrast calculations over 

those periods to build insights into the data that’s important to you, such as trends and 

patterns over time.

Note The term “time intelligence” is a little misleading. These are not time 
intelligence functions but date intelligence functions, so these functions will not 
help you with calculations on hours, minutes, or seconds, although we can do 
these calculations with the help of a Time dimension.

The starting point to using time intelligence functions is the creation of a date 

dimension. This is because most time intelligence functions are designed to work with 

a date table as an integral part of the data model. You may feel your data model doesn’t 

require a date dimension, but you’ll struggle to create the date-based calculations you 

need, and you certainly won’t be able to reap the benefits of time intelligence measures.

https://doi.org/10.1007/978-1-4842-8188-8_9
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However, people new to DAX often don’t appreciate this aspect of date calculations 

and therefore don’t have a date dimension in their model. If this is the case, Power BI 

will help you with your date analysis by generating built-in date hierarchies, and this is 

what we will explore first.

 Power BI Date Hierarchies
In the absence of a date dimension in your model, if you have columns of a date data 

type in any tables, for every one of these columns, Power BI will generate an in-memory 

date table for you that also contains a date hierarchy. We have removed the DateTable 

dimension from our data model, and so the SALE DATE column is now expressed as a 

date hierarchy as shown in Figure 9-1.

Figure 9-1. A date type column with a date hierarchy generated by Power BI

This feature is called “Auto date/time,” but you can turn off this behavior either 

globally or only for the current file in the Options pane shown in Figure 9-2.
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Figure 9-2. You can turn off the generation of a date hierarchy using the 
Options pane

If you have the “Auto date/time” feature turned on and you don’t have a date 

dimension in your model, any fields of a date data type will be structured into 

hierarchies. These built-in date hierarchies are useful for drilling into different date 

granularities when put into Power BI visuals and also make it possible to slice by year, 

quarter, month, and day. For example, in Figure 9-3, we are using the SALE DATE 

hierarchy to drill into Month granularity in a Power BI line chart and slice by year.

Figure 9-3. Using the built-in date hierarchy to visualize date data
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However, there are a number of drawbacks to using these hierarchies:

• What if your financial year doesn’t start in January?

• What if you want to analyze sales by week granularity? How would 

you add week numbers?

• What if you want to compare sales in 2020 with sales in 2021 in a 

clustered column chart?

All the preceding problems present a real challenge if you’re using built-in date 

hierarchies, but if you have a date table dimension in your model, life becomes a lot 

easier as far as date calculations go. Therefore, the first step is generating your date 

dimension table and integrating it into your data model.

 Creating a Date Table
To generate your date table, you can use DAX or Power Query as explained 

comprehensively in these two links:

www.sqlbi.com/articles/creating- a- simple- date- table- in- dax/

https://exceleratorbi.com.au/build- reusable- calendar- table- power- query/

Failing these two suggestions, you could use Excel to create a date table.

The only mandatory column in a date table is a column containing a list of 

sequential dates that includes all the dates that cover the time span of your data. For 

example, our wine sales begin in January 2017 and end in December 2021; therefore, our 

date table has a DATEKEY column with values starting on January 1, 2017, and ending 

on December 31, 2021 (the end of our financial year). You must include all the dates in 

these years even if there is no data for specific dates. The other columns in the date table 

are used to group and categorize these dates and are completely arbitrary. However, it 

would be normal to have columns for your financial year and quarters and columns for 

months, including month name and month number. You could also include different 

financial years and week numbers. To analyze by months, you need to include both 

month name and month number. This is so you can sort the month names correctly, and 

some measures will require referencing both month name and number.

We’ve now replaced our DateTable back into our data model. You can see the 

DateTable is related to the fact table using the SALE DATE and the DATEKEY columns as 

shown in Figure 9-4.
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Figure 9-4. The DateTable is related to the Winesales fact table using the 
DATEKEY column

Note it’s usual to use the column in your date table that contains the list of 
unique dates as the linking field or primary key, but it would be possible to use 
some other unique field in the date table as the linking field. however, you must 
always have a column containing a list of sequential dates in your date table even 
if you don’t use this field to link to the fact table.

The next requirement regarding the date table is to ensure the model “knows” this is 

your date dimension. This is particularly true if you haven’t used the field containing the 

list of unique dates as the primary key of the date table. You do this by marking the date 

dimension as a date table by selecting Mark as date table from the Table Tools tab.  
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Now, in the “Date column” drop-down, select the column in your date table that 

contains the list of unique dates, as shown in Figure 9-5.

Figure 9-5. Use the Mark as date table option to ensure the integrity of the date 
dimension

Note You will find more information on the requirement to “mark as date table” 
here: https://www.sqlbi.com/articles/mark- as- date- table/

The final step in the setup of the data dimension is to sort the month names 

correctly. You can see in Figure 9-6 that we’ve used the Sort by column button on the 

Column Tools tab to sort the Month by the Month No.
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Figure 9-6. Use the Sort by column option to sort the month names

Now that we have generated our date dimension, we can reap the benefits of using 

the time intelligence functions inside DAX and analyze our data across years, quarters, 

months, and days in many insightful ways.

 Using Time Intelligence Functions
Time intelligence functions use a base date from which to perform the required 

calculation. This base date is supplied by the current filter context. For example, the 

terms “previous month” and “same period last year” are relative terms, relative, that is, 

to the date that is in the current filter context. Therefore, with most of these functions, 

you must have a specific date filtered (a year, a quarter, a month, or a day) either by using 

slicers, by using the Filters pane, or by having dates in the visual. For example, if you 

want to find the previous month’s sales, you must have a current month filtered in the 

visual or in a slicer; see Figure 9-7.
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Figure 9-7. The “base date” is supplied by the filter context which can be through 
columns in the visual or by year and month slicers

All time intelligence functions (except LASTNONBLANK and 

LASTNONBLANKVALUE) have an argument that requires specifying a column of dates 

to be used in the calculation. In most cases, in this argument, you supply the name of the 

column in your date table that holds the list of unique dates, for example, the DATEKEY 

column in our data; see Figure 9-8.

Figure 9-8. The “Dates” argument normally requires referencing the column that 
holds the list of unique dates

Note There is an exception to this. in the lasTDaTe and FirsTDaTe functions, 
you may need to reference the date column in your fact table.
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For every DAX expression you construct using time intelligence functions, you could 

author an equivalent expression using standard DAX functions such as CALCULATE, 

FILTER, MAX, and MIN. However, if this were the case, there is one function you would 

also need, and that’s the ALL function. For example, to find dates in May when the 

current filter context is filtering dates in June, you would have to use the ALL function 

to remove the current filter on June in the date table so that it could be refiltered for the 

dates in May. By using time intelligence functions and referencing the “Dates” column 

of the date table, the work of the ALL function is implicit. That’s why when using time 

intelligence functions, you don’t need to remove filters by using ALL and then reapply 

your specific filter.

The time intelligence functions we’re going to explore in this chapter are outlined in 

Table 9-1. The return value is typically a virtual table containing a single column of dates. 

The dates returned into this column are also shown in Table 9-1.

Table 9-1. Time intelligence functions and their return value

Function Dates Returned

preViousmonTh The previous month from the month in the current filter context.

sameperioDlasTYear The same period last year from the month in the current filter context.

DaTeaDD prior (or future) years, quarters, months, or days from the current filter 

context.

DaTesYTD The year up to the date in the current filter context.

DaTesBeTWeen Between two dates.

DaTesinperioD starting with a date and then going back (or forward) by any number of 

years, quarters, months, or days from the current filter context.

lasTDaTe The last date in the current filter context.

lasTnonBlanK The last date in a column where the expression is nonblank in the current 

filter context.

lasTnonBlanKValue The last value in a column where the expression is nonblank in the current 

filter context.
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Typically, time intelligence functions generate a virtual one-column table containing 

filtered dates from the DATEKEY column in the date dimension (or whatever you’ve 

named this column). This virtual table is used as a table filter inside CALCULATE to filter 

the dates in the fact table.

However, DAX time intelligence functions either can be table functions that are 

nested inside CALCULATE as the filter argument or can return scalar values. The reason 

for this is that if a table function returns a one-column, one-row table, this virtual table is 

converted into a scalar value by the DAX engine; see Table 9-2.

Table 9-2. Showing “Table” or “Scalar” functions, or both

Table Table or Scalar Scalar

DaTeaDD

DaTesBeTWeen

DaTesinperioD

DaTesYTD

preViousmonTh

sameperioDlasTYear

lasTDaTe

lasTnonBlanK

lasTnonBlanKValue

For example, it would be possible to use LASTDATE as follows:

Used as a scalar

LastDate Example #1 =

LASTDATE(Winesales[SALE DATE])

Used as a table filter inside CALCULATE

LastDate Example #2 =

CALCULATE([Total Sales],LASTDATE(Winesales[SALE DATE]))

Used to return a scalar inside CALCULATE

LastDate Example #3 =

CALCULATE(LASTDATE(Winesales[SALE DATE]),DateTable[YEAR]=2020)

Let’s now analyze our total cases values across different time frames. You can see the 

results of the following expressions in Figure 9-9. Note the use of slicers to filter the base 

date of December 2021 from which the expressions are calculated.
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 Previous Month/Year – PREVIOUSMONTH/YEAR
These are the DAX expressions to calculate the previous month’s or year’s values, 

respectively:

Previous Month Total Cases =

CALCULATE ( [Total Cases],

    PREVIOUSMONTH ( DateTable[DATEKEY] )

)

Previous Year Total Cases =

CALCULATE ( [Total Cases],

    PREVIOUSYEAR ( DateTable[DATEKEY] )

)

The PREVIOUSYEAR function assumes that your financial year ends on December 

31. If you use a different financial year, you can use the second argument of this function 

to define your year-end date. To avoid any date locale issues, use the date format  “YYYY- 

MM- DD” (the function ignores the year, so use any year value); for example, if your year- 

end date is the March 31st, this would be your measure:

Year To Date Cases =

CALCULATE ( [Total Cases] ,

PREVIOUSYEAR ( DateTable[DATEKEY], "2021-03-31"

 )

)

 Same Period Last Year – SAMEPERIODLASTYEAR
This is the DAX expression to calculate values in the same period in the previous year:

Same Period Last Year Cases =

CALCULATE ( [Total Cases],

    SAMEPERIODLASTYEAR ( DateTable[DATEKEY] )

)
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 Values for Any Time Ago – DATEADD
These are the DAX expressions that calculate values for 6 months ago and 30 days ago, 

respectively:

6 Months Ago Cases =

CALCULATE ( [Total Cases],

   DATEADD ( DateTable[DATEKEY], -6, MONTH )

)

30 Days Ago Cases =

CALCULATE ( [Total Cases] ,

     DATEADD ( DateTable[DATEKEY], -30, DAY )

)

 Year to Date – DATESYTD
This expression will calculate year to date values for the year in the current filter context:

Year To Date Cases =

CALCULATE ( [Total Cases] ,

    DATESYTD ( DateTable[DATEKEY] )

)

The DATESYTD function, like PREVIOUSYEAR, assumes that your financial year 

ends in December, and just like PREVIOUSYEAR, you can use the second argument of 

this function to define your year-end date, using the format “YYYY-MM-DD” to avoid 

date locale issues, as follows:

Year To Date Cases =

CALCULATE ( [Total Cases] ,

    DATESYTD ( DateTable[DATEKEY], "2021-03-31")

)
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With the help of the time intelligence functions, these expressions have all been 

straightforward to write. Let’s now move forward and explore some more complex 

calculations.

 Total to Date or Cumulative Totals
The DAX measure for calculating total to date or a cumulative total for the “Total Sales” 

measure is as follows (see Figure 9-10):

Cumulative Total =

CALCULATE ( [Total Sales] ,

    DATESBETWEEN ( DateTable[DATEKEY], 0 ,

        LASTDATE ( DateTable[DATEKEY] )

     )

)

Figure 9-9. Time intelligence calculations
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Figure 9-10. The cumulative total sales

This expression uses the DATESBETWEEN function that returns a table of dates that 

fall between a start date and an end date.

Notice that the start date for the DATESBETWEEN function is zero, which means the 

start date will be the earliest value in the dates column, or you could use the BLANK() 

function (we will look at this function in the following chapter). The end date is found 

by the LASTDATE function, which finds the last date in the current filter context. This 

will be the last date of the month sitting in any row of the Table visual or the last date of a 

month filtered in a slicer or Filters pane.

 Rolling Annual Totals and Averages
To calculate rolling annual totals and averages, you must use two functions: 

DATESINPERIOD and LASTDATE. Let’s do the rolling annual total first:

Rolling Annual Total Sales =

CALCULATE ( [Total Sales],

    DATESINPERIOD ( DateTable[DATEKEY],
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        LASTDATE ( DateTable[DATEKEY] ) , -1 , YEAR ) )

The LASTDATE function in this measure finds the last date in the current filter 

context (i.e., the last date of the month sitting in any row of the Table visual, in a slicer, 

or in the Filters pane). The DATESINPERIOD function calculates the total sales, starting 

with this last date and going back by 1 year.

Now for the rolling annual average:

Rolling Annual Average Total Sales =

CALCULATE (

    [Total Sales] / COUNTROWS ( VALUES ( DateTable[MONTH] ) ),

    DATESINPERIOD (

        DateTable[DATEKEY],

        LASTDATE ( DateTable[DATEKEY] ),  -1,  YEAR

    )

)

The expression for the rolling annual average does much the same as the expression 

for the rolling annual total. However, we need to find the average monthly total for each 

rolling year. If we divided the “Total Sales” measure by 12, this would not be correct 

for the first year because in January, only one month is rolling; in February, only two 

months are rolling; in March, only three months; etc. This is why we need to use the 

COUNTROWS and VALUES functions to calculate the correct number of rolling months 

for the denominator and not simply divide by 12. The results of these measures are 

shown in Figure 9-11.
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Figure 9-11. The rolling annual and average sales

We will meet the VALUES function later in this book, so at this stage, suffice to say 

that this function generates a virtual table containing only the values in the MONTH 

column of the date dimension that are visible in the filter context generated by the 

DATESINPERIOD expression. The COUNTROWS function counts the rows in the virtual 

table, giving us the correct number of cumulative months in the first year of our data.

 Calculating the Last Transaction Date and the Last 
Transaction Value
If you want to find the first or last date for which there is data, for example, the last 

date for which there is a value for the “Total Sales” measure, you can use the functions 

FIRSTNONBLANK and LASTNONBLANK as follows:

Date of Last Transaction =

LASTNONBLANK ( DateTable[DATEKEY], [Total Sales] )
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Date of First Transaction =

FIRSTNONBLANK ( DateTable[DATEKEY], [Total Sales] )

You could then find the value of the total sales on these dates by using 

LASTNONBLANKVALUE and FIRSTNONBLANKVALUE; see Figure 9-12.

Value of First Transaction =

FIRSTNONBLANKVALUE ( DateTable[DATEKEY], [Total Sales] )

Figure 9-12. Calculating first and last transaction dates and values

Value of Last Transaction =

LASTNONBLANKVALUE ( DateTable[DATEKEY], [Total Sales] )

The functions LASTNONBLANK and LASTNONBLANKVALUE can be used in more 

creative ways. Perhaps you need to calculate the date of the previous transaction, and 

perhaps you would like to find the difference in sales values between consecutive sales, 

as shown in Figure 9-13.
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Figure 9-13. Calculating the difference in values between consecutive transactions

These are the expressions used to accomplish these tasks:

Previous Sales Date =

CALCULATE (

      LASTNONBLANK ( DateTable[DATEKEY],[Total Sales] ),

      DateTable[DATEKEY] < MAX (DateTable[DATEKEY] )

)

Previous Sales Value =

CALCULATE (

    LASTNONBLANKVALUE ( DateTable[DATEKEY], [Total Sales] ),

    DateTable[DATEKEY] < MAX ( DateTable[DATEKEY] )

)

Sales Difference =

[Total Sales] - [Previous Sales Value]
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Because we are using the DATEKEY column from the date dimension in 

the Table visual in Figure 9-13, the expressions using LASTNONBLANK and 

LASTNONBLANKVALUE will be evaluated for every date in this column, regardless of 

whether each date has a transaction in the Winesales table. When you then populate 

the “Total Sales” measure into the Table visual, you will see blank values for dates where 

there are no transactions. To resolve this, use a visual-level filter and filter the “Total 

Sales” measure to exclude blank values.

The important factor in the evaluation of these expressions is the use of CALCULATE 

to modify the filter context in which the LASTNONBLANK and LASTNONBLANKVALUE 

are evaluated. The expression “MAX (DateTable[DATEKEY])” returns the date value 

in the current filter context, for example, 7 January 2017; see Figure 9-14. The MAX 

function is used to return a scalar value. As there is only a single date in the current 

filter context, we could equally use MIN or SUM. The filter argument of CALCULATE 

therefore is saying “find the date in the DATEKEY column of the DateTable that is before 

the date returned by ‘MAX (DateTable[DATEKEY])’ but only if it has a sales value and 

is not blank.” The LASTNONBLANK function returns this date, that is, 3 January 2017. 

The LASTNONBLANKVALUE function returns the sales value associated with this date, 

$10,560.

Figure 9-14. Focusing on an evaluation of the LASTNONBLANK and 
LASTNONBLANKVALUE expressions

We can then simply subtract the “Previous Sales Value” measure from the “Total 

Sales” measure.

ChapTer 9  CalCulaTions on DaTes: using DaX Time inTelligenCe



162

 Finding the Difference Between Two Dates
Finding the difference in days between two dates in DAX can be done in a similar way to 

Excel; simply subtract one date from another. However, in DAX, you must nest the dates 

in the INT function to return a value in days as opposed to returning a date:

Days Difference =

INT ( [Date of Last Transaction] ) - INT ( [Date of First Transaction] )

DAX also has the same function DATEDIFF that we use in Excel to find the difference 

between weeks, months, years, etc. (see Figure 9-15).

Months Difference =

DATEDIFF ( [Date of First Transaction], [Date of Last Transaction], MONTH )

Figure 9-15. Calculating days between and months between two dates
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Hopefully, our foray into some of the more ubiquitous DAX time intelligence 

functions has whetted your appetite for performing calculations on dates. There are of 

course a number of other time intelligence functions that we haven’t explored here but 

that you might find useful in the analysis of your data, so why not self-explore more of 

these valuable DAX functions. You will find them all here:

https://docs.microsoft.com/en- us/dax/time- intelligence- functions- dax
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CHAPTER 10

Empty Values vs. Zero
In this chapter, we will look at a very specific DAX behavior, and that is how DAX treats 

empty, missing, and null values.1

Note We will be examining this behavior in the context of a calculated column 
and mostly creating expressions that would only be valid in this context. However, 
you must appreciate that the behavior of empty, missing, and null values is exactly 
the same in the context of DAX measures, and the examples at the end of this 
chapter will illustrate this.

 The BLANK( ) Function
In DAX, there is a special way to identify null or empty values, and that’s by using a value 

called “blank.” To return blank values, we can use the BLANK() function as shown in a 

calculated column created in the Winesales table (Figure 10-1):

10 Percent =

IF ( Winesales[CASES SOLD] > 100,

Winesales[CASES SOLD] * 0.1, BLANK () )

1 To follow along with the examples, use the Power BI Desktop file “2 DAX Blanks & Zeros.pbix”.
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Figure 10-1. Use the BLANK() function to return blank values

When constructing DAX expressions using IF, if you want to return BLANK() on 

the “Value if false” argument, you can just close off on the bracket because BLANK() 

is the default if no value is supplied in the argument. So we could rewrite the previous 

expression like this:

10 Percent =

IF ( Winesales[CASES SOLD] > 100,

Winesales[CASES SOLD] * 0.1 )

We can test for null or blank values as in the following calculated column:

Note In the sample .pbix file, sort the Winesales table by SALE DATE ascending 
to see the blanks and zeros in the CASES SOLD column.

Blank? =

IF ( Winesales[CASES SOLD] = BLANK(), "Blank", "Other")

Notice that testing for BLANK() includes 0 (zero), so we never get “Other” for zero 

(Figure 10-2).
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Figure 10-2. Testing for a blank includes zero values

What’s surprising, however, is that the reverse is true, so in the following calculated 

column, testing for 0 includes blank values, so again we don’t get “Other” for blank 

values (see Figure 10-3):

Zero? =

IF ( Winesales[CASES SOLD] = 0, "Zero", "Other")

Figure 10-3. Testing for zero includes blanks

Therefore, we can see that DAX treats BLANK() and 0 (zero) as the same value when 

used in the predicate of the IF function, as in the previous two examples.
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 The ISBLANK Function
So what if you want to distinguish between 0 and blank values? You can use a DAX 

function that will “weed out” blanks as compared to 0. That function is ISBLANK as used 

in this following calculated column (Figure 10-4):

Blank or Zero? =

IF (

    ISBLANK ( Winesales[CASES SOLD] ),

    "Blank",

    IF ( Winesales[CASES SOLD] = 0, "Zero", "Other" )

)

Figure 10-4. Use the ISBLANK function to test for blanks and not zeros

Using ISBLANK, we now have “Zero” returned for zero values and “Blank” returned 

for blank values, and any other values return “Other”.

 Testing for Zero
If you want to find just 0, you can use this calculated column (Figure 10-5):

Zero? =
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IF (

    NOT ( ISBLANK ( Winesales[CASES SOLD] ) )

        && Winesales[CASES SOLD] = 0,

    "Zero",

    "Other"

)

Figure 10-5. Testing for zeros

Now, we only see “Zero” where applicable.

 Using Measures to Find Blanks and Zero
You can also use a measure inside ISBLANK. For example, to find how many customers 

have no sales, as opposed to 0 (zero) sales, this would be the DAX expression:

No. of Customers with No Sales =

COUNTROWS ( FILTER ( Customers, ISBLANK ( [Total Sales] ) ) )

Whereas this expression would find the number of customers who had either zero 

sales or no sales:

No. of Customers with Zero or No Sales =
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COUNTROWS ( FILTER ( Customers,  [Total Sales] = 0 ) )

This expression would find the number of customers who had zero sales:

No. of Customers with Zero sales =

COUNTROWS (

    FILTER ( Customers, NOT ( ISBLANK ( [Total Sales] ) )

                                       && [Total Sales] = 0 )

)

You can see these measures used in Card visuals in Figure 10-6. To see the customers 

with no sales in the Table visual, use the “Show items with no data” option.

Figure 10-6. Customers with no sales and zero sales

We can conclude, therefore, that we must be careful using the following expression:

“= IF ( [expression] = 0 )”

because it will include blank values as well as zero values.
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 Using the COALESCE Function
There is often a requirement to substitute a blank value for another value, such as zero. 

This would be the expression that would achieve this outcome:

If Blank Return Zero =

If ( ISBLANK ( [Total Sales] ), 0, [Total Sales] )

However, in March 2020, a new function was introduced into the DAX library, and 

that was the COALESCE function that provides us with a more succinct expression as in 

these two examples:

If Blank Return Zero =

COALESCE([Total Sales],0)

If Blank Return No Sales =

COALESCE([Total Sales],"No Sales")

The first argument of this function is the expression where you are looking for blank 

values, for example, the “Total Sales” measure. The second argument is the value you 

want returned if the expression is blank, for example, 0 or “No Sales”, see Figure 10-7.
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In this chapter, you have learned that DAX treats blanks and zeros as the same value 

unless you specifically use the ISBLANK function in your expression to distinguish 

between these two values. This chapter has also been a welcome transgression from 

the hard work of learning how to analyze your data by using some of the more difficult 

aspects of DAX such as using ALL to calculate percentages and using time intelligence to 

calculate rolling averages.

In the next chapter, we prepare ourselves for the more complex expressions to 

come. You must now learn how to use DAX variables in your code to facilitate authoring 

measures that require a more advanced knowledge of DAX.

Figure 10-7. Use the COALESCE function to replace blanks with a value
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CHAPTER 11

Using Variables: Making 
Our Code More Readable
We’ve managed very well so far without the use of variables in our DAX code. Indeed, 

variables haven’t always been around in the DAX language. They came on board in 

2015, five years after DAX was first developed. In this chapter, we will elaborate on why 

variables are so useful when writing DAX expressions, and once you’ve learned how to 

utilize them, we will be including them henceforth in our expression, where applicable.1

Using variables in your DAX expressions can help you write the more complex 

calculations that we will begin to tackle as we move forward in this book. There are three 

major advantages gained by using variables:

 1. Improved performance

 2. Improved readability

 3. Reduced complexity

In this chapter, we will explore these three benefits of including variables when 

generating DAX code. We will also look at the immutable and constant nature of 

variables and when they may be a hindrance rather than a help.

To include variables in your code, use the keyword VAR followed by the name of the 

variable and then the definition of the variable. The keyword RETURN is then used at the 

end of the code to return the expression to be evaluated. For example:

Example Measure =

VAR MyVariable = SUM (Winesales[CASES SOLD])

RETURN

MyVariable * 1.1

1 To follow along with the examples, use the Power BI Desktop file “1 DAX Sample Data.pbix”.
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Variable declarations are usually made at the beginning of the expression, and their 

value remains constant throughout the evaluation. However, you can declare variables 

within the expression to limit the scope.

Variables can be used in both measures and calculated columns to harvest the 

values generated by

• Expressions, for example, SUM ( Winesales[CASES SOLD] )

• Measures, for example, [Total Cases]

• Tables, for example, FILTER ( Winesales, Winesales[CASES 

SOLD] >300 )

• Values, for example, 0.1, 10, 20

When variables are used in calculated columns, they can also harvest values 

generated in columns.

The name of the variable must not contain spaces, and you can’t use reserved 

words such as “date” or “min”. Also, it makes sense if the name of the variable isn’t the 

name of an existing table or column. Some people like to use the underscore to start the 

variable name.

 Improved Performance
As an example of how variables can improve performance, let’s look at a measure to 

calculate 10% or 5% of the CASES SOLD based on the CASES SOLD value being greater 

than 20,000 and 15,000, respectively. This would be the expression you might author:

10 PC or 5 PC =

IF (

    SUM ( Winesales[CASES SOLD] ) > 20000,

    SUM ( Winesales[CASES SOLD] ) * 0.1,

    IF (

        SUM ( Winesales[CASES SOLD] ) > 15000,

        SUM ( Winesales[CASES SOLD] ) * 0.5,

        SUM ( Winesales[CASES SOLD] )

    )

)
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The problem with this expression, especially as far as performance goes, is that there 

are five repetitions of the SUM function, forcing the evaluation of these expressions five 

times. Also, the use of the nested IF is rather cumbersome. Using the SWITCH function 

in place of the nested IF is a small improvement:

10 PC or 5 PC #2 =

SWITCH (

    TRUE (),

    SUM ( Winesales[CASES SOLD] ) > 20000,

                   SUM ( Winesales[CASES SOLD] ) * 0.1,

    SUM ( Winesales[CASES SOLD] ) > 15000,

                    SUM ( Winesales[CASES SOLD] ) * 0.5,

                    SUM ( Winesales[CASES SOLD] )

)

This is the first time that we have met SWITCH, and its construct is as follows:

=SWITCH ( expression, value1, result1, value2, result2 etc…else )

Notice that inside SWITCH, the function TRUE() is used as the expression to be 

evaluated and then Boolean statements are listed, followed by the value to be returned if 

the statements are true. The final argument is the “else” expression.

However, despite the fact that the measure using SWTICH is more compact to write, 

it doesn’t offer any great improvement in performance as the SUM function is still being 

evaluated multiple times.

Therefore, let us now introduce the use of a variable by using the keyword VAR to 

define the variable and the keyword RETURN to return the expression to be evaluated, as 

follows:

10 PC or 5 PC #3 =

VAR TotalCasesValue =

    SUM ( Winesales[CASES SOLD] )

RETURN

    SWITCH (

        TRUE (),

        TotalCasesValue > 20000, TotalCasesValue * 0.1,

        TotalCasesValue > 15000, TotalCasesValue * 0.5,

        TotalCasesValue

    )
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In this expression, not only do we avoid repeating the SUM function, but also the 

total cases calculation is performed only once when the variable is declared rather than 

being recalculated for every test.

 Improved Readability
Variables can also help to clarify expressions that use nested measures or nested 

expressions where the readability of the expressions gets more convoluted. For example, 

consider the following expression that calculates growth percentage. Notice that the 

first variable defines a measure and the second variable defines an expression. The use 

of the variables and the RETURN statement result in the expression much simpler to 

understand:

Growth % =

VAR CurrentCases = [Total Cases]

VAR LastYrCases =

    CALCULATE ( [Total Cases], PREVIOUSYEAR (

                            DateTable[DateKey] ) )

RETURN

    DIVIDE ( CurrentCases - LastYrCases, LastYrCases )

Note because this measure uses the preViOUsYear function, you must have a 
year filtered (e.g., by using a slicer) in the visual that uses the measure.

Not only can variables define measures and expressions, but they can also define 

tables. In Chapter 7, we calculated the number of high profit wines as follows:

High-profit Wines =

    CALCULATE ( [No Of Sales],

   FILTER ( Wines, Wines[PRICE PER CASE] >=

   Wines[COST PRICE] * 3 ))
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However, we could use a variable to hold the table expression defined by the FILTER 

function and use that as the filter argument inside CALCULATE. Again, using the 

RETURN statement greatly streamlines the expression:

High-profit Wines #1 =

VAR TableOfWines =

    FILTER ( Wines, Wines[PRICE PER CASE] >=

         Wines[COST PRICE] * 3 )

RETURN

    CALCULATE ( [No Of Sales], TableOfWines )

We can use variables in calculated columns too, for instance, within the 

arguments of IF:

Cases Sold Increase =

VAR CasesSold = Winesales[CASES SOLD]

VAR MyValue1 = 1.1

VAR MyValue2 = 1.2

RETURN

IF(CasesSold > 100, CasesSold * MyValue1, CasesSold * MyValue2)

We will look at further examples of how variables can help you when used in the 

context of the calculated column when we delve into more complex DAX expressions in 

later chapters.

 Reduced Complexity
Our next example of the benefit to be reaped by using a variable is by revisiting a 

calculation we built when exploring the FILTER function in Chapter 7. We calculated 

the number of sales where the value in the CASES SOLD column was above the average 

cases for all wines. This was the measure:

No. of Sales Where Cases is GT Avg All Wines =

     CALCULATE([No. of Sales],

     FILTER (Winesales,

     Winesales[CASES SOLD] >= [Avg Cases All Winesales] ) )
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The problem with this code is that because it nests the measure “Avg Cases All 

Winesales” within the expression, this measure must already exist in our model, as 

would any measures we use in this context. We may be required to continually locate 

such measures in the Fields list in order to edit or debug them, leading to frustration and 

annoyance.

The preferred expression would use two variables as follows:

No. of Sales Where Cases is GT Avg All Wines #2 =

VAR AvgAllWines =

CALCULATE( AVERAGE ( Winesales[CASES SOLD] ) ,ALL ( Winesales ) )

VAR FilterAvgAll =

FILTER ( Winesales, Winesales[CASES SOLD] >= AvgAllWines )

RETURN

   CALCULATE ( [No. of Sales], FilterAvgAll )

 Variables As Constants
There is one last important point to make regarding variables, and that is the term 

“variable” can be misleading. Perhaps if we called DAX variables “constants,” this 

might be a more accurate description because that’s what they really are. Consider the 

following expression:

Sales for Abel =

VAR MyAmount = [Total Sales]

RETURN

    CALCULATE ( MyAmount, SalesPeople[SALESPERSON] = "abel" )

We can see in Figure 11-1 that this expression does not return the sales amount for 

salesperson “Abel” but simply returns the total sales.
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Figure 11-1. Variables behave as constants and can’t be modified by CALCULATE

The reason for this is that the variable “MyAmount” is calculated where it is 

declared, in this case, before any other code. It then does not and cannot change by using 

CALCULATE to modify the filter. This is where we must use a measure such as “Total 

Sales” inside CALCULATE instead.

However, the immutable nature of variables is also their strength. For instance, 

consider the scenario where you want to identify the months where you’ve had 

exceptionally high sales. You’ve identified exceptionally high sales as those transactions 

where the sales value is greater than 5% of the total sales for that month.

This is the code you would probably write:

No of Sales GT 5% Wrong =

CALCULATE (

    [No of Sales],

    FILTER (

        Winesales,

        [Total Sales] >  [Total Sales] * 0.05

    )

)

Chapter 11  Using Variables: Making OUr COde MOre readable



180

However, this measure does not return the correct result. The value of the “Total 

Sales” measure when used inside an iterator such as the FILTER function calculates 

the total sales for each row in the Winesales table, not the total sales for each month. 

Therefore, the measure “Total Sales GT 5% Wrong” calculates the number of sales where 

the sales value is greater than 5% of the sales value on each row (i.e., each transaction) 

and so returns the number of sales; see Figure 11-2.

Figure 11-2. The “No of Sales GT 5% Wrong” measure returns the number of sales

This expression uses the concept of context transition that we will meet in a later 

chapter, but nevertheless, it’s intuitive to understand that if FILTER is iterating the 

Winesales table, it must be scanning the table row by row.

The correct expression must calculate the total sales in the current filter context, 

which is the total sales for each month, that has been lost by the iteration of FILTER. To 

reapply this filter, CALCULATE can use the filter that is placed on the Winesales table, 

the code for which would be a challenge even to experienced DAX users:

No of Sales GT 5% Difficult =

CALCULATE (

    [No of Sales],
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    FILTER (

        Winesales,

        [Total Sales] > CALCULATE ( [Total Sales], Winesales ) * 0.05

    )

)

This measure has been labelled as the “difficult” expression because it uses two 

challenging DAX concepts that we’ve yet to meet: context transition and table expansion. 

However, you may be relieved to know that you don’t need this advanced knowledge to 

arrive at the correct calculation. You can use variables instead, and this will render the 

expression very easy:

No of Sales GT 5% Easy =

VAR PerCentToFind = [Total Sales] * 0.05

RETURN

    CALCULATE ( [No of Sales],

FILTER ( Winesales, [Total Sales] > PerCentToFind ) )

The “easy” expression uses a variable to calculate 5% of the “Total Sales” measure, 

and this is evaluated first and remains constant. This variable is then used to calculate 

the number of sales in each month that have a total sales value that is greater than the 

value stored by the variable.

The moral of this story? Let’s just be grateful for variables!
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CHAPTER 12

Returning Values 
in the Current Filter
There is often a requirement when designing reports to display the value or values 

selected in slicers or in the Filters pane. This might be to show these values in the title 

of a visual using conditional formatting or to show them in Card visuals, as shown in 

Figure 12-1.

Figure 12-1. Displaying the values in the current filter context

If this is your goal, we have three DAX functions that do this job: SELECTEDVALUE, 

CONCATENATEX, and VALUES. In this chapter, we will be exploring the use of these 

functions to return filter selections. You will learn how to generate dynamic titles for 
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your visuals that label the data filtered within them. However, this chapter will also 

introduce the concept of the parameter table, a table that is unrelated to other tables in 

the model and used to capture values selected by the user. Such values can then be used 

dynamically within your calculations.

The SELECTEDVALUE and CONCATENATEX functions fall into the category of 

functions that return scalar values and can return either a numeric or a text value. This 

is why it’s not a verity to say the measures only return scalar values, as that would imply 

that they can only return numeric values. Measures using either of these functions will 

often return a text value. The VALUES function is unusual in that it can return either a 

scalar value or a table, and therefore, we will hold off looking at this function until the 

end of the chapter.

You’ve learned that a measure must return a single value whether numeric or text 

and SELECTEDVALUE and CONCATENATEX are no exception. SELECTEDVALUE 

will return the value in the current filter context but only if there is one value to return. 

However, sometimes, the filter context holds more than one value, when we make 

multiple selections in slicers for instance, so how can we return values in this scenario?

If the requirement is to return multiple values that are in the filter context, we 

must use another function: CONCATENATEX. This function falls into the “X” group 

of iterating functions that you learned about in Chapter 5. In order that a single value 

is returned, measures using CONCATENATEX will concatenate multiple values in the 

current filter context and so return a single text string.

Therefore, we have two functions SELECTEDVALUE and CONCATENATEX, one of 

them being an iterator, that are very different from each other. However, they are used 

for the same purpose, and that is flagging up items that have been filtered out by slicer or 

filter selections. Let’s now look at the first of these: SELECTEDVALUE.

 The SELECTEDVALUE Function
The SELECTEDVALUE function returns the value in the filter context when there’s only 

one value in the specified column, otherwise, it returns the alternate result. It has the 

following syntax:

= SELECTEDVALUE( column name, alternate result )

where:

column name is the column from which you want to find the value.
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alternate result (optional) is the value returned when the column has been filtered 

to more than one distinct value or no value. When not provided, the default value is 

BLANK().

Here is an example of the SELECTEDVALUE syntax:

= SELECTEDVALUE ( Wines[TYPE], “Many”)

Before we look more closely at this function, it’s important that we recap on what we 

mean by “the current filter context” by considering the following measure:

Total Cases =

SUM ( Winesales[CASES SOLD] )

Figure 12-2. The filters for the evaluation of the “Total Cases” measure are placed 
on both the SALESPERSON and WINE columns

This visual in Figure 12-2 contains the “Total Cases” measure filtered by the 

SALESPERSON and WINE columns. For the first evaluation of 8,531 cases, there is a filter 

on salesperson “Abel” and “Bordeaux” wine. However, it’s the filter on the WINE column 

from the slicer on which we will focus. If we could see the filter on the Wines dimension, 

it would look something like Figure 12-3 where the table has been filtered to one row.
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Figure 12-3. The slicer filters just one row in the Wines dimension

We know that this filter is then propagated to the fact table along with the filter on 

the SalesPeople dimension, both these filters making up the current filter context.

Often, we have many slicers on the report canvas, and it’s not always apparent to 

users of the report which slicers they have clicked on. It would be beneficial if we could 

provide them with this information as in Figure 12-4.

Figure 12-4. Informing users of slicer selections

This is where the SELECTEDVALUE function can help us. You can see in Figure 12-4 

that the wine selected in the slicer is shown in both the title of the Table visual using 

conditional formatting and in the Card visual. This is the measure that we used in these 

examples:

Wine Selected =

"You have selected " & SELECTEDVALUE ( Wines[WINE] )
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This example uses the SELECTEDVALUE function to return the value from the 

WINE column sitting in the current filter context. This is also the first time that we’ve 

used the ampersand (&) in a DAX expression. Just like Excel, the ampersand is the DAX 

concatenate operator and is used to string parts of a DAX expression together.

Note if you need help in using conditional formatting in the title of a visuals, 
follow this link: https://docs.microsoft.com/en- us/power- bi/create- 
reports/desktop- conditional- format- visual- titles

But what if there’s more than one value selected in the slicer? As we will see in the 

following, one option is to use CONCATENATEX, but there is another, much easier 

solution because the SELECTEDVALUE function allows you to supply an alternative 

result when multiple items have been selected, as shown here:

Wine Selected #2 =

"You have selected " &

SELECTEDVALUE ( Wines[WINE],"multiple wines" )

However, because the “alternate result” argument of SELECTEDVALUE kicks in 

whether there are multiple selections or no selection, we have a problem. You’ll notice 

that if you have nothing selected in the slicer, the Table visual title and Card visual will 

still tell you that you have multiple wines selected (Figure 12-5)!
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Figure 12-5. The “alternate result” shows for no selection as well as for many 
selected

One way to avoid this problem is to ensure users can’t make multiple selections or 

no selection by turning on “Single select” on the Slicer settings formatting card. The 

other way is to use CONTCATENATEX as we will be discovering later in this chapter.

The SELECTEDVALUE function also allows you to test for specific values in the 

current filter. In Figure 12-6, the Card visual1 shows “Expensive Wine” if the PRICE PER 

CASE value of the wine selected in the slicer is greater than $75.00; otherwise, it shows 

“Cheap Wine”.

1 For information on formatting the Card visual, visit https://docs.microsoft.com/en-us/
power-bi/visuals/power-bi-visualization-card
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Figure 12-6. Using SELECTEDVALUE to test for values in the current filter

This is the expression used in Figure 12-6:

High Price =

IF (

    SELECTEDVALUE ( Wines[PRICE PER CASE] ) > 75,

    "Expensive Wine",

    "Cheap Wine"

)

It’s important to note here that when using SELECTEDVALUE, you can select any 

value sitting in any column of the row that has been filtered, not just the column used in 

the slicer.

However, we still have a problem when a user selects multiple values in a slicer. You 

may not want to use “single select” in the slicer but instead be able to select multiple 

items and list the items in a Table or Card visual. We’ve also seen that the “alternate 

result” of SELECTEDVALUE displays when there is no selection as well as when 

there are many selected. Let’s now see how we can solve this problem by using the 

CONCATENATEX function.

 The CONCATENATEX Function
We know that any function that ends in an “X” is an iterating function, and 

CONCATENATEX is no exception. It iterates the table referenced in its first argument 
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and then concatenates the values in the column referenced in its second argument. 

Specifically, the CONCATENATEX function has the following arguments:

= CONCATENATEX( table, expression, delimiter, order by, order )

where:

table is the table to be iterated.

expression is the column (or expression) whose values you want concatenating for 

every row in table.

delimiter is the character you want to separate the values, for example, a comma or 

an ampersand.

order by (optional) is usually a column by which you want to sort the values.

order (optional) is ASC or DESC.

Now let’s look at an example of an expression using CONCATENATEX:

Types of Wine =

CONCATENATEX ( Wines, Wines[WINE] , ", " , Wines[WINE ID], ASC )

In this measure, CONCATENATEX iterates the Wines table and, for every row in 

the table, returns a concatenated list of values from the WINE column, separated with 

a comma and sorted ascending by WINE ID. In Figure 12-7, you can see the values that 

this expression returns when the TYPE column from the Wines tables has been placed 

in the Table visual. The “Types of Wine” measure displays all the wines beside their 

type (i.e., Red or White), separated by a comma and sorted by the WINE ID column 

ascending.

Figure 12-7. The values returned by the “Types of Wine” measure
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We can use just the first three arguments and place this measure in a Card visual, 

using a slicer to filter by the WINE column:

Types of Wine #1 =

         CONCATENATEX (

                    Wines, Wines[WINE] ,

                        ", " )

Here, CONCATENATEX will simply return all the wine names in the current filter; 

see Figure 12-8. At last, we’ve been able to solve the problem of displaying slicer 

selections when multiple items have been selected.

Figure 12-8. The “Types of Wine #1” measure in a Card visual sliced by WINE

However, we’re not quite there yet. If there is no selection in the slicer, the Card 

visual returns all the wine names which probably isn’t what you want. To resolve this, we 

need to take our “Types of Wine #1” expression a little further.

In Figure 12-9, we have used two similar measures in the title of a Table visual using 

conditional formatting: “Types of Wine #2” and “Types of Wine #3”. Both measures return 

the phrase “Sales by Wine, filtered by”, and the list of wines will grow as the selection 

grows. To avoid cluttering the visual with many wine names, the “Types of Wine #3” 

shows “and More” when more than three wines have been selected. When there is no 

selection in the slicer, the title of the visuals shows “Sales by Wine”, rather than “you have 

selected multiple wines”, as in the case of the measures using SELECTEDVALUE.
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Figure 12-9. Using CONCATENATEX to solve the problem of multiple selections 
and no selection

Therefore, using CONCATENATEX, we have solutions for all four problem scenarios:

 1. No selection in the slicer

 2. Selections in the slicer

 3. Three or fewer wines selected

 4. More than three wines selected

The measure required that solves problem scenarios #1 and #2 is relatively 

straightforward. However, we need to extend this expression to accommodate scenarios 

#3 and #4, and this is where the expression will become a little more ambitious. 
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Therefore, let’s tackle the situation where users make selections in the slicer or there is 

no selection.

To resolve this scenario, the measure we build must return either

 1. “Sales of Wines” if there are no selections in the slicer

or

 2. “Sales of Wines filtered by” followed by a list of wines selected in 

the slicer

Therefore, we need a way to find out whether the filter on the WINES column has 

reduced the number of rows in the Wines dimension. If it has, there must be selections 

in the slicer. If it hasn’t, there must be no selection in the slicer. What we can do here 

is use the function named VALUES that generates a virtual one-column table that lists 

the values in the WINE column in the current filter context. We can then use the ALL 

function to return another virtual one-column table containing all the wine names. If 

these tables have the same number of rows in them, then there must be no selections in 

the slicer.

Note We deep dive into the Values function later in this chapter.

Here is the expression that we can build. Note the use of variables to harvest the 

values returned by COUNTROWS:

Types of Wine #2 =

VAR NoFilteredWines =

         COUNTROWS (  VALUES ( Wines[WINE] ) )

VAR  NoAllWines=

            COUNTROWS ( ALL( Wines[WINE] ))

RETURN

     IF ( NoFilteredWines = NoAllWines ,

                "Sales by Wine",

                "Sales by Wine, filtered by "

                &

         CONCATENATEX (

                    Wines, Wines[WINE] ,

                        ", " ) )
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Let’s now turn our attention to resolving the scenario of users selecting more than 

three wines in the slicer. If they select three or fewer wines or no wines, then the measure 

will return the same as “Types of Wine #2”. However, if they select four or more wines, 

we want the measure to return a list of the first three wines selected followed by “and 

more…”. Therefore, we need to generate a list of just the top three wine names selected in 

the slicer. We can use a table function named TOPN to do this job. As its name suggests, 

TOPN will build a virtual table containing only the top N (e.g., 3) values as in the 

following expression:

TOPN ( 3, VALUES ( Wines[WINE] ))

Notice again how the VALUES function is used to generate a one-column table listing 

the wine names in the current filter context. The TOPN function will extract the top three 

of these wine names into its own table that can then be used by CONCATENATEX to 

concatenate these values. We can then concatenate “and more…” using the ampersand.

You can see the following expression will solve our final scenario. All we need to do 

is add the IF function to execute the TOPN expression, followed by the TOPN expression 

itself, added to the bottom of the code (highlighted in gray):

Types of Wine #3 =

VAR NoFilteredWines =

         COUNTROWS (  VALUES ( Wines[WINE] ) )

VAR  NoAllWines=

            COUNTROWS (ALL ( Wines[WINE]))

RETURN

     IF ( NoFilteredWines = NoAllWines ,

                "Sales by Wine",

                "Sales by Wine, filtered by "

                &

        IF ( NoFilteredWines <=3,

         CONCATENATEX (

                    Wines ,

                        Wines[WINE] ,

                        ", ") ,
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           CONCATENATEX (

            TOPN ( 3, VALUES ( Wines[WINE] )),

                         Wines[WINE] ,

                         ", ")

                                   & " and more..."

))

In building these measures, you have learned how CONCATENATEX can be used 

to string together slicer selections. However, it has also been a valuable exercise in the 

use of table functions and table expressions to generate virtual in-memory tables that 

are then used within the expression. This concept lies at the heart of DAX, building 

temporary tables that contain the values used by scalar functions. It might also be 

worth noting here that the measure “Types of Wine #3” is an order of magnitude more 

advanced than anything you have tackled so far in this book, but you now have the skills 

to author such complex code.

We have also covered the details of the SELECTEDVALUE function on which we 

are now going to refocus. This is because we can put it to better use than alerting users 

to whatever has been chosen in a slicer. We understand that SELECTEDVALUE will 

return a single value, and in this way, we can use this function to harvest ad hoc values 

in columns of unrelated tables. These unrelated tables have a name, parameter tables 

whose use we are now going to explore.

 Using Parameter Tables
You can use SELECTEDVALUE to return a user-selected parameter. This chosen 

parameter can then be used as a value inside a measure.

Consider the Table visual in Figure 12-10. Here, we have a slicer that allows us to 

select a sales projection scenario for our “Total Sales” measure as follows:

• “Best case” (increase by 20%)

• “Probable” (increase by 10%)

• “Worst case” (decrease by 10%)

Chapter 12  returning Values in the Current Filter



196

The total sales is then calculated accordingly in the “What If Scenario” measure.

Figure 12-10. Using a parameter table to analyze sales projection scenarios

To create these scenarios, we’ve used the Enter data button on the Home tab and 

created this table, called “What If”, as shown Figure 12-11.

Figure 12-11. The “What If” parameter table
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Notice in Figure 12-11 that this table is not related to any other tables in the data 

model. We now need to place a slicer on the canvas populated with the “Scenario” 

column from the “What If” table, and we’re ready to create this measure:

What If Scenario =

[Total Sales] * SELECTEDVALUE ( 'What If'[Value] )

When we select a value from the Scenario slicer, for example, “Probable”, this value 

is filtered in the “What If” table. There is only one row in the “What If” table, and the 

value sitting in the Value column is then used to multiply the value of the “Total Sales” 

measure.

You have learned that you can build parameter tables and by using 

SELECTEDVALUE can construct expressions that test for specific values selected from 

the parameter table. Once you know you can do this, you can use the values selected to 

drive specific calculations. Let’s look at an example of this. You may have found that one 

of the frustrations of working in Power BI is that you can only populate column values 

into slicers. However, this question often arises: Can I put measures into slicers? The 

answer is yes, you can! Consider Figure 12-12.

Figure 12-12. Creating slicers for measures

Here, we have a slicer that lists three measures. On selecting a measure in the slicer, 

the “Measure to Show” measure in the Table visual calculates the selected measure.
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To build this example, again, we started with creating the parameter table and 

named it “Select Measures”. This table has two columns. The column named “Measure” 

lists the measures, but appreciate that these names are arbitrary; you don’t have to use 

the exact measure names. The second column named “Value” assigns a value to the 

“Measure” name. As with all parameter tables, this table is unrelated to any other tables 

in the model; see Figure 12-13.

Figure 12-13. The “Select Measures” parameter table

A slicer was then placed on the canvas containing the “Measure” column from the 

“Select Measures” table.

This is the expression for “Measure to Show”:

MEASURE toShow =

    SWITCH (

        SELECTEDVALUE ( 'Select Measures'[Value] ),

        1, [Total Sales],

        2, [Total Cases],

        3, [No. of Sales]

    )

Note the use of the SWITCH function in place of using IF, but either does the job. 

This measure was then placed in the Table visual alongside the WINE column from the 

Wines table.
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 The Values Function
It was debatable whether I would include the VALUES function in this book because 

in recent years, its requirement has largely been replaced by the SELECTEDVALUE 

function. However, the reason I changed my mind is that if you’re a DAX user, you would 

know and understand the VALUES function, even if you were rarely required to use it.

Before the arrival of the SELECTEDVALUE function in 2017, the VALUES 

function was one of the major DAX functions. For this reason, you will meet VALUES 

when you browse other people’s code, and therefore, it would be a good idea if you 

knew the purpose of the function within an expression. Also, these two functions, 

SELECTEDVALUE and VALUES, are not interchangeable; sometimes, only VALUES will 

do. Indeed, we’ve already had cause to use the VALUES function when we were exploring 

CONCATENATEX.

VALUES is particularly useful when you want to convert a column reference into a 

table reference or when you want to reapply “lost” filters.

This function has a very simple syntax. Inside the function, you either reference a 

table or a column:

=VALUES ( table name or column name )

Here are two examples of VALUES syntax; the first references a table and the second, 

a column:

= VALUES ( Wines )
= VALUES ( Wines[WINE] )
This function is a table function and returns a virtual table as follows:

• When the input parameter is a column name, it returns a one- 

column table that contains the distinct values from the specified 

column using the current filter context. Duplicate values are removed, 

and only unique values are returned.

• When the input parameter is a table name, it returns a table 

containing the rows from the specified table using the current filter 

context, and duplicate rows are preserved.

Although SELECTEDVALUE has largely replaced VALUES, they are two quite 

different functions. SELECTEDVALUE is a scalar function that will return a single value. 

Therefore, inside SELECTEDVALUE, you can only reference the column name where the 

scalar value you require is located. The VALUES function, on the other hand, is described 
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as being a table function, and inside VALUES, you can reference either a column name or 

a table name. If you reference a column name inside VALUES, that column is converted 

to a table and so allows you to use columns as table expressions. Because this is one 

of the benefits of using this function, VALUES is more commonly used with a column 

reference, and it’s this behavior of VALUES on which we will concentrate in this section.

 A Table or a Scalar Function?
However, if SELECTEDVALUE returns a scalar value and VALUES returns a table, how 

can VALUES be replaced by SELECTEDVALUE? This is where the VALUES function gets 

interesting because although it’s described as a table function, VALUES can return either 

a table or a scalar value.

The reason for this is that when a DAX table expression returns a one-column, one- 

row table, it’s converted by the DAX engine from a table to a scalar value (remember 

that the LASTNONBLANK function also exhibited this behavior; see Chapter 9). This 

is when VALUES changes its nature and switches from returning a table to returning a 

scalar value.

We can now explore an example of this behavior.

Note the following examples of DaX measures using the Values and 
seleCteDValue functions are for explanation purposes only. We write measures 
that return the wine names that we’ve already put into a visual, and clearly, 
there’s no purpose to these calculations. the reason we’re using these particular 
expressions is to explain more readily how the Values function works. We later put 
the Values function to more realistic and beneficial use.

Consider the following expression that will return a one-column table containing the 

name of the wine sitting in the current filter context.

Values Wine = VALUES ( Wines[Wine] )
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Before we put this measure into a Table visual, we must turn off the Total row of 

the visual (for reasons we will explain presently).2 When the measure is placed into the 

visual, it returns the values in the WINE column in the current filter; see Figure 12-14.

Figure 12-14. The VALUES function returns the value in the current filter context

We get no error on the evaluation of the “Values Wine” measure, so it would appear 

that VALUES is behaving like a scalar function (remember that all measures must return 

scalars). We can see how this is possible. In the first evaluation for “Bordeaux” wine, the 

VALUES expression creates a virtual table containing a list of unique values in the WINE 

column that are in the current filter. It therefore generates a one-column, one-row table 

containing the value “Bordeaux”. If we could see this table, it may well look like the table 

containing a single value as shown in Figure 12-15.

Figure 12-15. The one-column, one-row table generated by VALUES

2 For information on removing the Total row, visit https://community.powerbi.com/t5/Desktop/ 
How-to-remove-the-quot-Total
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This table contains a single value that can be converted to a scalar, and this is why it 

can be used successfully in the measure “Values Wine”.

However, let’s now replace the Total row in the Table visual. When we do this, the 

measure will now return an error as shown in Figure 12-16.

Figure 12-16. An error is returned when the VALUES function evaluates the 
Total row

The error message reads:

“A table of multiple values was supplied where a single value was expected.”

Why do we get this error when the Total row shows but not when it’s absent? When 

a DAX expression is evaluated for the Total row, there is no longer a single value being 

returned by VALUES, but now all the wine names are in the filter context. Therefore, 

the VALUES function will return a virtual table containing all the values in the WINE 

column. This is the “table of multiple values” that the error message is referring to 

(Figure 12-17).
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Figure 12-17. VALUES returns a “table of multiple values” when evaluating the 
Total row

Therefore, we can deduce that it’s the evaluation of the Total row that’s the problem 

because you can’t put multiple values into a “cell” in the Total row. This is why in the 

Table visual in Figure 12-14, we must remove the Total row for our expression to work. 

However, you might think this is a bit of a workaround and at some point want to show 

the Total row value for your measure.

To remedy this, rather than removing the Total row from the visual, instead, we can 

get DAX to distinguish between the evaluation for each wine and the evaluation for the 

Total row. For this, we must use a DAX function that returns TRUE if there is just one 

value in the current filter context. Its name is unsurprisingly HASONEVALUE. Here is the 

expression we need:

Values Wine =

IF ( HASONEVALUE ( Wines[WINE] ),

    VALUES ( Wines[WINE] ),

   "All Wines" )

But doesn’t the preceding expression return the same values as this one?

Selected Value Wine =

SELECTEDVALUE ( Wines[WINE], "All Wines" )
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Figure 12-18. The VALUES function returns the same values as the 
SELECTEDVALUE function

Well, yes, it does (Figure 12-18), and because the VALUES expression is more 

complex, you would probably prefer to use SELECTEDVALUE. Whenever you use 

VALUES to return a scalar value, you could use SELECTEDVALUE instead. What’s more, 

with SELECTEDVALUE, you don’t have to account for only one value in the filter context 

as it’s implicit in the “alternate result” argument.

You may be wondering why you would want to return the wine names anyway, using 

either SELECTEDVALUE or using VALUES, when you’ve already got them as the first 

column in the visual!
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 Replacing “Lost Filters”
You may feel that these examples, although explaining how VALUES works, are not 

“real-world” calculations. However, you have now learned how the VALUES function 

operates, that it can return either a table or a scalar value. We need to find a better use for 

VALUES and also find a situation where we can’t substitute SELECTEDVALUE. A better 

example of the VALUES function is when we use VALUES as a table function, rather than 

returning a scalar. So let’s look at this next scenario.

One of the problems with filtering using slicers is that you lose the original unfiltered 

value. One way to overcome this problem is to use two visuals and then use “Edit 

Interactions”3 so that a slicer filters one of the visuals but not the other (Figure 12-19).

Figure 12-19. Using “Edit Interactions”, you can prevent slicers from filtering 
a visual

3 For information on how to edit the interactions of visuals, visit https://docs.microsoft.com/
en-us/power-bi/create-reports/service-reports-visual-interactions
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However, we want a single visual that retains the unfiltered values alongside the 

filtered ones, as in Figure 12-20. This is the DAX expression for the “Total Sales Not 

Filtered” measure:

Total Sales Not Filtered =

CALCULATE ( [Total Sales],

    ALL ( Winesales ),

    VALUES ( Wines[WINE] )

)

Figure 12-20. A table visual where the “Total Sales Not Filtered” measure ignores 
the slicer filter

Now let’s examine the “Total Sales Not Filtered” measure in more detail. The first 

filter argument to CALCULATE is the ALL function that acts as a modifier and removes 

any cross-filters on the Winesales fact table coming from both the WINE column and the 
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SALESPERSON column. In the second filter argument, VALUES is used to build a virtual 

one-column, one-row table containing the wine name in the current filter context, that 

is, “Bordeaux” in the first evaluation. This is equivalent to “Wines[WINE] = “Bordeaux”. 

CALCULATE then applies this new filter to the Winesales table that is then refiltered 

accordingly. The end result is that there is a filter on the WINE column but no longer 

a filter on the SALESPERSON column, and therefore, we see sales for all salespeople 

for each wine. When the measure calculates the Total row, it constructs a virtual one- 

column table containing all the wine names to be used as the filter.

However, the following expression is an alternative way of achieving the same result:

Total Sales Not Filtered #2 =

CALCULATE ( [Total Sales], ALL ( Winesales ), Wines )

In this measure, we’ve referenced the entire Wines table as the filter instead of using 

VALUES to generate a virtual one-column table. We can do this because the Wines table 

has been filtered down to one row (or all rows for the evaluation of the Total row) and the 

entire table can be used as a table expression.

This is the first time we have referenced a table in the filter argument to CALCULATE 

rather than a table expression, and we’re going to do this again later on. Remember that 

the Wines table will contain a single row containing the wine in the current filter context, 

or all the rows of the Wines table when evaluating the Total row. This expression is 

perhaps a better one because we don’t need to nest yet another function.

 Converting Columns to Tables
We’ve already established that the VALUES function is a useful function to add to your 

DAX “toolbox” even though you can normally use SELECTEDVALUE instead. What 

you will discover as you work with DAX is that VALUES is more commonly used with a 

column reference because one of its major uses is to convert columns into tables. For 

example, this expression:

“= Wines[WINE]” is a column,

but this expression:

“= VALUES ( Wines[WINE] )” is a table.

We will look later at using VALUES in this way when we look at the TREATAS function 

later in this book.
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With its dual personality of returning either a table or a scalar value, and particularly 

how it can convert a column to a table, VALUES is a function well worth getting to know.

In this chapter, we have explored three functions, SELECTEDVALUE, 

CONCATENATEX, and VALUES, that allow you to use the value or values sitting in the 

current filter. You have learned that by creating parameter tables, you can harvest these 

values to use within your DAX expressions. But more than this, when working with 

CONCATENATEX, you have understood how, by using variables, you can hold the values 

returned by these functions so they can be referenced later within the expression. You 

have also successfully generated a number of temporary in-memory tables to control 

filters placed on the data model. All these techniques are ubiquitous to writing DAX 

expressions and will hold you in good stead as you move forward and author more 

complex code.
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CHAPTER 13

Controlling the Direction 
of Filter Propagation
Up to now, you have understood that filters only flow from the one side of the 

relationship to the many, from dimensions into the fact table, as indicated by the arrows 

in the linking lines in Model view; see Figure 13-1.

Figure 13-1. Filters only flow from dimensions into fact tables

However, there will be situations when you will want to author measures that require 

filters to propagate in the opposite direction. In this chapter, we explore these situations 

and learn how to reverse the direction of the filters using two methods:

https://doi.org/10.1007/978-1-4842-8188-8_13
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 1. The CROSSFILTER function to programmatically reverse the filters

 2. Editing the data model to make filter propagation flow both to and 

from the fact table

However, regarding method #2, we will be warning you of the downside if you 

change the structure of your data model. In fact, it’s important to understand that if you 

want filters to flow in the opposite direction, this will always be problematic whichever 

way you choose to work it.

 Programming Bidirectional Filters
For example, let’s look at a problem we explored in Chapter 4 when you were learning 

about the filter context and which at that time, you were not able to resolve. In the 

Customers dimension, we have the column NO. OF STORES; see Figure 13-2.

Figure 13-2. The Customers table and the NO. OF STORES column

We would like to calculate the number of stores in which we’ve sold each wine. We 

might create this measure:

Total Stores =

SUM ( Customers[ NO. OF STORES] )

However, as you can see in Figure 13-3, this measure does not work.
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Figure 13-3. The “Total Stores” measure does not return the correct results

In Chapter 4, we established the reason for the incorrect values. The filter on the 

Wines dimension only propagates to the fact table and does not propagate onward to the 

Customers dimension; see Figure 13-4.

Figure 13-4. The filter does not propagate from Winesales to Customers

So how do we find the number of stores in which we’ve sold our wines? The answer 

lies in using a function called CROSSFILTER.

The CROSSFILTER function returns no value but is used as a modifier to the 

CALCULATE function. It programmatically sets the direction of the filter propagation in 

the execution of the measure in which it is used. It has the following syntax:

= CROSSFILTER ( column1, column2, direction )
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where:

column1 is the column name that represents the many side of the relationship to 

be used.

column2 is the column name that represents the one side of the relationship to 

be used.

direction is the cross-filter direction to be used in the measure and can be set to 

“both” to generate bidirection filters.

Here is an example of CROSSFITLER syntax:

= CROSSFILTER ( Winesales[CUSTOMERID], Customers[CUSTOMERID], both)

The CROSSFILTER function specifies the cross-filtering direction to be used by a 

measure, so we can now, in memory, change the direction in which the filters propagate.

We can rewrite our original “Total Stores” measure like this:

Total Stores =

CALCULATE (

    SUM ( Customers[NO. OF STORES] ),

    CROSSFILTER ( Winesales[CUSTOMER ID], Customers[CUSTOMER ID], BOTH )

)

This measure uses CROSSFILTER to change the direction of the relationship between 

Customers and Winesales. When this measure is evaluated, the Winesales table is cross-

filtered by the Wines dimension, and this filter is propagated onward to the Customers 

dimension; see Figure 13-5.

Figure 13-5. The CROSSFILTER function can change the direction of the filter 
programmatically
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So in the first instance for “Bordeaux” wine, the Customers table becomes cross-

filtered to contain only customers who bought this wine, and we can see that there were 

728 stores in which we’ve sold “Bordeaux”; see Figure 13-6.

Figure 13-6. The “Total Stores” measure is now calculated correctly

However, note the value in the Total row, 1,181. It is not the total of the values for all 

the wines in the Table visual. Changing the filter propagation to bidirectional has a side 

effect. Many of the same customers have bought each wine, and so their total number of 

stores is included in multiple evaluations. However, the Total row sums the number of 

stores for all customers for all wines.

 Why You Should Never Use 
Bidirectional Relationships
The CROSSFILTER function allows you to programmatically change the direction of filter 

propagation in the execution of a specific measure. However, you may know that there’s 

an easier way to change the filter direction, and that’s to change the structure of the data 

model. To do this, you can double-click on the linking line between two tables in Model 

view to edit the relationship, setting the “Cross filter direction” to “Both”; see Figure 13-7.
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Figure 13-7. You can edit the relationship and set the cross-filter to both

However, a quick fix as this is, we would never recommend that you do this for 

two reasons. Firstly, bidirectional relationships are much less efficient and can hinder 

the performance of the data model, but perhaps, more importantly, they introduce 

ambiguity into the data model. It’s beyond the scope of this book to elaborate on the 

concept of ambiguity, but for more information on these issues, check out this link:

www.sqlbi.com/articles/bidirectional-relationships-and-ambiguity-in-dax/

However, even at a more basic level, you will find that creating many bidirectional 

relationships in your model will render the data model unpredictable when filters are 

propagated, and you will start to lose control of what filters what. You will find it much 

easier if your model abides by the rule of single directional relationships, and if you must 

change the filter direction, use CROSSFILTER.

There are usually three reasons why people edit a relationship to bidirectional 

filtering, all of which are not valid reasons:
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 1. There is a lack of understanding of the subtleties of the Power BI 

data model and filter propagation.

 2. People don’t know enough DAX to be able to programmatically 

change the filter direction using CROSSFILTER.

 3. People want to cross-filter slicers when the slicers use columns 

from different dimensions.

Let’s take a look at the last of these reasons: wanting to cross-filter slicers when 

using columns from different dimensions. If this is your objective, you don’t need to use 

bidirectional filtering. You can do this by using a measure in a visual-level filter on the 

slicer you want cross-filtered.

For example, in Figure 13-8, you can see we have two slicers: one using the 

CUSTOMER NAME column from the Customers dimension and one using the WINE 

column from the Wines dimension. If we select from the CUSTOMER NAME slicer, for 

example, “Ballard & Sons”, the WINE slicer won’t change to reflect the wines that “Ballard 

& Sons” has bought. We always see all the wines regardless of selections made in the 

CUSTOMER NAME slicer.

Figure 13-8. Slicers don’t cross-filter from one dimension to another
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You already know why this is. If the Customers table is filtered, the filter is 

propagated to the Winesales table but not filtered onward to the Wines table because 

filters don’t flow from the many side of the relationship to the one side. However, we 

can force the Wines table to cross-filter accordingly. We can do this by placing a visual 

filter on the WINE slicer using a measure, such as “Total Sales”, and filter only Wines that 

have a “Total Sales” value. In fact, we can use any measure that does a calculation on the 

Winesales table and then set this filter to “Show items when the value is not blank” as 

shown in the visual filter in Figure 13-9.

Figure 13-9. Use a visual filter populated with a measure and set to “is not blank” 
to cross-filter slicers

So there really is no excuse for editing relationships to bidirectional! Always design 

measures using the CROSSFILTER function to do this. However, as we have seen, the 

problem of measures that use bidirectional filters, whether using CROSSFILTER or 

editing the relationship, is that the Total row shows a misleading value. There is no 

real solution to this outcome; the total is correct but may not be the total you want to 

show. You can, of course, always turn off the display of the total row in the Table or 

Matrix visual.
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CHAPTER 14

Working with Multiple 
Relationships Between 
Tables
In our data model, all our tables have single relationships between other tables. Indeed, 

it’s only possible to have one active relationship between any two tables, but you can 

have as many inactive relationships as you want. In this chapter, you will learn how 

to use multiple relationships between tables and activate inactive relationships. This 

may be because you require multiple links from a dimension table into the fact table. 

However, there is another less obvious use of inactive relationships that we will discover 

in this chapter, and that is using comparison dimension tables. Here, we can use 

measures to force filter propagation through the comparison dimension table, therefore 

being able to compare a column from a default dimension with its counterpart in a 

comparison dimension.

If you attempt to build a second relationship or subsequent relationships between 

any two tables, all but the first relationship will be inactive, indicated by a dotted 

relationship line. Consider the tables in Figure 14-1. We now have two date columns 

in our Winesales table: SALE DATE and ORDER DATE.1 The first relationship was 

established between the DATEKEY column in the DateTable and the SALE DATE column 

in the Winesales table. When we attempt to create a second relationship between 

the DateTable and the Winesales table by using ORDER DATE, we get a dotted line 

indicating that this relationship is inactive.

1 To follow along with the examples, use the Power BI Desktop file “3 DAX USERELATIONSHIP.pbix”.

https://doi.org/10.1007/978-1-4842-8188-8_14
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Figure 14-1. Active and inactive relationships

All measures will use the active relationship by default, so how do you use the 

inactive relationship? For example, if we build a Table visual containing the YEAR and 

MONTH columns from the DateTable (Figure 14-2), we can find the number of sales in 

each month using this measure:

No. of Sales =

COUNTROWS ( Winesales )
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Figure 14-2. Using YEAR and MONTH from the DateTable filters the SALE DATE 
column in the Winesales table

In this visual, the “No. of Sales” measure filters the YEAR and MONTH columns in 

the DateTable, which is propagated to the Winesales table using the active relationship 

and therefore filters the SALE DATE column for that year and month. However, to 

calculate the number of orders, we will need to use the inactive relationship so that the 

ORDER DATE column is filtered for that year and month instead. To do this, we can use 

the USERELATIONSHIP function.

 Activating Inactive Relationships
The USERELATIONSHIP function, like the CROSSFILTER function, returns no value but 

is used as a modifier to the CALCULATE function. It programmatically uses an inactive 

relationship to propagation filters in the execution of the measure in which it is used. It 

has the following syntax:

= USERELATIONSHIP ( column1, column2 )

where:

column1 is the column name that represents the many side of the relationship to 

be used.
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column2 is the column name that represents the one side of the relationship to 

be used.

Here is an example of the USERELATIONSHIP syntax:

= USERELATIONSHIP (Winesales[SALE DATE],  DateTable[ORDER DATE] )
You must have an inactive relationship in place in order to use the 

USERELATIONSHIP function.

This is the measure to calculate the number of orders in each month shown in 

Figure 14-3:

No. of Orders =

CALCULATE (

    COUNTROWS ( Winesales ),

    USERELATIONSHIP ( Winesales[ORDER DATE], DateTable[DATEKEY] ))

.

Figure 14-3. Calculating the number of sales and number of orders

When this measure is evaluated, the year and month filtered in the DateTable are 

propagated to the Winesales table to cross-filter the ORDER DATE column to find the 

orders in that month.

Chapter 14  Working With Multiple relationships BetWeen taBles



221

 Comparing Values in the Same Column
The USERELATIONSHIP function can be used for another purpose: dynamic 

comparisons between values from the same column in a dimension. In other words, 

being able to compare a column from a default dimension with its counterpart in a 

comparison dimension.

Consider the example shown in Figure 14-4. Here, we are comparing 2020 sales (the 

“Total Sales” measure) to 2021 sales (the “Compare Year” measure), but the benefit here 

is that we are making the comparison in the same Table visual, rather than using separate 

visuals for each year.

Figure 14-4. Comparing sales for two different years selected in slicers
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The starting point for the “Compare Year” measure is to create a comparison 

DateTable in the data model by duplicating the original DateTable. We’ve named the 

duplicate DateTable “DateTable Compare”. This table is then related to the Winesales 

table using the DATEKEY column from the “DateTable Compare” table and the SALE 

DATE column from the Winesales table; see Figure 14-5.

Figure 14-5. Relate the comparison table to the fact table but set the relationship 
to inactive

You must then edit this relationship to ensure that it’s marked as inactive by checking 

off “Make this relationship active” in the Edit Relationship dialog; see Figure 14-6.
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Figure 14-6. Making a relationship inactive

The next step is to create the two slicers as shown in Figure 14-4. The slicer on the 

left, named “YEAR”, is created using the YEAR column from the DateTable. Selecting 

a year from this slicer filters the “Total Sales” measure. The slicer on the right, named 

“COMPARE YEAR”, uses the YEAR column from the “DateTable Compare” table. 

Selecting a year from this slicer filters the “Compare Year” measure as follows:

Compare Year =

CALCULATE (

    [Total Sales],

    ALL ( DateTable ),

     USERELATIONSHIP ( Winesales[SALE DATE], 'DateTable Compare'[DATEKEY] )

)

Notice the use of the ALL function to remove the filter on the YEAR column of the 

DateTable coming through from the YEAR slicer that is used by the active relationship.
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Using USERELATIONSHIP to make comparisons between your data is a simple 

strategy and doesn’t require complex DAX, so let’s take this idea a step further. Let’s see 

if we can answer this question: Of the customers who bought wine X, who also bought 

wine Y? For example, of the customers who bought “Champagne”, who also bought 

“Pinot Grigio”?

We’ve set out the solution to this question in Figure 14-7. The “No. of Sales” 

measure is being filtered by the WINE slicer on the left and shows the number of sales of 

“Champagne” for each customer. The “Compare Wine” measure is being filtered by the 

COMPARE WINE slicer on the right and shows the number of sales of “Pinot Grigio” for 

each customer. Finally, we’ve created a “Both Wines” measure that shows the customers 

who bought both wines, showing the combined number of sales for both wines.

Figure 14-7. Customers who bought either wines or both wines

You can see in Figure 14-7 that

• “Charleston Ltd” bought both “Champagne” and “Pinot Grigio”.

• “Charlottesville & Co” bought “Champagne” but not “Pinot Grigio”.

• “Chatou & Co” bought “Pinot Grigio” but not “Champagne”.

If we put the “Both Wines” measure into a Table visual of its own, we see only 

customers who bought both wines (Figure 14-8).
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Figure 14-8. Customers who bought both wines

The expressions for the measures in Figure 14-7 are almost the same as those we 

used when we were comparing years in Figure 14-4. First, you need to duplicate the 

Wines dimension. We’ve called this duplicate table “Wines Compare” and then related 

this duplicate table to the fact table, remembering to set the relationship as “inactive.”

These are the three measures we used in Figure 14-7:

No. of Sales =

COUNTROWS ( Winesales)

Compare Wine =

CALCULATE (

    [No. of Sales],

    ALL ( Wines ),

    USERELATIONSHIP ( Winesales[WINE ID], 'Wines Compare'[WINE ID] )

)
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Both Wines =

IF (

SELECTEDVALUE ( Wines[WINE] ) = SELECTEDVALUE ( 'Wines Compare'[WINE] ), 

[No. of Sales],

--If the same wine is selected in both slicers, don’t add the number of 

sales together

    IF (

        [No. of Sales] && [Compare Wine],

        [No. of Sales] + [Compare Wine]

    )

--If customers have sales for both wines, add the number of sales together

)

However, those of you that are observant may notice that the value in the Total row 

of the “Both Wines” measure in Figure 14-8 (298) is not correct. It totals all rows for 

the selected wines not just those rows for customers who have bought both wines. To 

calculate the correct total if “Champagne” and “Pinot Grigio” are selected (258), you can 

use SUMX (iterating the Customers table) and edit the “Both Wines” measure as follows:

Both Wines =

SUMX (

    Customers,

    IF (

         SELECTEDVALUE ( Wines[WINE] ) = SELECTEDVALUE ( 'Wines 

Compare'[WINE] ),

        [No. of Sales],

         IF ( [No. of Sales] && [Compare Wine], [No. of Sales] + 

[Compare Wine] )

    )

)

We hope you feel inspired by these examples to create comparisons in your own data 

by using the USERELATIONSHIP function. And of course, you now know how to activate 

inactive relationships.
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CHAPTER 15

Understanding Context 
Transition

Nothing in life that’s worth anything is easy.

—Barack Obama

You could also say that nothing in DAX that’s worth anything is easy. Certainly, the 

concept of context transition is one of the more challenging theories to get to grips with 

in DAX. It can’t be explained in a few short paragraphs, and therefore, we dedicate this 

entire chapter to teaching you the details of what context transition is and how it is used 

within DAX expressions. It’s only then can you move forward in the following chapter to 

explore some practical applications of this concept. Once you understand the purpose 

of context transition in your code, a whole range of challenging calculations becomes 

possible. In fact, most DAX expressions you meet will probably be using context 

transition, and indeed, there will come a time when most DAX expressions you write will 

use it.1

To explain context transition in its simplest terms, it allows you to programmatically 

perform aggregations at the dimension, or group granularity, rather than the row 

granularity. For example, the expression “AVERAGE ( Winesales[CASES SOLD] )” 

calculates the average cases sold across transactions. This expression, using context 

transition, “AVERAGEX ( Wines, [Total Cases] )”, will calculate the average of the 

aggregated values, in this case, the average of the values returned by the “Total Cases” 

measure. Mostly, context transition happens in memory when an expression is being 

evaluated, and therefore, we can’t see it happening.

1 To follow along with the examples, use the Power BI Desktop file “1 DAX Sample Data.pbix”.

https://doi.org/10.1007/978-1-4842-8188-8_15
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 Overview of DAX Evaluations Contexts
To understand context transition, you must have a firm handle on how DAX expressions 

are evaluated. You must clearly understand the difference between filter context and row 

context and be able to use these concepts correctly in your code. Therefore, our starting 

point in this chapter will be to remind ourselves of the difference between these two 

conditions in which our expressions are evaluated.

 Row Context Revisited
When using the row context, a DAX expression iterates every row in a table. The values 

used in the expression are the values sitting in the current row, which may be different 

for every row. For example, the CASES SOLD value is mostly different for each row of the 

Winesales table, and so this calculated column

10 Percent of Cases Sold =

Winesales[CASES SOLD] * 0.1

will iterate all the rows in the Winesales table, finding a different value for CASES SOLD 

on each row and multiplying it by 0.1.

We can categorically state therefore that all calculated columns are evaluated in 

the row context. But measures will also use the row context if they iterate a table. For 

example, this measure (that we met when looking at the SUMX function in Chapter 5)

Total Sales =

SUMX ( Winesales,

    Winesales[CASES SOLD] * RELATED ( Wines[PRICE PER CASE] )

)

is evaluated first in a filter context, for example, filtered for “Bordeaux” wine, but then 

the SUMX function iterates the Winesales table and using the row context multiplies the 

CASES SOLD value sitting in each row by the PRICE PER CASE value from the Wines 

table. This will be the price of the wine in the current row of the Winesales table. The 

SUMX function then sums the result of all these row-level calculations, for example, for 

“Bordeaux” wine.

Therefore, what we can also state is that any DAX expression that iterates a table, 

whether in a calculated column or inside a measure, uses the row context.
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 Filter Context Revisited
All DAX measures are evaluated in a filter context. There are no exceptions to this rule. 

We understand that the filter context is typically generated from the current state of the 

Power BI report when the measure is evaluated, be it the structure of the visual, any 

slicers affecting the visual, or any filters in the Filters pane. But there is another way that 

the filter context can be generated, and this is what we’re now going to investigate.

 How Row Context Becomes Filter Context
There is a specific situation when a DAX expression is evaluated that will turn the row 

context into a filter context. This is what we know as context transition. To understand this 

specific situation, let’s consider these five DAX expressions, two calculated columns and 

three measures (you don’t need to know at this point what the expressions are calculating):

 1. Column 1 =
CALCULATE ( SUM ( Winesales[CASES SOLD ) )

 2. Column 2 =
[Total Cases]

 3. Measure 1 =
AVERAGEX ( Wines, [Total Cases] )

 4. Measure 2 =
 AVERAGEX ( Wines, CALCULATE ( SUM ( Winesales[CASES SOLD] ) ) )

 5. Measure 3 =
CALCULATE ( [No. of Sales], FILTER (Winesales, [Total Cases] > 350 ) )

Question: What is common to all these expressions?

The answer is that all five expressions share the same three attributes as follows:

 1. They all use the CALCULATE function.

 But surely Column 2 and Measure 1 don’t? At this point, there’s 

something more we need to teach you regarding measures. All 

measures implicitly invoke CALCULATE even if they don’t call the 

function explicitly. Therefore, Column 2 and Measure 1, which both 

reference the measure “Total Cases”, are both calling CALCULATE 

implicitly. The other expressions are using CALCULATE explicitly.
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 2.  They all iterate tables creating a row context.

 Column 1 and Column 2 are calculated columns, and all 

calculated columns iterate tables. We know that the functions 

AVERAGEX and FILTER are iterators too, so Measure 1, Measure 2, 

and Measure 3 all iterate tables, creating a row context. Measure 1 

and Measure 2 iterate the Wines table, and Measure 3 iterates the 

Winesales table.

 3. They all invoke context transition.

 This is where the row context, generated by an iteration of either a 

calculated column or inside a measure, is turned into a filter context.

Therefore, the specific situation to which we alluded is this: context transition occurs 

whenever

• The expression uses CALCULATE either explicitly or implicitly 

(because you’re using a measure)

AND

• The expression (either in a column or in a measure) iterates a table 

using the row context

You now understand when context transition happens, but what exactly is “context 

transition”? To answer this question, let’s first take this expression and use it in a 

calculated column:

Total Cases Column =

SUM ( Winesales[CASES SOLD] )
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You can see in Figure 15-1 that in every row, the expression returns the same value, 

the grand total of CASES SOLD. As a calculated column, the expression iterates the table 

using the row context, and therefore, there is no filter present. Aggregate functions such 

as SUM, by definition, require the rows to be aggregated to first be filtered. Because there 

is no filter on the table, this expression can only use the values from the entire table and 

so sums all the values for CASES SOLD.

We have just learned that context transition happens when there’s an iteration, and 

we use CALCULATE. We can therefore now take our first look at context transition in 

action in a calculated column by editing our expression and wrapping CALCULATE 

around it:

Total Cases Column =

CALCULATE (

    SUM ( Winesales[CASES SOLD] )

)

Figure 15-1. The calculated column returns the grand total on every row
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Figure 15-2 shows that the result of this expression returns the CASES SOLD value 

of each row. What has happened here is the expression iterates the table generating 

a row context, as do all calculated columns. But we’re also using CALCULATE in the 

iteration, and by doing so, the expression ignores the row context and replaces it with a 

filter context. Notice that although the expression uses CALCULATE, there are no filter 

arguments inside CALCULATE. Therefore, what is the filter being used by CALCULATE? 

The answer is rather a strange one (at least to new DAX users). A filter is placed on each 

value in each of the columns sitting in the current row. For example, in the first row of 

the table where the calculation returns 213, the filter is this:

SALE DATE = 01/01/2017

WINESALES NO = 2

SALESPERSON ID = 6

CUSTOMER ID = 16

WINE ID = 10

CASES SOLD  = 213

The calculated column, “Total Cases Column”, iterates the Winesales table, and 

because of the presence of CALCULATE, context transition occurs. All rows that share 

the same set of filters (as described before) are grouped and become filtered in their 

own right. The CASES SOLD values summed are the cases sold values sitting in each 

group. Because our rows are unique, each group comprises a single row, and therefore, 

the expression returns the same value as CASES SOLD. This is why, were you to have a 

Figure 15-2. Using CALCULATE evokes context transition in the 
calculated column
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duplicate first row in our example, you would see 426 (213 x 2) in “Total Cases Column” 

because the duplicate rows would be grouped before CASES SOLD was summed.2 

However, each of our rows is unique, so each filter generated by the context transition 

returns one row, which is the current row. This is an example of using CALCULATE in 

a calculated column where we have an iteration (and therefore a row context) and so 

CALCULATE evokes the context transition.

However, context transition also happens whenever you use a measure where there is 

a row context, for example, if you put a measure into a calculated column.

Note it is recommended that you are in data view to create the calculated 
columns as described in the following.

This is because all measures call CALCULATE implicitly, and so context transition 

will also occur. For example, let’s take this measure:

Total Cases =

SUM ( Winesales[CASES SOLD] )

Now let’s edit our calculated column, “Total Cases Column”, to perform the same 

calculation (i.e., summing the CASES SOLD column) but this time expressed as the 

“Total Cases” measure:

Total Cases Column =

[Total Cases]

2 For information on removing duplicate rows, visit www.excelnaccess.com/
removing-duplicate-rows-in-power-bi/
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You will notice in Figure 15-3 that the results of this expression are the same as when 

we used CALCULATE explicitly. Therefore, these two expressions

Total Cases Column =

CALCULATE (

    SUM ( Winesales[CASES SOLD] ) )

and

Total Cases Column =

[Total Cases]

are the same expressions.

At this stage in understanding context transition, I appreciate you’re thinking: 

Why would I want to create a calculated column that returns the same value as the 

value sitting in the current row? Also, our Winesales table, being the fact table, could 

potentially contain millions of rows, so any context transition occurring in a calculated 

column would be very slow. In short, what is the purpose of context transition?

To answer this question, let’s see how context transition performs when invoked in 

dimension tables, rather than in the fact table. Let’s now repeat the same expressions 

we’ve been working with, but rather than placing them in the fact table, this time we will 

put them in the Wines dimension.

Figure 15-3. Using a measure in a calculated column evokes context transition
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These are the calculated columns that we can create in the Wines dimension:

Wine Total Cases 1=

SUM ( Winesales[CASES SOLD] )

Wine Total Cases 2 =

CALCULATE (

    SUM ( Winesales[CASES SOLD] ) )

Wine Total Cases 3 =

[Total Cases]

Observing the behavior of these calculated columns in Figure 15-4, let’s look more 

closely at the evaluation of each of these expressions.

Figure 15-4. The three calculated columns in the Wines dimension

The first of these calculated columns, “Wine Total Cases 1”, uses the “SUM ( 

Winesales[CASES SOLD] )” expression. There is no measure in this expression, and 

it’s not using CALCULATE, either implicitly or explicitly. The expression uses the 

SUM function that requires a filter context. In the absence of any filter, it sums the 

CASES SOLD values in all the rows of the Winesales table giving us the grand total of 

CASES SOLD.
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The second calculated column, “Wine Total Cases 2”, is using CALCULATE that 

converts the row context invoked by the iteration of the calculated column into a 

filter context. At this point, we need to remind ourselves that the filter context always 

propagates through the entire data model. The filter coming through from context 

transition behaves no differently from a filter coming through from a visual or a slicer 

on the report canvas. When the expression in the calculated column, “Wine Total Cases 

2”, evaluates the first row of the Wines dimension, it turns the entire row into a filter and 

filters “Bordeaux” wine. We could imagine that in memory on the evaluation of the first 

row, our Wines dimension looks something like the table in Figure 15-5.

Figure 15-5. The Wines dimension is filtered by context transition

Does Figure 15-5 look familiar? The filter on the Wines dimension for “Bordeaux” is 

the same filter that would be applied if we had used a slicer or any other means by which 

we could filter “Bordeaux” in the report. We know that because the Wines dimension is 

related to the Winesales fact table in a many-to-one relationship, this filter, generated by 

context transition, is propagated onward to the Winesales table. Therefore, our Winesales 

table is now cross-filtered to contain only “Bordeaux” wines, and the CASES SOLD 

values are summed accordingly.

What we can conclude, therefore, is that a calculated column that uses CALCULATE 

where context transition occurs behaves just like a measure in a visual on the report 

canvas, in that it filters and then aggregates.

Looking at the third calculated column, “Wine Total Cases 3”, here, we are using 

the “Total Cases” measure that defines the same expression as in “Wine Total Cases 2”. 

Because all measures implicitly call CALCULATE, “Wine Total Cases 2” and “Wine Total 

Cases 3” are the same expressions. Whenever you see a measure, even if it doesn’t use 

CALCULATE explicitly, you should always imagine that it’s wrapped inside CALCULATE.

To summarize the outputs of the three calculated columns, “Wine Total Cases 2” 

and “Wine Total Cases 3” both use context transition in their evaluation, but “Wine Total 

Cases 1” does not.
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 How Context Transition Can Return 
“Surprising Results”
In our investigation of context transition, we’ve been using calculated columns to 

see context transition in action. However, we don’t need to see context transition to 

understand that it happens, and besides which, you’re probably not going to be creating 

these types of calculated columns in reality.

Mostly, context transition happens behind the scenes, in memory, when you 

construct iterating measures that reference another measure (because all measures 

implicitly call CALCULATE).

Let’s, at this point, remind ourselves of the specific situation where context 

transition occurs:

• When the expression uses CALCULATE either explicitly or implicitly 

via a measure

AND

• When the expression iterates a table using the row context

Typically, this is when we nest measures inside the iterating “X” aggregate functions 

like AVERAGEX or MAXX or we use measures inside the FILTER function. Because we 

can’t see context transition happening, being oblivious of its existence means we’ll 

struggle to understand how DAX works. Marco Russo and Alberto Ferrari in their The 

Definitive Guide to DAX explain understanding context transition as follows:

“Being ignorant of certain behaviors can ensure surprising results. Nevertheless, once 

you master the behavior, you start leveraging it as you see fit. The only difference between a 

strange behavior and a useful feature – at least in DAX – is your level of knowledge.”3

Marco and Alberto talk about “strange behaviors” and “surprising results.” The 

only reason these behaviors would seem strange or surprising to you is that you 

don’t understand the behavior of context transition, the fact that in the evaluation of 

measures, there’s a world of difference between iterations referencing measures that call 

CALCULATE and iterations referencing expressions that do not. To illustrate this, we’re 

going to take a look at authoring expressions where getting it right, which is whether 

3 Marco Russo and Alberto Ferrari (2020), The Definitive Guide to DAX, 2nd ed, p.154 
[Microsoft Press]
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you nest a measure or whether you nest an expression, is key. In these examples, we’re 

going to see how DAX expressions can return “surprising results” unless, of course, you 

understand the behavior of context transition.

 Filters Using AVERAGE
In the first example, we must reference an expression in our measure to get the correct 

calculation; nesting the measure that defines the same expression won’t work.

Consider the calculation to find the number of sales for each wine where cases sold 

is greater than the average cases sold for that wine. For example, the average number of 

cases sold for “Bordeaux” is 300 and we want to calculate how many sales of “Bordeaux” 

have cases sold greater than this value (this is purely an intellectual exercise and not a 

particularly useful calculation).

We’ve already created these two measures:

Avg Cases =

AVERAGE ( Winesales[CASES SOLD] )

No. of Sales =

COUNTROWS ( Winesales )

Now to calculate the number of sales where the CASES SOLD value is greater than 

the average cases, we could author this measure:

No. Of Sales GT Avg #1=

VAR AvgCasesTable =

    FILTER ( Winesales, Winesales[CASES SOLD] > [Avg Cases] )

RETURN

    CALCULATE ( [No. Of Sales], AvgCasesTable )

Note the use of the “Avg Cases” measure (highlighted) nested in the FILTER 

expression that iterates the Winesales table. We know that in the presence of a nested 

measure inside an iteration, context transition is invoked.

Unfortunately, the “No. Of Sales GT Avg #1” measure does not return the correct 

results; it returns blanks. This is a surprising result, I think you’ll agree; see Figure 15-6.
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Figure 15-6. The “No. Of Sales GT Avg #1” does not return a value

Clearly, we must take a closer look at what’s happening here. This measure, “No. Of 

Sales GT Avg #1”, uses the FILTER function that iterates the Winesales table to filter rows 

where the CASES SOLD value is greater than the value calculated by the “Avg Cases” 

measure. But what is the value calculated by “Avg Cases”? If we put this measure, that 

is, “[Avg Cases]”, into the Winesales table as a calculated column, we can see what the 

FILTER function is testing the CASES SOLD value against; see Figure 15-7.
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Figure 15-7. The “Avg Cases” measure evaluated in a calculated column filters the 
Winesales table to the single row that’s being evaluated

Note remember that in the first evaluation in the table visual in Figure 15-6, 
the Winesales table will be cross-filtered in memory for “Bordeaux” wine, which is 
Wine id 1.

What we find is that the values returned by “Avg Cases” are the same as the CASES 

SOLD values. This is because “Avg Cases” is a measure, and therefore, it evokes context 

transition as FILTER iterates the Winesales table. This creates a filter on each row of 

the Winesales table that’s being evaluated in memory. Because each row is unique, it 

calculates the average of the CASES SOLD value only for the current row, which is the 

same as the CASES SOLD value. Therefore, the “Avg Cases” value is never greater than 

the CASES SOLD value. You could test this by changing “>” to “>=” where instead of 

blanks being returned, you would get the same values as “No. of Sales”.

Let’s now replace the measure inside the FILTER function with an expression 

(highlighted) that calculates the average:

No. Of Sales GT Avg #2 =

VAR AvgCasesTable =

    FILTER ( Winesales, Winesales[CASES SOLD] >

Chapter 15  Understanding Context transition



241

                           AVERAGE ( Winesales[CASES SOLD] ) )

RETURN

    CALCULATE ( [No. Of Sales], AvgCasesTable )

This time we get the correct results; see Figure 15-8.

Figure 15-8. Using a nested expression inside FILTER and not a nested measure 
returns the correct results

To understand why the second version of the measure using the expression works, 

we can again put the expression, “AVERAGE ( Winesales[CASES SOLD] )”, into a 

calculated column in the Winesales table, filtered for “Bordeaux” wines (as this is the in- 

memory cross-filter on the Winesales table in the first evaluation).

We can see in Figure 15-9 that the expression returns the average of the cases sold for 

the wine in the current filter context.
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Note in Figure 15-9, we are simulating the rows in the Winesales table that 
would be visible in the current filter in memory, which you will not be able to see 
in data view. therefore, when you put “AVERAGE ( Winesales[CASES SOLD] )” into 
a calculated column, you will see the average for all transactions (192), not just 
those for “Bordeaux” (300).

We know that the average number of cases sold for “Bordeaux” is 300. So in the first 

evaluation for “Bordeaux”, there are 89 transactions where cases sold is greater than 300.

We can understand therefore that despite the fact that the expression and the 

measure both calculate the same average, we must nest the average expression inside the 

measure being evaluated, not nest the measure that calculates the average.

 Filters Using MAX
In our second example of how DAX can return “surprising results,” we will calculate 

cumulative totals, as shown in Figure 15-10.

Figure 15-9. The “AVERAGE ( Winesales[CASESSOLD] )” expression evaluated in 
a calculated column returns the average cases for each wine
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Figure 15-10. Calculating cumulative totals in the “Cumulative Total” measure

To generate the “Cumulative Total” measure, we must again use a nested expression 

in the parent measure, not a nested measure, and this time we’ll be using the aggregate 

function, MAX.

Note We’ve calculated cumulative totals before using the time intelligence 
function, datesBetWeen. however, in this section, we explore an alternative 
method of achieving the same result.

To calculate cumulative totals in the Table visual in Figure 15-10, for any given date 

in the current filter context, we must sum a value (in our example, the total sales value) 

up to the latest date in the current filter context. For example, if “May 2017” is the current 

filter, we must sum values up to and including 31 May 2017. We might think, therefore, 

that we need to first construct a measure that finds the latest date in the current filter 

context using the MAX function like so:

Max Date =
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MAX ( DateTable[DATEKEY] )

We could then use this “Max Date” measure (highlighted) in the following expression 

(note the use of ALL to remove the filter on the DateTable that is currently filtering 

each month):

Cumulative Total Wrong =

VAR FilteredDatesTable =

    FILTER (

        ALL ( DateTable ),

        DateTable[DATEKEY] <= [Max Date]

    )

RETURN

    CALCULATE ( [Total Sales], FilteredDatesTable )

Looking at the result of this expression in the visual in Figure 15-11, clearly, this 

hasn’t worked.

Figure 15-11. The “Cumulative Total Wrong” measure returns incorrect results
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Let’s take a look at what’s going wrong with “Cumulative Total Wrong”. Here, we’re 

using the measure “Max Date”, which defines the maximum date. The FILTER function 

with ALL generates a virtual DateTable containing all the rows in the DateTable. It then 

iterates this virtual table to compare each date in the DATEKEY column to the date 

calculated by “Max Date”. What is the value of “Max Date”? The “Max Date” measure 

evokes context transition and so filters each row to a single row. Therefore, when 

iterating the DateTable, it will always return the same date that is sitting in the current 

row of the DateTable. To understand this, we can put the “Max Date” measure into a 

calculated column in the DateTable as shown in Figure 15-12.

Figure 15-12. The “Max Date” measure evaluated in a calculated column filters 
the DateTable to the single row that’s being evaluated

Because DATEKEY is always equal to “Max Date”, all the dates are filtered by the 

FILTER function, and so CALCULATE calculates the total cases for all dates (to see this in 

another way, try replacing the “<=” with “<” where you will now get blanks returned).

Therefore, to remedy this, we must use an expression (highlighted) to calculate the 

latest date in the current filter context, and this is the correct measure:

Cumulative Total =

VAR FilteredDatesTable =

    FILTER (

        ALL ( DateTable ),

Chapter 15  Understanding Context transition



246

        DateTable[DATEKEY] <= MAX ( DateTable[DATEKEY] )

    )

RETURN

    CALCULATE ( [Total Sales], FilteredDatesTable )

In this measure, the FILTER function with ALL iterates the virtual DateTable table 

to compare each date in the DATEKEY column to the date calculated by the expression 

“MAX ( DateTable[DATEKEY )”. This expression will find the latest date in the current 

filter context; for example, it will return 31 May 2017 when evaluating “May 2017”; see 

Figure 15-13.

Figure 15-13. The MAX expression evaluated in a calculated column returns the 
maximum date for the month in the current filter

Note in Figure 15-13, we’re again simulating the rows in the datetable that 
would be visible in memory in the current filter. You cannot see in-memory filters in 
data view. therefore, if you put the “MAX ( DateTable[DATEKEY )” expression into a 
calculated column in the datetable, you will see the last date for all dates, that is, 
31 December 2021.

Chapter 15  Understanding Context transition



247

The FILTER function will compare every date in the DATEKEY column of the virtual 

DateTable to the date calculated by “MAX ( DateTable[DATEKEY )” and therefore will 

filter all the dates that are before or equal to this date.

 Filters Using Measures
In the last of our “surprising results” examples, we must use a measure and not an 

expression. For example, it could transpire that you want to calculate the number of 

transactions where the “Total Sales” value for each transaction is greater than $10,000. To 

remind you, this is the expression that is used in the “Total Sales” measure:

Total Sales =

SUMX ( Winesales, Winesales[CASES SOLD] *

                  RELATED ( Wines[PRICE PER CASE] )

You may be tempted to use this expression (highlighted) to calculate the number of 

sales that are greater than $10,000:

No. Of Sales GT 10,000 #1=

VAR MySales =

    SUMX ( Winesales, Winesales[CASES SOLD] *

                  RELATED ( Wines[PRICE PER CASE] ) )

VAR SalesTable =

    FILTER ( Winesales, MySales > 10000 )

RETURN

    CALCULATE ( [No. Of Sales], SalesTable )

However, as you can appreciate from Figure 15-14, this measure returns the number 

of sales, not the number greater than $10,000.

Chapter 15  Understanding Context transition



248

Figure 15-14. The “No. Of Sales GT 10,000” measure does not return the 
correct result

In the “No. Of Sales GT $10,000 #1” measure, we are using SUMX to calculate the 

total sales. However, the SUMX expression would sum the total sales for all transactions 

in the Winesales table for each wine in the current filter context, giving us the grand 

total of “Total Sales” for each wine. In Figure 15-15, the SUMX expression has been 

placed into a calculated column in the Winesales table to understand its return value in 

memory (only showing total sales for “Bordeaux”), which is the total sales for the wine, 

not the total sales for each transaction. When FILTER iterates the Winesales table, this 

value will always be greater than $10,000.
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Figure 15-15. The SUMX expression evaluated in a calculated column returns the 
grand total sales for the wine in the current filter

When we write the expression to find the number of sales greater than $10,000, we 

must therefore use the “Total Sales” measure (highlighted) inside FILTER as follows:

No. Of Sales GT 10,000 #2 =

VAR MyTable =

    FILTER ( Winesales, [Total Sales] > 10000 )

RETURN

    CALCULATE ( [No. Of Sales], MyTable )

As you can now see in Figure 15-16, the “No. Of Sales GT 10,000 #2” measure using 

the nested measure “Total Sales” returns the correct value.
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Figure 15-16. Using a nested measure inside FILTER and not an expression 
returns the correct results for the number of sales greater than $10,000

We must again investigate the reason why our second attempt at this calculation 

using the nested measure works. If we put the “Total Sales” measure into a calculated 

column, this will reveal what FILTER returns when it iterates the Winesales table in 

memory. We can see that it is the total sales for each transaction because it’s using 

context transition to filter each row in memory; see Figure 15-17.
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Figure 15-17. The “Total Cases” measure evaluated in a calculated column filters 
the Winesales table to the single row that’s being evaluated

When FILTER iterates the Winesales table, it can use this value to find values greater 

than $10,000.

I think we’ve made our point regarding the “surprising results” to which Marco Russo 

and Alberto Ferrari alluded, and in doing so, you now understand the concept of context 

transition. This is where the row context is transitioned into a filter context because of 

the presence of CALCULATE within an iteration, and these filters propagate through the 

data model, just as all filters do. No matter how long you’ve been using DAX, these are 

challenging calculations to get your head around. In what follows in this chapter, we’ll 

explore why it’s so important that you take up the challenge to understand the strange 

behaviors and surprising results that context transition throws at you because in doing 

so, you will begin to reap the real benefits of using DAX.

 Aggregating Totals Using Context Transition
The power of context transition comes when you use it to calculate averages, maximums, 

and minimums of totals as opposed to row-level values, and in this section, we will be 

exploring why this is mandatory knowledge in advanced calculations. This is also where 

the importance of having clearly defined dimension tables comes to the fore because to 

achieve this type of calculation, we will be passing context transition across dimension 
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tables both real and virtual. What you will discover in the following section is that 

context transition can just as equally be passed into virtual tables generated by table 

expressions as it can be passed into actual dimensions within the data model.

 Aggregating in Dimensions
We will begin by exploring how context transition works when used in expressions that 

reference dimension tables.

For example, take this simple measure:

Max Cases =

MAX ( Winesales[CASES SOLD] )

The “Max Cases” measure can tell us the maximum number of cases in any single 

transaction in the Winesales table for each wine. For example, for “Bordeaux”, the 

maximum number of cases sold in any single transaction is 500 cases. This is a row-level 

calculation, but this is not what we want.

This measure, we know, will sum the cases sold values in the Winesales table:

Total Cases =

SUM ( Winesales[CASES SOLD] )

Our goal here is to calculate the maximum of this “Total Cases” measure, not the 

maximum of the individual transactions, as shown in Figure 15-18.
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Figure 15-18. The “Max Cases” measure is a row-level calculation, but we want to 
calculate across totals

To do this, we need to use context transition. We know that context transition 

happens when a measure is iterated over a table. We looked earlier at creating a 

calculated column in the Wines dimension (“Wine Total Cases 3”) that used the measure 

“Total Cases” to evoke context transition and so found the total cases sold value for each 

wine in the Wines dimension; see Figure 15-19.
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Figure 15-19. Creating a calculated column in the Wines dimension using the 
“Total Cases” measure evokes context

Rather than putting this measure into a calculated column to witness the context 

transition, we could nest this measure in another measure using MAXX, and this will 

iterate the Wines dimension, just as the calculated column does. If we do this, context 

transition will happen in memory, and we can find the maximum of the values that you 

can see in the calculated column. Let’s now author this measure:

Max of Totals =

MAXX ( Wines, [Total Cases] )

The MAXX function iterates the Wines dimension in memory to calculate the “Total 

Cases” measure for every row in the dimension, just like the calculated column in 

Figure 15-19. It then finds the maximum of these values.

Note We are using the Maxx function here because it’s clearer to understand the 
evaluation – you can easily see which value is the largest. however, the aVeragex 
function would work better because you must calculate the average of the totals to 
know what that value is.
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However, when this measure is placed in the Table visual in Figure 15-20, why does 

it return the same result as the “Total Cases” measure in all rows except in the Total row, 

where the value is correct?

Let’s now answer this question. In this Table visual, the first evaluation is for 

“Bordeaux” wine, and so in the current filter, there is only one value for “Total Cases”, 

and that is the value of the total cases for “Bordeaux”. The maximum of only one value 

is that value, and that is why we see the same value for “Total Cases” and for “Max of 

Totals”. It’s not until the measure reaches the evaluation of the Total row, where there 

is no filter on the Wines dimension, that it can then find the maximum of all the wines, 

which is 54,070 for “Bordeaux”.

What is important to emphasize here is that context transition always works 

within filters placed on the data model. For example, if we add a Salesperson slicer to 

the canvas and filter “Abel”, we can now see the maximum cases for “Abel” (10,993). 

Because the Winesales fact table is now filtered for “Abel’s” sales, context transition now 

calculates these values in the new filter context; see Figure 15-21.

Figure 15-20. “Max of Totals” measure is correct in the Total row, which is 54,070, 
the cases sold for “Bordeaux”
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Figure 15-21. The “Max of Totals” measure calculated in a different filter context

However, because the “Max of Totals” measure returns the same value as “Total 

Cases” for each of the wines, the “Max of Totals” measure does not really work in a visual 

that filters the wine names. This measure is more fitting when placed in a visual that 

filters a different dimension. In Figure 15-22, we have used the “Max of Totals” measure 

in a Matrix and a Table visual that shows the maximum value for each salesperson. We 

have focused on the maximum cases value for “Abel”, which is 10,993 for “Champagne”. 

We’ve also placed this measure in a Card visual to show the maximum for all wines.
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Figure 15-22. The “Max of Totals” measure works better if placed in visuals that 
filter dimensions other than the Wines dimension

Let’s now consider another scenario. Rather than calculating the maximum of 

the total cases, perhaps you want to programmatically identify which wine has the 

maximum total (“Bordeaux” in our case).

In this situation, for the evaluation of each wine, we must calculate the maximum 

of the totals for all the wines. We can then compare the maximum against each wine’s 

total. Therefore, we must remove the filter from the Wines dimension by using ALL or 

ALLSELECTED as in this example:

Max of Totals #2 =

MAXX (

    ALL ( Wines ) , [Total Cases] )

In this measure, we are using ALL to generate a virtual table containing all the rows 

in the Wines dimension, and therefore, MAXX will iterate all the rows in this temporary 

table. Context transition calculates the total cases for every row, and MAXX finds the 

largest of these. If you have a slicer filtering the wines, you must use ALLSELECTED 

which will output to a virtual table containing the wines filtered in the slicer.

We can now write the measure that specifically returns the name of the wine that has 

the maximum cases sold, using the expression in the “Max of Totals #2” measure as a 

variable:

Wine with Max =

VAR MyMax =
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    MAXX ( ALL ( Wines ), [Total Cases] )

RETURN

    CALCULATE ( VALUES (Wines[WINE] ),

    FILTER ( Wines, [Total Cases] = MyMax ) )

Note the use of the VALUES function to return the name of the wine that will be 

filtered according to the filter expression.

You can see the results of these measures in Figure 15-23. Note how we use the 

“Wine with Max” measure in a Card visual that displays the scalar value returned 

by VALUES.

In the preceding examples, we’re using ALL to generate a virtual table containing all 

the rows and all the columns in the Wines dimension. We’ll see in the next section that 

we could equally use ALL to generate a virtual table containing only the WINE column.

Figure 15-23. The “Max of Totals #2” returns the maximum value for all wines. 
We can then use this expression to find the wine that has the maximum
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 Aggregating in Virtual Tables
So far, we’ve looked at finding the maximum of the total values using context transition 

with a dimension table. We then used ALL to generate a virtual Wines dimension 

to find the maximum of the totals of all the wines. Therefore, we know that context 

transition can be generated in virtual tables too. We are now ready to explore examples 

of using ALL to build virtual tables that contain only the columns that we require for the 

expression, not all the columns in the table. Because ALL will return a table containing a 

column or columns of distinct values, we are essentially using ALL to group our data so 

that context transition can calculate totals across these ad hoc groups.

 Using ALL to Group Columns in the Same Table

For example, we’ve been asked to calculate the variance between the total sales for each 

wine and the average of these totals. Consider the following measure that uses context 

transition to find the average of “Total Sales” for our wines. However, this time we’re 

using the ALL function on the WINE column rather than ALL on the Wines table:

Average of Totals =

AVERAGEX ( ALL ( Wines[WINE] ), [Total Sales] )

As mentioned before, depending on the filters in your report, you may need to use 

ALLSELECTED in place of ALL.

Let’s look at the three steps in the evaluation of this measure:

 1. The ALL function creates a virtual table comprising a single 

column holding a list of unique values in the WINE column.

 2. AVERAGEX then iterates the virtual table and using context 

transition calculates the “Total Sales” measure for each of the 

wines in the virtual table generated by ALL.

 3. AVERAGEX finds the average of these values.

In Figure 15-24, you can see the virtual table generated by ALL and how the average 

of the total values is calculated.
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Figure 15-24. The ALL function creates a virtual one-column table of the WINE 
column. The table is iterated by AVERAGEX, and context transition calculates the 
“Total Sales” for each row. AVERAGEX finds the average of these values

Now we can edit this measure to calculate how each wine’s total sales vary from the 

average and visualize the data; see Figure 15-25.

Variance from Average of Totals =

VAR AvgOfTotals =

  AVERAGEX ( ALL ( Wines[WINE] ), [Total Sales] )

RETURN

[Total Sales] -  AvgOfTotals
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Figure 15-25. Using context transition to calculate the average of the totals and 
then we can find the variance

Here, we have been using ALL to group by values in the WINE column. Indeed, 

we could use ALL to group by salespeople, customers, or regions by generating tables 

containing just a list of the names of the entities in these dimensions accordingly.

However, if we want to pass context transition into the DateTable, it becomes a little 

more problematic. For example, the expression

Average Daily Sales For Dates =

AVERAGEX (DateTable, [Total Sales])

would pass context transition to every row in the DateTable, therefore aggregating the 

total sales for each day. Therefore, this measure would calculate the average daily sales. 

However, this may not be the date granularity in which you are interested. Perhaps you 

would like to calculate the average quarterly sales in each year, as shown in Figure 15-26. 

Here, we have authored the measure “Average Quarterly for Each Year” and placed this 

in a Matrix visual. Note that this measure works best if the visual only shows the YEAR 

column from the DateTable.
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Figure 15-26. The “Average Quarterly for Each Year” measure works best in a 
Matrix visual that only shows years

In the Matrix visuals in Figure 15-26, on the evaluation sales in “2017”, there is a filter 

on the YEAR column in the DateTable. We must now generate a virtual one-column table 

that retains the filter on the YEAR column but lists all four quarters in that year, and we 

can use the ALL function to do that, referencing the QTR column. AVERAGEX can then 

iterate this table and using context transition can calculate the total sales for each of the 

quarters in “2017”, finding the average of these values. This is the code we have used in 

the measure:

Average Quarterly for Each Year =

AVERAGEX ( ALL ( DateTable[QTR] ), [Total Sales] )

The virtual table generated by ALL in the evaluation of the “2017” average would 

look like Figure 15-27.
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Figure 15-27. The ALL function builds a table containing all the quarters in the 
filtered year

The ALL function can also generate virtual tables comprising unique combinations 

of columns from the same table to enable you to group by these combinations. For 

example, you could generate a virtual table using ALL containing a distinct list of years 

and quarters from the DateTable using this table expression:

ALL ( DateTable[YEAR], DateTable[QTR] )

Such a virtual table generated by ALL is shown in Figure 15-28.

Figure 15-28. Using ALL referencing multiple columns from the same table 
generates a table containing the distinct combination of those values

Using context transition and the ALL expression that generates the table in Figure 15-28, 

you could find the average quarterly total sales across all years as in this measure:

Average Quarterly for All Years =
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AVERAGEX (

   ALL ( DateTable[YEAR], DateTable[QTR] ),

   [Total Sales] )

Here, the ALL function creates an in-memory table that generates a distinct list 

combining the YEAR column and the QTR column, and then AVERAGEX, using context 

transition, finds the average of the “Total Sales” values; see Figure 15-29.

Figure 15-29. The ALL function generates a virtual table containing the distinct 
combination of values from multiple columns from the same table. Context 
transition can be passed to this table to calculate averages

We can appreciate that viewing this measure in a Matrix comprising the YEAR and 

QTR columns, where the values returned are repeated, will not do much for people 

viewing your report. Just as in the “Max of Totals” measure before, the “Average Quarterly 

for All Years” measure works best when you have no filter on the DateTable as in 

Figure 15-30.
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Figure 15-30. The “Average Quarterly for All Years” measure works well when 
analyzing entities other than those from the DateTable

Here, we are analyzing our salespeople’s sales performance by comparing their 

average quarterly total sales value.

 Using SUMMARIZE to Group Columns from Related Tables

We can normally use ALL or ALLSELECTED to group columns into virtual tables so 

we can perform calculations across ad hoc groups using context transition. It’s only 

occasionally that you will require another function called SUMMARIZE to do this job, 

and that’s when you need to group columns from different tables.

The SUMMARIZE function allows you to retrieve combinations of columns from the 

same table or from one or more related tables. As we’ve seen before, we can usually use 

ALL to group columns from the same table, so SUMMARIZE normally need only be used 

to group columns from different related tables.

The SUMMARIZE function has the following syntax:

= SUMMARIZE ( table, group by column1, group by column2 etc., name, 
expression )

where:

table is the table or table expression containing the columns you want to group by.

group by columns are the columns by which you want to group your data. These can 

be columns from the same table or from related tables.

name (optional) is the name of the expression you want to generate in the expression 

argument later. This is a nonmandatory argument.
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expression (optional) is an expression that will be calculated for every row in the 

virtual table. This is a nonmandatory argument.

Mostly you will use SUMMARIZE only with the first two arguments, specifying a table 

and the group by columns as follows:

=SUMMARIZE ( Winesales, Wines[WINE], DateTable[YEAR] )

This table expression builds a virtual table grouping by the WINE column and then 

by the YEAR column and can do this because the Wines table and the DateTable are 

related to Winesales.

However, there is one big difference between using ALL to generate ad hoc groups 

of columns and using SUMMARIZE, and that is that SUMMARIZE builds a virtual table 

comprising the values in the current filter context. Therefore, often, the ALL function is 

required, nested inside SUMMARIZE, to remove these filters.

With two of the arguments inside SUMMARIZE (i.e., “name” and “expression”), you 

can optionally create calculations in the virtual table, and we will look at an example of 

this in the next chapter. However, usually, to create calculations for these groups using 

context transition, you can nest the table generated by SUMMARIZE inside functions 

such as MAXX and AVERAGEX that will then perform the calculations.

Using SUMMARIZE, you can group columns from related tables. For instance, if 

the table you reference inside SUMMARIZE is a fact table, then you can group by any 

columns from the dimensions related to the fact table.

If you use the New Table button on the Modeling tab in Power BI, you can create 

calculated tables using table functions. This is a convenient way to see the output of table 

expressions such as those involving SUMMARIZE. You can view calculated tables in Data 

view just as you would any tables in your data model. However, when the SUMMARIZE 

expression is nested inside a measure, its output will be filtered in memory according 

to the filter context, and this is something that you can’t see in the calculated table in 

Data view.

We can use SUMMARIZE to group the WINE column from the Wines dimension and 

the YEAR column from the DateTable using this table expression:

Wine and Year Table =

SUMMARIZE ( Winesales,

   Wines[WINE], DateTable[YEAR] )

In Figure 15-31, you can see the result of this table expression when used in a 

calculated table using the New table button.
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Figure 15-31. Using SUMMARIZE to generate a table containing the WINE and 
YEAR columns

Let’s look at a scenario where we may need to generate this virtual table using 

SUMMARIZE, remembering that such a table will be built in the current filter context. 

We want to calculate the yearly average total sales for all our wines and display this in 

a Card visual. This is the measure we will author using SUMMARIZE to group by both 

WINE and YEAR (note the use of a variable to store the virtual table).

Yearly Average =

VAR SummaryTable = SUMMARIZE ( ALL ( Winesales ), Wines[WINE], 

DateTable[YEAR] )

RETURN

AVERAGEX ( SummaryTable, [Total Sales] )

You can see in Figure 15-32 that on average, the yearly sales for our wines is 

$457,423. To understand this average, you could create a Clustered Column chart visual 

plotting wines sales in each year. If you then display an average analytical line,4 this will 

show the same value that you have calculated in the measure.

4 For information on working with the analytical lines, visit https://docs.microsoft.com/en-us/
power-bi/transform-model/desktop-analytics-pane
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Figure 15-32. Using SUMMARIZE and context transition to calculate the yearly 
average for all wines. This would be the average calculated by the “Analytics” 
average line

In the “Yearly Average” measure, the “Total Sales” nested measure uses context 

transition to calculate sales for each combination of WINE and YEAR in the virtual table 

generated by SUMMARIZE. The AVERAGEX function will find the average of the values 

returned by the context transition. Note the use of the ALL function on the Winesales 

table to remove the filter coming from the WINE column and the YEAR column in the 

Matrix visual. Remember that unless you use ALL, the SUMMARIZE function creates a 

summary table of values within the current filter context.

Alternatively, if we put this measure into a table that didn’t use the WINE or YEAR 

column, we would not require the ALL function, as you can see in Figure 15-33 where we 

are using the REGION column instead. Here, we are analyzing the average of the total 

yearly sales of wines in each region.

Yearly Average =

VAR SummaryTable = SUMMARIZE (  Winesales , Wines[WINE], DateTable[YEAR] )

RETURN

AVERAGEX ( SummaryTable, [Total Sales] )
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Figure 15-33. The “Yearly Average” measure calculated for regions

Having calculated the average yearly sales for all wines in all the years, you may want 

to calculate the average yearly sales for each wine. Perhaps again, this is to calculate the 

variance from the average. If this is the case, this is the code you would require:

Yearly Average Each Wine =

VAR Summarytable =

    SUMMARIZE ( ALLEXCEPT ( Winesales, Wines[WINE] ), DateTable[YEAR] )

RETURN

    AVERAGEX ( Summarytable, [Total Sales] )

The reason that we can use the ALLEXEPT function in this context will be explained 

in Chapter 18 when we explore the concept of table expansion. All we need to note here 

is that by using ALLEXCEPT, the filter has been removed from the YEAR column leaving 

the filter on the WINE column. Therefore, this enables us to pass the average across sales 

in every year for each wine. This measure would then calculate the variance, but only at 

the YEAR grain:

Variance from Average Each Yr =

IF (

    HASONEVALUE ( DateTable[YEAR] ),

    [Total Sales] - [Yearly Average Each Wine] )
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You can see the outcomes of the “Yearly Average Each Wine” and “Variance from 

Average Each Yr” measures in Figure 15-34.

Figure 15-34. The “Yearly Average Each Wine” and “Variance from Average Each 
Yr” measures

In this chapter, you have learned to use context transition to produce aggregations on 

measures as opposed to aggregations on row-level values. You now also appreciate the 

importance of dimension tables in these calculations, that they are used to group and 

aggregate the data at the dimension granularity. You have also learned that virtual tables 

play a significant part in these calculations, enabling you to generate ad hoc summary 

groups over which to harness the power of context transition.
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CHAPTER 16

Leveraging Context 
Transition
In the last chapter, you learned how context transition enables you to programmatically 

aggregate data into dimensions and virtual tables. You could then author expressions 

that grouped and aggregated data at this higher granularity. Once you have learned the 

skill of using DAX in this way, the world of DAX opens up to you considerably. You will 

now be able to author more complex calculations that enable you to gain deeper data 

insights. In this chapter, you will be applying your knowledge of context transition to 

solving the following data analysis questions:

How do I

• Rank entities?

• Bin measures into numeric ranges?

• Calculate top or bottom N percent using dynamic parameters?

• Find like for like sales across my customer base?

• Calculate running totals in a table using a calculated column?

• Calculate differences in values in the previous row in a 

calculated column?

In generating these insights, you will learn transferrable skills and techniques that 

you can take on board, extend the ideas, and apply them to your own data.

https://doi.org/10.1007/978-1-4842-8188-8_16
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 Ranking Data: Looking at RANKX
You have learned that by combining iterating functions with measures (which implicitly 

call CALCULATE), you can reap the benefits of context transition. Let’s take this 

opportunity to look at another iterating function, RANKX.

The RANKX function has the following syntax:

= RANKX ( table, expression, value, order, ties )

where:

table is the table that you want to iterate to rank items. This table is often generated 

by the ALL function, so ranking is performed on all the rows of the table, not just those in 

the current filter.

expression is the measure or expression to be used to rank the items.

value is optional and is used to compare items to be ranked (rarely used).

order is optional – ASC (1 is the lowest rank) or DESC (1 is the highest rank). The 

default is DESC.

ties is optional and is either Skip or Dense as follows:

Skip where the next rank value after a tie is the rank value of the 

tie plus the count of tied values. For example, if 5 values are tied 

with a rank of 11, then the next value will receive a rank of 16 (11 + 

5). This is the default value when the ties parameter is omitted.

Dense where the next rank value after a tie is the next rank value. 

For example, if 5 values are tied with a rank of 11, then the next 

value will receive a rank of 12.

Here is an example of RANKX syntax:

= RANKX ( ALL (Wines), [Total Sales] , , ASC)

As its name suggests, we can use this function to rank our entities by a specific 

measure, for example, to rank our wines by the “Total Sales” measure; see Figure 16-1.
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Figure 16-1. Ranking wines by “Total Sales”

This is DAX code for the “Rank Wine” measure:

Rank Wine =

IF ( [Total Sales],

RANKX ( ALL ( Wines ), [Total Sales] ) )

This measure first checks that there is a value for “Total Sales”; otherwise, items with 

blank values will be considered in the evaluation, such as “Lambrusco” wine that has no 

sales. If a sales value is present, the measure builds a virtual Wines table containing all 

the rows from the table using ALL. It then uses context transition to calculate the “Total 

Sales” value, iterating every row. Finally, it ranks the sales value in the current filter 

against all the values in the table returned by ALL, returning their rank value.

Let’s take a look at another example of using RANKX. You may, for instance, want to 

rank your financial quarters by sales in each year as shown in Figure 16-2.
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Figure 16-2. Using RANKX to rank financial quarters

In the Matrix visual in Figure 16-2, the first ranking evaluation is for “Qtr 1” in “2017”, 

filters being applied to the DateTable accordingly. Here, you must use the ALL function 

to generate a virtual table containing a column of all four values in the QTR column 

of the DateTable (i.e., “Qtr 1”, “Qtr 2”, “Qtr 3”, “Qtr 4”) for “2017”. This is so that the sales 

values for all four quarters in that year can be ranked using context transition. This is the 

measure you can create here:

Rank by Qtr =

RANKX ( ALL ( DateTable[QTR] ), [Total Sales] )

However, if you put this measure into a Matrix visual, you will notice that the 

YEAR column is ranked as “1” as there is only one subtotal value to rank. To avoid this 

irrelevant value, you can use the HASONEVALUE function to return only a value for the 

QTR column:

Rank by Qtr #2 =

 IF ( HASONEVALUE(DateTable[QTR] ),

      RANKX ( ALL ( DateTable[QTR] ), [Total Cases] ))
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Note We are using the aLL function inside ranKx in our examples shown before, 
but remember that you may require the aLLseLeCteD function instead if you have 
slicers on your canvas.

We will be meeting the RANKX function again later in this chapter when we use it 

to rank our customers. However, the most important takeaway from this section is how 

RANKX, as an iterating function, is used with a measure and, therefore, evokes context 

transition.

 Binning Measures into Numeric Ranges
A common requirement when analyzing data in Power BI is binning the results of a 

measure into numeric ranges. Consider the visual on the left in Figure 16-3. It is telling us 

that we have nine customers whose “Total Sales” values are greater than 800,000. In the 

Table visual on the right, we can see who these customers are.
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Figure 16-3. Binning “Total Sales” into numeric ranges

The starting point for this analysis is to generate a parameter table that defines the 

ranges you require. You learned how to create parameter tables in Chapter 12 when we 

explored the SELECTEDVALUE function. To generate the parameter table, use the Enter 
Data button on the Home tab. We’ve called this table “Bins for Sales”, and you can see 

it in Figure 16-4. As with all parameter tables, it’s not related to any other tables in the 

data model.
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Figure 16-4. The “Bins for Sales” parameter table

Next, as a calculated column in Data view, in the “Bins for Sales” table, we could 

author this expression that will count the number of customers whose sales fall between 

the range values:

No. of Customers Column =

COUNTROWS (

        FILTER (

            Customers,

            [Total Sales] >= 'Bins for Sales'[MinValue]

                && [Total Sales] <= 'Bins for Sales'[MaxValue] ) )

You can see the results of this expression in Figure 16-5.

Figure 16-5. Start by binning the customers into a calculated column
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Let’s take a closer look at the evaluation of “No. of Customers Column”. Because we 

are using a calculated column, the “Bins for Sales” table is iterated, and the values for 

“MinValue” and “MaxValue” in the current row will be used in the calculation. The “Total 

Sales” measure used by the FILTER function evokes context transition in the Customers 

table whereby it returns each customer’s total sales value in memory, and it is this value 

that is used to compare to the range value sitting in the current row of the “Bins for 

Sales” table. The COUNTROWS function then counts the number of rows in the virtual 

Customers table generated by FILTER. In Figure 16-6, we step through the evaluation of 

this expression.

Figure 16-6. The evaluation of the “No. of Customers Column” calculated column

 1. The expression iterates the “Bins for Sales” table. FILTER 

generates a virtual Customers table that is filtered by using the 

range values in the current row of the “Bins for Sales” table.

 2. COUNTROWS counts the rows in the virtual Customers table.

 3. The value returned by COUNTROWS is calculated in the current 

row of the “Bins for Sales” table.

However, we don’t want these values sitting in a calculated column; we want 

them in a measure that we can put into a Table visual so we can slice and dice the 

data. We learned in Chapter 5 how we can often convert an expression evaluated in 

a column into an expression evaluated as a measure. There, we took this expression, 
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“Winesales[CASESSOLD] * RELATED ( Wines[PRICEPERCASE] ) )”, and wrapped it 

inside SUMX. We can do the same with our calculated column, remembering that it is 

the “Bins for Sales” table that must be iterated by SUMX:

No. of Customers with these Total Sales =

SUMX (

    'Bins for Sales',

    COUNTROWS (

        FILTER (

            Customers,

            [Total Sales] >= 'Bins for Sales'[MinValue]

                && [Total Sales] <= 'Bins for Sales'[MaxValue] ) ) )

You can then place a Table visual on your canvas and populate it with the “Range” 

column from the “Bins for Sales” table. Next, place the “No. of Customers with these 

Total Sales” measure into this table as in Figure 16-3.

 Calculating TopN Percent
In this example, you will put into practice all the knowledge of DAX you’ve learned so far 

and author a complex measure.

The challenge is to find a way to dynamically browse your best and worst performing 

customers. The requirement is to do this by finding the topN and bottomN percent of 

customers by sales, where the “top” and “bottom” and “N” are dynamically selected via 

slicers. You would also like to browse customers’ sales by any entities from dimension 

tables such as by salespeople or by regions.

You can see in Figure 16-7 that we’ve solved this scenario. In the Table visual, you can 

see that we are looking at the bottom 10% of customers by sales for salesperson “Abel”.
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Figure 16-7. Top or bottom percent of customers by sales

The measure “Top/Bottom PC Customers” is a compelling example of using context 

transition within a DAX expression to gain insights into your data, and you can now 

discover how to re-create this example for yourself.

There are two steps to setting up this analysis:

 1. Create the slicers to select which percentage and whether top 

or bottom.

 2. Create the measure to find the top or bottom percent selected in 

the slicers that will also respond to the Salesperson slicer.

 Create the Slicers
The “Top or Bottom” and “Percent” slicers use parameter tables. We’ve called these 

tables “Select Percent” and “Select Top or Bottom”, and both tables contain just a single 

column, “Top or Bottom” and “Percent”, as shown in Figure 16-8.
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Figure 16-8. The parameter tables used for top/bottom and percent

Use the columns from these two tables to populate two slicers.

 Create the Measure to Find the Top or Bottom Percent 
Selected in Slicers
The measure used in the “Top/Bottom PC Customers” uses many skills you have learned 

so far in this book. Let’s think through what will be required of you to arrive at the correct 

DAX code for this measure.

• You will use variables throughout the expression to separate each 

part of the evaluation.

• You will use the SELECTEDVALUE function to harvest the values 

selected in the slicers, either “Top” or “Bottom”, and the percentage to 

be calculated.

• The percentage selected is used to find the base rank. For example, 

if 10% is chosen in the slicer and there are 84 customers who have 

sales, you must find customers whose rank is less than 8.4. You will 

rank customers descending for top ranked customers (top = 1) and 

ascending for bottom ranked customers (bottom = 1). Therefore, you 

will be finding a rank less than 8.4 in both cases.

• Using context transition and the RANKX function, you will rank the 

customers, top or bottom, according to their “Total Sales” value.

• Because there are customers with no sales that will be ranked by 

default when finding bottom percent, you must filter the Customers 

table so only customers who have sales are ranked.
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• Using the FILTER function, you will filter top or bottom customers 

whose rank is, for example, less than 8.4, if finding 10%.

• Because the measure must return a scalar value, you must now 

calculate the “Total Sales” measure for the filtered customers.

• Lastly, you must write a calculation that returns “Total Sales” for 

either the top or the bottom ranked customers depending on the 

slicer selection.

This is the measure that you can now author (we have added a comment under each 

part of the expression to explain the purpose of the code):

Top/Bottom PC Customers =

VAR PercentToFind =

     COUNTROWS ( ALL ( Customers ) ) * SELECTEDVALUE ( 'Select 

Percent'[Percent] )

-- Harvest the percent using the slicer selection

VAR TopOrBottom =

    SELECTEDVALUE ( 'Select Top or Bottom'[Top or Bottom] )

-- Harvest whether top or bottom using the slicer selection

VAR RankCustsTop =

    RANKX ( ALL ( Customers ), [Total Sales] )

-- Rank the customers descending by Total Sales value (Top = 1)

VAR RankCustsBottom =

     RANKX (FILTER( ALL ( Customers ),NOT(ISBLANK([Total Sales]))), [Total 

Sales],, ASC )

-- Rank the customers ascending by Total Sales value (Bottom = 1) but only 

if they have sales

VAR FindCustsTop =

    FILTER ( Customers, RankCustsTop <= PercentToFind )

-- Filter top customers whose rank is less than or equal to the 

PerCentToFind

VAR FindCustsBottom =

    FILTER ( Customers, RankCustsBottom <= PercentToFind )
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-- Filter bottom customers whose rank is less than or equal to the 

PerCentToFind

VAR CalcSalesTop =

    CALCULATE ( [Total Sales], FindCustsTop )

-- Calculate “Total Sales” for top ranked customers

VAR CalcSalesBottom =

    CALCULATE ( [Total Sales], FindCustsBottom )

-- Calculate “Total Sales” for bottom ranked customers

RETURN

IF ( HASONEVALUE ( Customers[CUSTOMER NAME] ),

-- This tests that the evaluation is not for the Total Row.

IF ( TopOrBottom = "top",  CalcSalesTop, CalcSalesBottom  ),

--The calculation for rows not in the Total row

        CALCULATE ( [Total Sales],

        ALLSELECTED (Customers[CUSTOMER NAME] ) ) )

--The calculation for the Total Row

Note the “RETURN” expression that executes different code if the calculation is for 

the Total row. This is to resolve the problem of users selecting “Bottom” percent and no 

value showing in the Total row. This is because the Total row is evaluated in the same 

way as the evaluation for each customer. Therefore, the Total row value, which is always 

greater than the individual sales values, is given a bottom ranking of 85 (if there are 84 

customers with sales), because the bottom ranking is ascending (higher values get a 

larger ranked number). The Total row, therefore, fails the ranking bottom test performed 

by FILTER, and so there is no data to show in the Total row.

You must, therefore, author a different expression for the Total row to ensure that 

the Total row sums the total sales for the customers shown in the visual. To test that the 

evaluation is not for the Total row, you can use the HASONEVALUE function. You can 

then use the ALLSELECTED function to calculate the “Total Sales” value for just the 

customers shown in the visual.

However, we have not yet resolved the problem, because you will note that at this 

stage, the Total row shows the total sales for all customers for “Abel”; see Figure 16-9.
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Figure 16-9. The Total row is not correct

This is because the ALLSELECTED expression calculates the “Total Sales” measure 

independently of the ranking calculation, and so there is no filter on the Customers table 

for ALLSELECTED to remove. Therefore, to place a filter on the Customers table, you can 

use a visual-level filter, populate it with the “Total Sales” measure, and set the filter to 

“Show items when the value is not blank”; see Figure 16-10.

Figure 16-10. The Total row is correct if you provide a visual-level filter for 
ALLSELECTED to remove
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Finally, you can change the slicer selections, and the measure recalculates 

accordingly, finding your best and worst customers using our great DAX friend, context 

transition.

You may feel that the dynamic ranking of customers that we have achieved here has 

been quite a daunting experience. It would appear that once you have “cracked” the 

obvious calculation of ranking the customers, there were then unexpected problems that 

arose, such as how the Total row must be evaluated. Let me tell you now, this is par for 

the course. This is true DAX in action, and you are beginning to appreciate that what you 

must do above all else is think it through. Why is my expression returning correct results 

most of the time but then odd results only sometimes? Always think through exactly how 

your measure is being evaluated and, particularly, the evaluation context in which it has 

been placed.

 Calculating “Like for Like” Yearly Sales 
Using SUMMARIZE
We have been analyzing our customer sales values in a variety of ways throughout this 

book. One of the more insightful metrics, however, we have yet to explore is calculating 

like for like sales to make more accurate comparisons between our customers.

Let’s start by setting up the scenario. We want to analyze our customers’ sales of 

“Chianti” wine in the years 2019, 2020, and 2021. The problem with multiselecting years 

in a slicer is that our “Total Sales” measure will filter customers with sales of “Chianti” in 

any of the selected years and not sales in all of them; see Figure 16-11.
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Figure 16-11. Multiselecting years returns customers with sales in any of the 
selected years, not all the selected years

However, we’d like to select a range of years in a slicer and find out which customers 

bought “Chianti” in all the selected years so we can compare like for like on the total. For 

instance, in Figure 16-11, we can see that in the years 2019, 2020, and 2021, “Burningsuit 

Ltd” had sales in all three years for “Chianti” but “Ballard & Sons” only had sales in 2020 

and “Barstow Ltd” in 2021. Therefore, the total sales for those three years would not be 

like for like when considering these three customers’ sales of “Chianti”.

The visual that provides the analysis we require is shown in Figure 16-12. Here, we 

have selected “Chianti” wine and years 2019, 2020, and 2021 in the slicers, and the table 

visual shows sales for only customers who have sales of “Chianti” in all those years.
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Figure 16-12. Calculating like for like sales in 2019 to 2021 for “Chianti” wine

To understand the code we must author that calculates such sales, we will pick the 

calculation apart into its constituent steps:

 1. Identify customers who have sales in the selected years of the 

selected wine.

 2. Calculate in how many of those years selected in the slicer the 

customer has sales.

 3. Filter customers who have sales in the same number of years as 

the number of years selected in the slicer.

Let’s take step #1 and explore how we identify those customers that have sales in the 

selected years. For this, we must digress a little and revisit the SUMMARIZE function 

to learn more. In the previous chapter, you learned how you can use SUMMARIZE to 

generate a virtual table grouping columns from different tables. However, as one of 

the arguments inside SUMMARIZE, you can optionally include an expression to be 

evaluated for the rows returned in the virtual table. Therefore, to identify in which of the 
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selected years our customers have sales, we could write the following measure where 

we have highlighted the two arguments used for calculating the total sales for each 

customer in each year:

No. of Years that Customers have Sales =

    COUNTROWS (

        SUMMARIZE (

            Winesales,

            Customers[CUSTOMER NAME],

            DateTable[Year],

            "Sales", [Total Sales]

        )

    )

We will now work through the details of the “No. of Years that Customers have Sales” 

measure. We are using SUMMARIZE to create the virtual table shown in Figure 16-13. We 

don’t see all the years for every customer because this table is evaluated in the current 

filter of the Matrix visual that it occupies; for instance, “Ballard & Sons” only has sales in 

2020; see Figure 16-14.

Figure 16-13. The virtual table generated by SUMMARIZE in the “No. of Years 
that Customers have Sales” measure
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You can see that the SUMMARIZE function includes an expression called “Sales” 

which will return the “Total Sales” measure. The name that you give to this column 

inside SUMMARIZE (e.g., “Sales”) is purely arbitrary.

We can now put this measure into a Matrix visual with CUSTOMER NAME in rows 

and YEAR in columns (Figure 16-14). We are also slicing by “Chianti” wine and years 

2019, 2020, and 2021. You can see that it returns “1” for every customer that has sales of 

“Chianti” in the selected years.

Now for step #2 where we must calculate in how many of those years selected in the 

slicer a customer has sales. Remembering that the columns WINE, CUSTOMER, and 

YEAR are providing the filter context, we must remove the filter from YEAR so we can 

Figure 16-14. The “No. of Years that Customers have Sales” measure in a 
Matrix visual
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look at our customers’ sales of “Chianti” for all the years selected in the slicer. We can use 

CALCULATE with ALLSELECTED on the DateTable to do this job and simply nest our 

SUMMARIZE expression inside CALCULATE:

No. of Years that Customers have Sales #2=

CALCULATE (

    COUNTROWS (

        SUMMARIZE (

            Winesales,

            Customers[CUSTOMER NAME],

            DateTable[Year],

            "Sales", [Total Sales]

        )

    ),

    ALLSELECTED ( DateTable[Year] )

)

We can see the values this measure returns in Figure 16-15.
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Figure 16-15. The “No. of Years that Customers have Sales #2” measure evaluated 
in the Matrix visual

We already know from Figure 16-13 that “Ballard & Sons” has only bought “Chianti” 

in 2020 so they only have sales in one of the years selected in the slicer.

To complete the calculation in step #3, we can filter the Customers table to contain 

only those customers whose number of years returned by the “No. of Years that 

Customers have Sales #2” measure equals the number of years filtered in the slicer 

and return the “Total Sales” value for these customers. This is the “Like for Like Sales” 

measure that we’ve used in the visual in Figure 16-14 that returns the result we need:

Like for Like Sales =

CALCULATE (

    [Total Sales],

    FILTER (

        Customers,
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        [No. of Years that Customers have Sales #2] =

        COUNTROWS ( ALLSELECTED ( DateTable[Year] ) )

    )

)

Figure 16-16 shows this measure evaluated in a Matrix visual.

Figure 16-16. The “Like for Like Sales” measure evaluated for “Chianti” wine

In the preceding scenario, where we have calculated like for like sales, you may have 

noticed the absence of any reference to context transition when working through the 

evaluation of the measures we built using SUMMARIZE. In fact, these measures do not 

use context transition. SUMMARIZE is not an iterating function, and in the absence 

of an iteration, context transition cannot occur. The method that SUMMARIZE uses to 

calculate its “expression” argument is complex, and its explanation is beyond the scope 

of this book. However, the behavior of the “Total Sales” measure in the expressions using 

SUMMARIZE is indistinguishable from context transition to most DAX users. That is, 

we have generated a summary table, and the “Total Sales” measure is calculated at that 

granularity. This is why I have included this example in this chapter.
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 Using Context Transition in Calculated Columns
Understanding context transition allows you to write more challenging calculated 

columns too. What you will learn in this section is that by using CALCULATE in 

calculated columns, you are released from the constraints of the row context where you 

can only calculate values for the current row. We can now harness the power of context 

transition to programmatically create filters on tables and so pass calculations across 

these filtered rows in calculated columns.

 Calculating Running Totals
You have already learned how to calculate cumulative totals using measures in Chapter 9 

(see Figure 9-10) and Chapter 15 (see Figure 15-10). However, we now have a different 

cumulative total we would like to find, and that is a running total of the quantity in the 

CASES SOLD column; see Figure 16-17. Using variables and context transition makes 

this calculation straightforward. This is the DAX calculated column you can create:

CUMULATIVE TOTAL =

VAR MyDate = Winesales[SALE DATE]

VAR MyFilter =

    FILTER ( Winesales, Winesales[SALE DATE] <= MyDate )

RETURN

    CALCULATE ( SUM ( Winesales[CASES SOLD] ), MyFilter )

The variable “MyDate” finds the value in the SALE DATE column sitting in the 

current row. The variable “MyFilter” uses the FILTER function to create a virtual 

table filtering the rows where the SALE DATE is on or before this date. Using context 

transition, CALCULATE can use this new filter generated by the virtual table to sum the 

CASES SOLD for these filtered rows.

Chapter 16  Leveraging Context transition



294

Notice the use of the variable “MyDate” to find the date in the current row. Before 

variables were introduced into DAX in 2015, we had to use a function called EARLIER to 

do this job, as follows:

CUMULATIVE TOTAL =

CALCULATE (

    SUM ( Winesales[CASES SOLD] ),

    FILTER ( Winesales, Winesales[SALE DATE] <=

     EARLIER ( Winesales[SALE DATE] ) )

)

I think you’ll agree that the calculated column using the variable is a lot easier to 

create and understand.

 Calculating the Difference from the Value 
in the Previous Row
You have learned that calculated columns use the row context in their evaluation where 

the values used by the expression are the values sitting in the current row. However, a 

common question that is often asked is how to find values in another row. For example, 

you may be asked to calculate the number of days between sales transactions as in the 

“DAYS DIFFERENCE” calculated column in Figure 16-18.

Figure 16-17. The “CUMULATIVE TOTAL” in a calculated column
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To do this calculation, we need to find the SALE DATE that is in the previous row.

This is the expression for the calculated column:

DAYS DIFFERENCE =

VAR MyDate = Winesales[SALE DATE]

VAR PreviousDate =

    CALCULATE (

        MAX ( Winesales[SALE DATE] ),

        FILTER ( WineSales, Winesales[SALE DATE] < MyDate ) )

RETURN

    IF ( PreviousDate, MyDate - PreviousDate )

The variable “MyDate” finds the value of SALE DATE sitting in the current row, for 

example, 7 January 2017. The variable “PreviousDate” uses CALCULATE and so invokes 

context transition that will apply a filter to the rows. Using the FILTER function, a virtual 

table is created filtering the rows where the SALE DATE is before “MyDate” (i.e., all the 

rows with dates up to and including 6 January 2017). CALCULATE then calculates the 

latest date (using the MAX function) in the virtual table (6 January 2017). Therefore, this 

date is the date immediately before the date in the current row. The RETURN statement 

checks for the presence of a previous date and then subtracts the date in the current row 

from the date generated by “PreviousDate”. The value returned is a date, so the last step 

is to change the data type to a whole number.

Figure 16-18. The “DAYS DIFFERENCE” calculated column
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By working through the examples contained in this and the previous chapter, you 

have learned how to use context transition to author more complex and challenging 

expressions. However, you are still sitting on the tip of the iceberg of calculations that can 

be achieved using context transition. You’ll find your own reasons to benefit from using 

this aspect of DAX, and you will no longer find the behavior of context transition in any 

way “strange” or “surprising,” and that’s because you now understand it.
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CHAPTER 17

Virtual Relationships: 
The LOOKUPVALUE 
and TREATAS Functions
Our data model comprises well-defined physical relationships between the tables, 

generating a star schema. However, there is another type of relationship we can create, 

and that’s a “virtual” relationship. A virtual relationship is a DAX expression that 

simulates the behavior of a physical relationship defined in the data model. In this 

chapter, you will learn to create virtual relationships that can resolve problems created 

by anomalies in the data model. Such anomalies can exist for the following reasons:

• When a relationship does not exist, for example, when using a 

lookup table.

• The relationship between tables is not part of a star or 

snowflake schema.

• When a relationship cannot be created because there are duplicate 

values in both of the columns you want to relate.

Specifically, we will delve into the outcomes of using two functions that create 

virtual relationships: LOOKUPVALUE and TREATAS. In fact, these two functions are very 

different. LOOKUPVALUE returns a value, usually from a different table, that is looked 

up based on search criteria that are provided by the function. TREATAS, on the other 

hand, is a table function that returns a virtual table that can be used to filter another 

table. However, they’re both used in situations where it’s not possible to use a physical 

relationship, and that’s why we’ve consolidated them into this chapter.

https://doi.org/10.1007/978-1-4842-8188-8_17
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 LOOKUPVALUE Function
We’ve already learned that we can use the RELATED function to pull values through 

from the one side of the relationship into the many, just in the same way that the 

VLOOKUP function works in Excel. However, RELATED only works if you have a 

many-to-one relationship in place. Let’s look at a situation where it would not be 

possible to use RELATED.1

The situation is this; currently, our wines have a single price per case, but we now 

want our wines to have different prices according to different price bands. We’ve added 

another table to our model that records the price bands of the wines in a table called 

“Prices”, shown in Figure 17-1.

Figure 17-1. The Prices table records the price band and price per case for 
each wine

Now, when we make a sale of any wine, the price band is also recorded in the 

transaction in the Winesales fact table; see Figure 17-2.

1 To follow along with the examples, use the Power BI Desktop file “4 DAX LOOKUPVALUE.pbix”.
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Figure 17-2. Each transaction records the price band

In Figure 17-3, you can see that relating wines to their prices in a many-to-one 

relationship using the WINE ID column is straightforward.

Figure 17-3. The Prices table can be related to the Wines table in a many-to-one 
relationship

Chapter 17  Virtual relationships: the looKupValue and treatas FunCtions



300

However, how would you find the price of each transaction in the Winesales table? 

You can’t use RELATED because this function can only populate values from the “one” 

side of the relationship into the “many” side and the Prices table sits on the “many” side. 

But more importantly, the price depends on two criteria: the wine and the price band. 

In this scenario, the relationship between the tables isn’t going to help you. In fact, you 

don’t need the relationship between Wines and Prices at all. What you can do here is 

create a “virtual” relationship using LOOKUPVALUE in a calculated column.

The LOOKUPVALUE function has the following syntax:

= LOOKUPVALUE( result column name , search column name1, search value1, 
search column name2, search value2 etc. )

result column name is the column whose value you want to be returned.

search column name is the column where you want to match the first “search 

value.” Usually, this is a column from a different table, but it can be in the same table.

search value is the value to search for in “search column name.” This can be a value 

in a column or any single value.

The “search column name” and “search value” can be repeated for as many pairs of 

matching values as you need.

This is the calculated column we need and you can see the result in Figure 17-4:

WINE PRICE =

LOOKUPVALUE (

    Prices[PRICE PER CASE],

    Prices[WINE ID], Winesales[WINE ID],

    Prices[PRICE BAND], Winesales[PRICE BAND]

)

This is the same calculated column with comments:

WINE PRICE =

LOOKUPVALUE (

    Prices[PRICE PER CASE],

--the price to return into the Winesales table from the prices table

    Prices[WINE ID], Winesales[WINE ID],

--look in the WINE ID column of the Prices table to match the WINE ID in 

the current row of the Winesales table

    Prices[PRICE BAND], Winesales[PRICE BAND]
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-- AND look in the PRICE BAND column of the Prices table to match the PRICE 

BAND in the current row of the Winesales table

)

Notice in the calculated column, we need to match both the WINE ID and the 

PRICE BAND, and this is where LOOKUPVALUE becomes particularly useful. The 

LOOKUPVALUE function allows you to find values in unrelated tables by matching 

values in any number of columns.

At this juncture, we must let you know that the code you have just written using the 

LOOKUPVALUE function is now a little outdated. Prior to the introduction of variables, 

it was the simplest way to achieve this outcome. However, the following code using 

variables and CALCULATE is an alternative approach:

WINE PRICE #2 =

VAR currentwine = Winesales[WINE ID]

VAR priceband = Winesales[PRICE BAND]

RETURN

CALCULATE ( VALUES ( Prices[PRICE PER CASE] ),

        Prices[PRICE BAND] = priceband,

        Prices[WINE ID] = currentwine )

Figure 17-4. The WINE PRICE calculated column using LOOKUPVALUE
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There is no discernable difference in the performance of “WINE PRICE #2”, so it is a 

personal choice as to which expression you prefer to use.

Finally, let’s give the last word to Alberto Ferrari in his blog on the LOOKUPVALUE 

function here: www.sqlbi.com/articles/introducing- lookupvalue/

“If your search list is made up of only one-column, then LOOKUPVALUE is pretty 

much never your best option. Indeed, when searching for a single column, a relationship is 

always better: it is faster and provides a clearer structure to the model. When on the other 

hand you search for multiple columns, then LOOKUPVALUE comes in handy.

Another scenario where LOOKUPVALUE is preferable over a relationship in the model 

is when the condition you set is not a single column, but instead a more complex condition 

based on multiple columns. In that case, LOOKUPVALUE provides greater flexibility than 

a relationship.”

 The TREATAS Function
To understand the requirement for the TREATAS function, we must consider the 

following problem that has now arisen in our data model.2 We have added a Targets table 

to our model that records each salesperson’s yearly targets; see Figure 17-5.

2 To follow along with the examples, use the Power BI Desktop file “5 DAX TREATAS.pbix”.
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Figure 17-5. The Targets table

We would like to compare our salespeople’s yearly sales with their targets, as in 

Figure 17-6 where we are looking at sales in 2021.

Figure 17-6. Reporting on salespeople’s yearly targets

The Targets table is related to the SalesPeople table (using the SALESPERSON 

ID column from both tables) in a many-to-one relationship as shown in Figure 17-7. 

Because we will be using the Winesales table and the DateTable, we’ve also shown how 

these are related in the model.
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Figure 17-7. The Targets table is related to the SalesPeople table

We could create a measure to calculate the target values:

Target =

SUM ( Targets[TARGET] )

and then show the “Target” and “Total Sales” measure in a visual that includes the 

SALESPERSON column from the SalesPeople table and the YEAR column. However, 
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from which table will we take the YEAR column, from the DateTable or from the Targets 

table? It’s here that we meet the problem of how to get both the “Target” value and the 

“Total Sales” value in the same visual against each year. We get different calculations 

depending on which table the YEAR comes from, as shown in Figure 17-8.

Figure 17-8. Taking the YEAR column from either the DateTable or the Targets 
table won’t work

If the YEAR column comes from the DateTable, the “Total Sales” measure is 

correct but not the “Target” measure. If the YEAR column comes from the Target table, 

the targets are correct but not the total sales. If we now consider our data model in 

Figure 17-9, we can identify the problem.
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Figure 17-9. Filtering YEAR in the DateTable filters the fact table, but filtering 
YEAR in the Targets table does not filter any other tables

If we take YEAR from the DateTable, the YEAR filter is propagated to the Winesales 

fact table filtering “Total Sales” for each year (shown by the tick), but this filter is not 

propagated onward to the Targets table via the SalesPeople table (shown by the crosses) 

to filter the targets in each year. If we take YEAR from the Targets table, this filters the 

YEAR in the Targets table but won’t propagate to the Winesales table to filter sales 

(shown by the crosses).

Chapter 17  Virtual relationships: the looKupValue and treatas FunCtions



307

One solution would be to create a relationship between the YEAR field in the Targets 

table and the YEAR field in the DateTable. If we do this, filtering the YEAR in the Targets 

table would filter the YEAR in the DateTable, and this would propagate to the fact table.

The issue, however, is that in both the DateTable and the Targets table, values in 

the YEAR column are duplicated, so if we attempt to make this relationship, we will 

generate a many-to-many relationship prompting this warning message, as shown in 

Figure 17-10.

Figure 17-10. You will get a warning if you attempt to create a many-to-many 
relationship

We are told that such a relationship will have a “significantly different behavior” 

and it should not be used unless you understand the consequences of your actions. 

Be that as it may, this would resolve the problem because it would set a bidirectional 

filter. However, now is the time to take on board the conclusions at which we arrived 

in Chapter 13 regarding bidirectional filtering. Any changes to your data model that 

push it further away from the star schema structure are never to be recommended. 

Besides, there is another, much simpler approach, and that is to resolve the problem 

using DAX and the TREATAS function. This function will take the result of a table 

expression and use it to filter a column (or columns) from an unrelated table 

and this filter expression can be used in the filter argument of CALCULATE.

TREATAS has the following syntax:

= TREATAS ( table expression , column1, column2 etc. )

table expression is any expression that returns a table.

column1, column2 etc. is one or more existing columns that must match the 

columns in the table expression that will receive the filter from the table expression.

We can now create this measure:

Target #2 =

CALCULATE (

    SUM ( Targets[TARGET] ),

    TREATAS ( VALUES ( DateTable[YEAR] ), Targets[YEAR] )

)
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Notice the VALUES function used as a table expression to create a one-column table 

(often with only one row) containing the YEAR value from the DateTable in the current 

filter context, which is “2017” in the first evaluation. This one-row, one-column table is 

used to filter the YEAR column in the Targets table to equal “2017” and this is the filter 

used by CALCULATE. In Figure 17-11, you can see how this plays out in memory. The 

virtual one-column, one-row table (or multirow table in the evaluation of the Total row) 

containing the YEAR from the DateTable in the current filter context is used to filter the 

YEAR column in the Targets table. It’s important therefore that we use the YEAR column 

from the DateTable in the visual.
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Figure 17-11. The evaluation of the TREATAS function

 1. The first argument in TREATAS uses the VALUES function to 

create a virtual table containing the YEAR column from the 

DateTable in the current filter context, for example, “2017”.

 2. The second argument in TREATAS defines the YEAR column in 

the Targets table as the column to receive the filter from the virtual 

table generated by VALUES.
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When putting the “Target #2” measure into a table visual, alongside the YEAR 

column from the DateTable, we get the result we’ve been looking for; see Figure 17-12.

Figure 17-12. Using TREATAS returns the correct result for the target value

In this chapter, you have learned to manage anomalies in the data model by 

implementing virtual relationships using DAX. This is always a better strategy than 

using bidirectional filtering and many-to-many relationships. Therefore, you need no 

longer be daunted by the fact that you can’t create the recommended many-to-one 

relationships in your model. Be aware, however, that virtual relationships using DAX are 

never better than “real” many-to-one relationships and should only be used where no 

other option is possible.
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CHAPTER 18

Table Expansion
In this chapter, you will learn how to reference expanded tables in your DAX code and 

explore how this knowledge can help you manage the limitations imposed on you by the 

structure of your tables within the star schema. The concept of table expansion is the 

final piece in the jigsaw of understanding how DAX works.1 This implies there is some 

precedence in the importance of DAX concepts. However, just as in a jigsaw, it’s only 

when all the pieces have been fitted do you see the whole picture, and we can at last 

reveal to you the truth about how DAX works, and any misconceptions you currently 

hold can now be dispelled.

The starting point in understanding table expansion is to remind you of the DAX 

verity; filters only propagate from the one side of a relationship to the many, unless 

you use the CROSSFILTER function to programmatically change the filter direction. 

Within this verity, you have also probably assumed, although it has never been stated 

unequivocally, that relationships between tables use a “primary” and a “foreign” key 

to perform a “lookup” from the dimension table to the fact table to enable filtering. For 

example, a filter on the Wines dimension will use the WINE ID column in the Wines 

table to “lookup” the same value in the WINE ID column of the Winesales table. This is 

probably how you think filter propagation works. It’s not that this theory is wrong; it’s just 

that it’s not complete, and it’s this misunderstanding that we will resolve in this chapter.

Before we move forward, however, we must take a closer look at the data model in 

the companion file for this chapter, “6 DAX Expanded Tables.pbix”. You will notice there 

is an additional table related to the Regions table called Region Group, and this table will 

become important in the following sections; see Figure 18-1.

1 To follow along with the examples, use the Power BI Desktop file “6 DAX Expanded Tables.pbix”.
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Figure 18-1. Please note there is an additional table, Region Group, in the data 
model that is related to Regions

The importance of understanding table expansion lies in the fact that we can, at last, 

explain to you how filters in a data model really work and not an approximation of how 

they work. Armed with this knowledge, you will learn how to leverage table expansion 

to resolve the inherent problem in the data model of how to “reach” dimension and 

snowflake tables to perform aggregations at the larger grain. We will also be explaining 

why using functions such as RELATED and CROSSFILTER that can do a similar job is not 

always fit for purpose.

However, prior to tackling the challenging ideas behind table expansion, we must 

first revisit the knowledge already gained regarding the context in which filters are 

evaluated. If we do this, you will discover that there are some details behind filter 

propagation that may currently be eluding you.
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 Revisiting Filters
Despite rigorous explanations in this book, there remain some aspects of filters 

generated by DAX that remain nonsensical. Consider these two questions:

 1. How is it possible that you can filter the fact table by using values 

in dimensions that don’t exist in the fact table?

 2. How can the ALL function inside CALCULATE when it’s applied to 

the fact table remove filters that aren’t placed on the fact table?

Let’s start by considering the first of these incongruities; we place filters on columns 

in dimensions that don’t exist in the fact table. For this, we need to revisit what we 

already know regarding column filters.

 Column Filters Revisited
Throughout this book, you have authored measures using CALCULATE similar to this:

Abel's Cases =

CALCULATE ( [Total Cases],  Salespeople[SALESPERSON] = "abel"

 )

Did you ever stop to ask: How can this measure cross-filter the Winesales table 

using the SALESPERSON column in the SalesPeople dimension, when Winesales only 

contains the SALESPERSON ID? To answer this question, we must delve deeper into the 

nature of column filters.

In Chapter 7, you learned that column filters are more efficient than table filters 

and should always be used in preference where possible. However, at that stage in your 

knowledge of DAX, we weren’t able to tell you the complete story of column filters and 

therefore gave you only an approximation of how column filters work.

Now in this chapter, we do not hide anything from you and state this fact: in DAX, 

all filters are table filters. This statement may come as a surprise to you considering that 

we took such pains to distinguish between column filters and table filters in that earlier 

chapter. Now we are saying that column filters are table filters too!

The complete explanation as to why column filters are more efficient than table 

filters is not that you are placing a filter directly on a column, but that the virtual table 

generated by a column filter is more efficient than the virtual table generated by an 
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explicit filter expression. This is quite a challenging concept, and so we must again dig 

more deeply.

Let’s start by considering this measure that generates a filter on the SALESPERSON 

column of the SalesPeople table:

Abel's Cases =

CALCULATE ( [Total Cases], SalesPeople[SALESPERSON] = "abel" )

In the evaluation of this measure, the DAX engine in memory converts this column 

filter to this expression:

Abel's Cases Real =

CALCULATE (

    [Total Cases],

    FILTER ( ALL ( SalesPeople[SALESPERSON] ), 

                             SalesPeople[SALESPERSON] = "abel" )

)

If we look at this code, we can see that DAX, using the ALL function, generates a one-

column table comprising a distinct list of salespeople’s names. This table is then iterated 

by FILTER to find the value that equates to “Abel”, and this filtered table is then used to 

filter the Winesales table accordingly; see Figure 18-2.
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Figure 18-2. The “real” evaluation of the “Abel’s Cases Real” measure

 1. The DAX engine uses FILTER to generate a one-column table 

containing the distinct values in the SALESPERSON column. 

FILTER iterates this table to filter “Abel”.

 2. The filtered virtual table generated by FILTER is used to filter the 

Winesales table.

Let’s look at another example of a column filter by exploring the evaluation of this 

measure:

Cases GT 350 =

CALCULATE ( [Total Cases],  Winesales[CASES SOLD] > 350 )

DAX converts this filter to the following:

Cases GT 350 Real =

CALCULATE (
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    [Total Cases],

    FILTER ( ALL ( Winesales[CASES SOLD] ),

     Winesales[CASES SOLD] > 350 )

)

This code generates a virtual table containing a distinct list of the cases sold values 

in the Winesales table. In our data, this table will therefore contain 409 rows for FILTER 

to iterate. We can see how this expression is always going to produce a more efficient 

evaluation than using a table filter as in this measure:

Cases GT 350  =

CALCULATE (

    [Total Cases],

    FILTER ( Winesales, Winesales[CASES SOLD] > 350 )

)

Here, FILTER must iterate all the rows in the fact table, which will be 2,207 iterations 

of our Winesales fact table (the fact table often contains millions of rows).

At this juncture, we can also revisit the “Sales for Red or French #1” measure that we 

authored in Chapters 6 and 7:

Sales for Red or French #1=

CALCULATE (

    [Total Sales],

    Wines[TYPE] = "red"

        || Wines[WINE COUNTRY] = "France"

)

We noticed that the problem with this measure was that if there were filters on either 

the TYPE or the WINECOUNTRY column, the filter didn’t work (refer to Figure 6-10). We 

can, at last, explain why. It’s because DAX converts the measure internally to this:

Sales for Red or French #1=

CALCULATE (

    [Total Sales],

ALL ( Wines[TYPE], Wines[WINE COUNTRY]),

FILTER( Wines,

    Wines[TYPE] = "red"
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        || Wines[WINE COUNTRY] = "France"

)

)

Therefore, filters are always removed from the TYPE or WINECOUNTRY column 

because of the presence of ALL.

Now that you understand that column filters are converted to table filters and that all 

filters are table filters, we seem no further on in answering the question we posed before. 

In the “Abel’s Cases Real” measure, we are filtering the SALESPERSON column in the 

SalesPeople table, but the Winesales table only contains the SALESPERSON ID column, 

so how can the filter propagate from the SalesPeople table to the Winesales table? We’ll 

leave you hanging onto this thought while we explore the second example of nonsensical 

filters. How can the ALL function applied to the fact table remove filters that aren’t 

placed on the fact table?

 The ALL Function Revisited
In Figure 18-3, on the evaluation of the “Total Cases” measure, we know filters have been 

placed on the WINE and SALESPERSON columns, propagating filters from the Wines 

and the SalesPeople dimensions to the Winesales fact table, respectively. We’ve then 

used the “All Winesales” measure to remove these filters:

All Winesales =

CALCULATE ( [Total Cases], ALL ( Winesales ) )
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Figure 18-3. Filters have been placed on the WINE and SALESPERSON columns, 
not on the fact table. The ALL function removes filters from the fact table

We learned in Chapter 8 that the ALL function, when nested inside CALCULATE, 

removes filters. But there are no filters on the Winesales fact table to remove, only cross-

filters. The filters have been placed on columns in the dimensions, so how can ALL 

remove filters from the Winesales table when there are no filters to remove?

 Expanded Tables Explained
To answer these probing questions and to truly grasp the behaviors of DAX filters, 

you must understand table expansion. When a measure is evaluated, many-to-one 

relationships allow table expansion to take place. Table expansion results in the creation 

of virtual tables by the DAX engine that include the columns of the base table and then 

expand into all the columns from related tables on the one side of the relationship. The 

DAX engine then uses the expanded table to group by values in the expanded table’s 

columns and apply filters accordingly. Therefore, every table has a matching expanded 

version of itself that is generated in memory that contains all its own columns plus any 
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columns from tables that are related to it, which are on the one side of the relationship 

either directly or indirectly. Relationships only exist to generate expanded tables.

Therefore, we can now talk about both base tables and expanded tables in our 

data model. Base tables are just our tables. Expanded tables are our base tables that 

also contain all the columns from tables that are related to them. In our model, for 

example, we have three tables that will expand: Winesales, Customers, and Regions. The 

Winesales expanded table will contain all the columns from all the tables in the model. 

The Customers expanded table will include all the columns from the Regions dimension 

and the Region Groups dimension. The Regions expanded table will include all the 

columns from the Region Groups dimension. In Figure 18-4, we have redesigned our 

data model to show what it might look like in memory on the evaluation of a measure. 

Notice there are no relationships between the tables because relationships only exist to 

generate expanded tables.
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Figure 18-4. The Winesales, Customers, and Regions tables all expand on the 
evaluation of measures

Once a filter is applied to a column, all the expanded tables containing that column 

are also filtered. Consider Figure 18-5, which shows the virtual expanded tables and base 

tables in Model view. We’re looking at what happens when we filter the SALESPERSON 

column from the SalesPeople base table or the REGION GROUP column from the Region 

Groups base table.
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Figure 18-5. How tables are expanded in the data model

 1. Filtering SALESPERSON from the SalesPeople base table filters 

the Winesales expanded table.

 2. Filtering REGION GROUP from the Region Groups base table 

filters the Regions expanded table, the Customers expanded table, 

and the Winesales expanded table.

So now we can answer the first of the questions we posed. How can a value in 

the SALESPERSON column in the SalesPeople dimension filter the Winesales fact 

table when that value doesn’t exist in the Winesales table? Now you understand that 

it does exist in the Winesales table. It exists in the Winesales expanded table. When 

we place a filter on the SALESPERSON column, both the SalesPeople base table and 

the Winesales expanded table are filtered accordingly. Another example would be a 
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filter on the REGION GROUP column in the Region Groups base table. Notice that this 

filters the REGION GROUP column in the Regions, the Customers, and the Winesales 

expanded tables.

Relationships only exist to expand tables; they are not used to filter tables. Any 

reference to a table in a DAX expression is always a reference to the expanded table, 

where applicable.

Now let’s answer the second question. How can filters be removed from the 

Winesales table when it has no direct filters on it? When we use ALL inside CALCULATE 

to remove filters from a table, it removes filters from the expanded table, if applicable. 

This includes any columns from dimensions related to the expanded table and therefore 

includes columns where the filter was originally generated. So the expression “ALL ( 

Winesales )” will remove any filters from any of the base tables related to Winesales, 

which includes the entire data model.

Understanding table expansion means we can now clarify certain behaviors in DAX 

that we’ve explored but at the time have not been able to fully explain. For example, we 

can now truly describe how the RELATED function works.

RELATED doesn’t “lookup” values in related tables but instead allows you to find 

columns that already exist in the expanded table. When you use RELATED on the fact 

table, for instance, you are shown all the columns from the expanded fact table in the 

IntelliSense list; see Figure 18-6.

Figure 18-6. The RELATED function allows you to reference columns from 
expanded tables
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Like RELATED, the ALLEXCEPT and SUMMARIZE functions also allow you to use 

the columns in expanded tables. When constructing an expression using these functions, 

if you reference a fact table or a snowflake dimension, you are again presented with all 

the columns from the expanded table in the IntelliSense list; see Figure 18-7.

Figure 18-7. SUMMARIZE will also reference expanded tables

You may be thinking that knowledge of table expansion is purely theoretical. It 

explains certain behaviors regarding filter propagation but doesn’t lead you forward in 

constructing more complex DAX expressions. Now is the time to change that perception 

of table expansion and to learn how to put your knowledge of expanded tables to 

beneficial use.

 Leveraging Expanded Tables
For the most part, the reason you will use table expansion in your expressions is to 

“reach” dimensions to perform aggregations on columns within them. You may think 

that we’ve already covered this scenario when we looked at the CROSSFILTER function 

that enabled you to reverse the direction of filter propagation. The RELATED function 

also allows you to pull values from dimensions and snowflake tables into the fact table 

to enable such aggregations. However, both these approaches are not best practices for 

reasons we will elucidate as you read on.
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 “Reaching” Dimensions
Let’s see how table expansion can allow you to break free from the limitations imposed 

on you by star and snowflake schemas. For this, as we’ve often done before, we’ll work 

through a scenario.

You have been asked to calculate in how many different regions you’ve sold each 

wine. The Regions table is a snowflake dimension. It is related to the Customers table 

that’s in turn related to Winesales. Currently, the only way you can deduce in which 

region a transaction was made is through the Customers table; see Figure 18-8.

Figure 18-8. The region in which a transaction was made can only be found 
through the Customers table
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You now know, however, that all the columns in the Regions table are in the 

expanded Winesales table. Therefore, one approach would be to create a calculated 

column in the Winesales base table using RELATED to find the REGION column from 

the expanded Winesales table as shown in Figure 18-9.

Figure 18-9. You can use RELATED in the fact table to show the region name

You could then write the measure “Distinct Regions” using DISTINCTCOUNT on this 

calculated column, as shown in the following:

Distinct Regions =

DISTINCTCOUNT ( Winesales[REGION] )

However, all that’s happening here is that you are accessing the REGION column in 

the expanded Winesales table. You also know that calculated columns should be avoided 

if possible. There is a better way to calculate the distinct number of regions, and that is 

to use CALCULATE with a table filter that will filter the Regions table. To do this, we first 

must remind ourselves how we construct the filter arguments in CALCULATE.

You’ve learned that the filter arguments inside CALCULATE can contain a table 

expression. But the filter argument doesn’t have to be a table expression; it can just be a 

reference to a table. If you reference a table in the filter argument of CALCULATE, this 

will always be the expanded table, where applicable.
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Returning to calculating the number of different regions in which you’ve sold your wines, 

you can use the expanded Winesales table that contains the REGION column as the filter 

for CALCULATE. If you do this, you can then use a measure to count the rows of the Regions 

table that have been filtered via the Winesales expanded table. This would be the measure:

Distinct Regions =

CALCULATE ( COUNTROWS ( Regions ), Winesales )

You must note the simplicity of this expression but the complexity of the concept that 

lies behind it and also remember something we stated earlier; with DAX, the devil is in 

the detail.

We can see the evaluation of this measure in Figure 18-10.

Figure 18-10. The evaluation of “Distinct Regions” using the expanded 
Winesales table

The “Distinct Regions” measure uses the expanded Winesales table in the filter 

argument of CALCULATE to filter the Regions base table. In the evaluation of this 

measure, we know that the filter on the WINE column in the Wines table will filter 
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the WINE column in the expanded Winesales table. We also know that the expanded 

Winesales table contains all the columns in the Regions table. Therefore, the regions 

where we’ve sold each wine in the current filter context will also be filtered. The 

expanded Winesales table, filtered for each wine in the current filter context, is used 

to filter the Regions table accordingly. The Regions table now contains only regions 

where the wine in the current filter context was sold and the rows of the filtered Regions 

dimension are counted; see Figure 18-11.

Figure 18-11. Base tables and expanded tables used in filter propagation

 1. The WINE column in the Wines table filters the WINE column in 

the expanded Winesales table.

 2. The expanded Winesales table contains all the columns in the 

Regions table. The filter in the expanded Winesales fact table is 

used to filter the Regions table whose rows are then counted.
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What we can conclude from this measure is that with CALCULATE, you can use an 

expanded table to filter a base table.

Let’s look at another example of using expanded tables in our code but this time to 

author a more challenging calculation. We are going to repeat the scenario before, in 

that you’ve been asked to find the number of different regions where you’ve sold wines, 

but this time, you must consider only high-volume regions. You’ve identified that high-

volume regions are any regions where transactions of CASES SOLD are greater than 325. 

To do this calculation, rather than using the entire expanded Winesales table as in the 

“Distinct Regions” expression, you can use FILTER to filter the expanded Winesales table 

(highlighted):

Distinct High Volume Regions=

CALCULATE (

    COUNTROWS ( Regions ),

    FILTER ( Winesales, Winesales[CASES SOLD] >325 )

)

When you put this measure into a Table visual, you will find that for “Bordeaux”, 

there are 18 regions where there are transactions of CASES SOLD greater than 325 but 

when selling “Grenache”, there are only 7 regions; see Figure 18-12.

Figure 18-12. The “Distinct High Volume Regions” measure evaluated in a 
Table visual

If we examine the evaluation of the “Distinct High Volume Regions” measure, in 

Figure 18-13, you can see that it varies from the “Distinct Regions” measure only in the 

additional step where the Winesales base table is filtered. The measure filters the WINE 
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column in the Wines dimension and also filters the expanded Winesales table. The 

FILTER function further filters the Winesales base table to rows where CASES SOLD is 

greater than 325. The columns from the Regions table are in the expanded Winesales 

table and so are also filtered. Counting the number of rows in the Regions table reflects 

only the regions filtered in the expanded Winesales table.

Figure 18-13. Base tables and expanded tables used in filter propagation

 1. The WINE column filters the WINE column in the expanded 

Winesales table.

 2. The CASES SOLD column in the Winesales base table is filtered 

for greater than 325.

 3. The expanded Winesales table contains all the columns in the 

Regions table. The filter in the expanded Winesales fact table is 

used to filter the Regions table.
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Knowledge of table expansion also helps to clarify a premise that we have explored 

a number of times throughout this book, and that is the difference between table filters 

and column filters. Now that we know that table filters will often involve expanded 

tables, let’s take the measure we have just authored and compare it with another 

measure that looks almost identical. However, one uses a table filter, using an expanded 

table, and the other uses a column filter, as shown in the following:

Distinct High Volume Regions Table Filter =

CALCULATE (

    COUNTROWS ( Regions ),

    FILTER ( Winesales, Winesales[CASES SOLD] > 325 )

)

Distinct High Volume Regions Column Filter =

CALCULATE (

    COUNTROWS ( Regions ), Winesales[CASES SOLD] > 325 )

You can see in Figure 18-14 that we get different values being returned by similar 

measures. The reason for this is that the first measure filters the Winesales expanded 

table and the second measure filters only the CASES SOLD column in the Winesales 

base table.
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Figure 18-14. Similar measures can return different results

The correct calculation, “Distinct High Volume Regions Table Filter”, uses the table 

filter generated by the FILTER function that filters the expanded Winesales table, filtering 

the CASES SOLD column. This also filters the regions in the expanded table, and this is 

used to filter the Regions dimension. This measure then counts the rows in the Regions 

base table that have been filtered by the Winesales expanded table; see Figure 18-13.

The measure “Distinct High Volume Regions Column Filter” generates a filter only 

on the CASES SOLD column in the Winesales base table, and no filters are propagated in 

the model. It, therefore, counts all the rows in the Regions table irrespective of any filters 

in the Winesales table; see Figure 18-15.
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Figure 18-15. Base tables and expanded tables used in filter propagation

 1. The WINE column is filtered in both the expanded and base 

Wines table.

 2. Filtering a column in the Winesales base table does not propagate 

filters to dimension tables.

The takeaway from these examples is that using an expanded table in the filter 

argument of CALCULATE enables you to pass filters into dimension and snowflake 

tables, in effect reversing the direction of filter propagation. This is because the 

expanded table contains the columns from these dimensions that can then be grouped 

and filtered. However, a question that must now be answered is the following: What 
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is the difference between using expanded tables and using CROSSFILTER. Isn’t the 

end result of using these different methods the same? For instance, we can author this 

expression using an expanded table:

Distinct Regions #1 =

CALCULATE ( COUNTROWS ( Regions ), Winesales )

Or we can author this measure using CROSSFILTER that we might assume would 

return the same result:

Distinct Regions #2 =

CALCULATE(COUNTROWS(Regions),

    CROSSFILTER(Winesales[CUSTOMER ID],

       Customers[CUSTOMER ID],both),

    CROSSFILTER(Customers[REGION ID],

       Regions[REGION ID],both))

Both these measures will “reach” the Regions table. Clearly, the second measure is a 

great deal clumsier than the first, but is there a difference in the evaluation? The answer 

is yes, there is, and we will now explain why.

 Table Expansion vs. CROSSFILTER
In Chapter 13, when we explored the CROSSFILTER function, we authored a measure 

to sum the NO. OF STORES column in the Customers table to calculate the number 

of stores in which we’d sold our wines. Just to remind you, the problem was that filters 

don’t flow from the Wines dimension through to the Customers dimension so we 

used the CROSSFILTER function to programmatically change the direction of the filter 

propagation to a bidirectional filter:

Total Stores =

CALCULATE (

    SUM ( Customers[NO. OF STORES] ),

    CROSSFILTER ( Winesales[CUSTOMER ID],

    Customers[CUSTOMER ID], BOTH )

)
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However, we didn’t tell you at the time, and neither would you have noticed, but this 

measure returns an incorrect value on the Total row; see Figure 18-16.

Figure 18-16. The “Total Stores” measure is not correct in the Total row

Many of the same customers will have bought each wine, so we know that the total of 

1,181 will not be the sum of the total values for each wine. However, you might think this 

value looks about right and so believe it. The value in the Total row should be the total 

number of stores in which we’ve sold all our wines. This value is not correct because in 

the Customers table, we have five customers to whom we’ve sold no wines. If we “show 

items with no data” in a Table visual where we calculate the “Total Sales” measure, we 

can see who they are; see Figure 18-17.

Chapter 18  table expansion



335

Figure 18-17. There are five customers that have no sales

The value of 1,181 shown in the Total row includes the stores for these customers. 

We can see these values in the Customers table in the NO. OF STORES column; see 

Figure 18-18.

Figure 18-18. Customers with no sales have values in the NO. OF STORES column

We haven’t sold any wine to these customers, so clearly their stores shouldn’t 

be included in the total number of stores in which we’ve sold our wines. Our total is 

out by 69.

What’s happening here is that the “Total Stores” measure uses a bidirectional filter. 

When it arrives at the evaluation of the Total row, the filters are removed from the 

WINE column of the Wines dimension, and therefore, there is no filter to propagate 
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to the Customers dimension. With no filters propagated, it sums all the values in the 

NO. OF STORES column. In other words, bidirectional filters are only active if filters 

are active.

So how do you calculate the correct value of 1,112 in the Total row?

What you must do here is use the expanded Winesales fact table as the filter for the 

Customers table. This is because, unlike bidirectional filtering, filters from expanded 

tables are always active. When the Total row is evaluated, the expanded Winesales fact 

table contains only those customers who have bought wines, and so this will filter the 

Customers dimension accordingly.

This is the measure that will give you the correct total:

Total Stores #2 =

CALCULATE (

    SUM ( Customers[NO. OF STORES] ),

    Winesales

)

You can now see in Figure 18-19 that the Total row now shows 1,112.

Figure 18-19. Using table expansion returns the correct value in the Total row

When working with DAX, not only must you have to have an eye for detail and a 

suspicious mind, but you must also understand table expansion.
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 Using Snowflake Schemas
Understanding table expansion also explains how we can have problems with 

“snowflake”-type schemas. This is where there may be a chain of several tables all 

related in one-to-many relationships through to the fact table. In our data model, 

we’ve extended our Regions snowflake by adding another table, Region Groups, which 

is related to Regions via the REGION GROUP ID. We can see in Figure 18-20 how 

the Region Groups table is related to the Regions table through the REGION GROUP 

ID, the Regions table is related to the Customers table through the REGION ID, and the 

Customers table is related to Winesales through the CUSTOMER ID.

Figure 18-20. A snowflake schema comprising Region Groups, Regions, and 
Customers

In Figure 18-21, we’ve filtered “South West” Region Group in a slicer and are 

showing customers in that Region Group in the Table visual. We’ve attempted to 

calculate the total sales for these customers (3,512,539) so that we can use this value 
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as a denominator to calculate the percentage each customer’s sales are of the total for 

the “South West” region group. This is the measure we have authored using ALL on the 

Customers table:

Total Sales for All Customers in Region Group wrong =

CALCULATE ( [Total Sales], ALL ( Customers ) )

As you can see in Figure 18-21, it does not return the correct result, which should 

be $3,512,539. You will also notice that because we are removing all the filters from the 

Customers table, the Table visual now shows all our customers, not just those in the 

“South West” region group.

Figure 18-21. Calculation of the the total sales for all customers in the region 
group is not correct
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Let’s now explain why we get the wrong calculation. When we use ALL inside 

CALCULATE to remove filters from a table, it removes filters from the expanded table, if 

applicable. This measure, therefore, removes filters from the expanded Customers table 

and so also removes filters from both the Regions table and the Region Groups table. It, 

therefore, calculates a total for all region groups. The Region Groups table is at the end of 

the snowflake of tables, so this is the same value as the grand total sales.

Figure 18-22 shows how removing filters from the expanded Customers table will 

also remove filters from Regions and Region Groups.

Figure 18-22. Removing filters from the Customers expanded table removes filters 
from Regions and Region Groups

To calculate the correct denominator, there are several ways to modify the original 

measure to reapply the filter “lost” on the Customers table. We could, for example, use 

ALLEXCEPT to remove the filter on the expanded Customers table except for the filter on 
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the REGION GROUP column (because REGION GROUP is contained in the Customers 

expanded table):

Total Sales for All Customers in Region Group #1=

CALCULATE (

    [Total Sales],

    ALLEXCEPT ( Customers, 'Region Groups'[REGION GROUP]))

Another approach is to use the filter currently on the Region Groups table that has 

been generated by the slicer, which currently is “South West”. This measure will also give 

us the denominator we require:

Total Sales for All Customers in Region Group #2 =

CALCULATE (

    [Total Sales],

    ALL ( Customers ),

    'Region Groups')

In the “Total Sales for All Customers in Region Group #2” measure, the ALL function 

removes all the filters from the expanded Customers table, but by using Region Groups 

as a table filter in the second filter argument in CALCULATE, this reapplies the “South 

West” filter on the expanded Customers table and therefore also filters the Regions table 

and the Region Groups table.

Note to remove the customers with no “total sales” value from the table visual, 
use a visual-level filter, filtering “total sales” is not blank.

We now get the correct denominator; see Figure 18-23.
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Figure 18-23. You need to reapply “lost” filters when removing filters from 
expanded tables

It would also be possible to use this simpler measure using ALLSELECTED.

Total Sales for All Customers in Region Group #3 =

CALCULATE ( [Total Sales], ALLSELECTED ( Customers ) )

What you are seeing in these examples is the perennial problem with “snowflake”-

type schemas. Where you have a chain of tables in many-to-one relationships outward 

from the fact table, when you remove filters from tables nearer the fact table by using 

ALL inside CALCULATE, you will also remove all the filters up the chain.

In this chapter, we have delved into the final major concept that underpins DAX, 

that of table expansion. You have learned that relationships in the data model only 

serve to generate expanded tables and that filter propagation works by filtering columns 

inside expanded tables, not by performing lookups from dimensions into the fact table. 

Knowing about table expansion enables you to author expressions that can use the filter 

currently placed on the expanded table and therefore pass filters back to dimension 

tables, in effect reversing the direction of filter propagation.
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You are now about to move on to the last chapter in this book. Congratulations on 

getting this far! It hasn’t always been an easy journey, and some DAX expressions we 

have investigated together would be demanding to any DAX user. However, you now 

understand the four major concepts that underpin DAX:

• Evaluation context

• Iterators

• Context transition

• Table expansion

According to Alberto Ferrari in his blog “7 reasons DAX is not easy,” you are now a 

DAX guru!2

However, regarding these concepts, Alberto goes on to say “The thing is: you need to 

master them, not only have some basic knowledge of what they are. Moreover, these are 

foundational concepts: they have nothing to do with specific functions.”

Let this be the best advice. On the completion of this book, you will not be at the 

end of your journey through learning DAX, but only at the end of the beginning. You 

must now assimilate your knowledge, work with it, and have the confidence to tackle 

challenging calculations that will furnish you with the insights into your data that 

truly inform.

However, you still have one chapter to go. In the next chapter, we will be taking 

your expert knowledge of DAX to the next level. You will be learning the purpose of the 

function CALCULATETABLE.

2 SQLBI.com. 7 reasons DAX is not easy, June 2020. [Online]. Available from www.sqlbi.com/
blog/alberto/2020/06/20/7-reasons-dax-is-not-easy/
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CHAPTER 19

The CALCULATETABLE 
Function
Now that you are officially a DAX expert, you are ready to confront DAX expressions that 

will truly test your knowledge and understanding of DAX. One of the DAX functions that 

can only be understood with a clear grasp of how DAX works is CALCULATETABLE, and 

this rather obscure function is the last function we will investigate in this book.

CALCULATETABLE operates in all the same ways as CALCULATE except that it 

returns a table rather than a scalar value. In other words, it returns a table or table 

expression where the filter on the table has been modified in some way. On the face of 

it, therefore, CALCULATETABLE should be straightforward to understand. However, 

because it returns a table, the question that is often asked is the following: How would 

it be used inside measures? The reason we’ve left this function till last is because inside 

measures, it becomes particularly useful when used in conjunction with expanded 

tables.1

The syntax for CALCULATETABLE is

= CALCULATETABLE (table or table expression, filter1, filter2 etc.)
where:

table or table expression is the table you want to be returned by CALCULATETABLE.

filter1, 2 etc. provides the filter for the table returned by table.

You may think that this function seems remarkably similar to the FILTER function, 

and indeed, you can often use CALCULATETABLE in place of FILTER.

1 To follow along with the examples, use the Power BI Desktop file “6 DAX Expanded Tables.pbix”.

https://doi.org/10.1007/978-1-4842-8188-8_19
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 CALCULATETABLE vs. FILTER
However, CALCULATETABLE, unlike FILTER, modifies the filter context, and this is the 

first behavior of this function that we will explore. Let’s compare these two measures:

Sales of Red Wines Filter =

 CALCULATE ( [Total Sales],

   FILTER ( Wines, Wines[TYPE] = "red" )

)

Sales of Red Wines CalculateTable =

CALCULATE ( [Total Sales],

    CALCULATETABLE ( Wines, Wines[TYPE] = "red" )

)

Both these expressions are building a table filter for CALCULATE. The first uses 

FILTER to build the table containing red wines, and the second uses CALCULATE 

to build a similar table. These two measures return the same values. However, 

CALCULATETABLE will modify the filter context. Therefore, if the TYPE column 

from the Wines dimension is providing the filter context, it will replace the filter on 

TYPE. Therefore, if “White” is the filter, it will be replaced with “Red”. FILTER can only 

filter what’s already in the filter context and so returns no value if “White” is the current 

filter; see Figure 19-1.

Figure 19-1. CALCULATETABLE will modify the filter context, but FILTER can 
only filter within the current filter context
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The CALCULATETABLE function, therefore, becomes useful when you must 

generate an in-memory table where the filter context must be modified. In reality, 

FILTER and CALCULATETABLE are very different functions even if their output is 

sometimes the same. The former creates a virtual table by iterating another table within 

the current filter context. The latter also generates a virtual table but uses a new filter 

context to build the virtual table.

To illustrate this, let’s build a measure named “Current No. of Sales” that will 

calculate the number of sales generated in each region up to the end of the prior month, 

the year and month being selected in a slicer; see Figure 19-2.

Figure 19-2. Calculating the number of sales up to the end of the prior month
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There are three steps to this calculation:

 1. First, we must filter the DateTable for all the dates up to the end of 

the prior month selected in the slicer e.g., up to but not including 

the 1st May 2021.

 2. The filtered DateTable can then be used to filter the Winesales 

table to contain only the sales up to the end of the prior month.

 3. We can then use COUNTROWS to count how many sales there are 

in the filtered Winesales table.

The question will be the following: Which filter function are we going to use for 

step 2 that will generate the DateTable that will filter the Winesales table for the dates 

we need? Are we going to use FILTER or CALCULATETABLE? We’ve constructed two 

versions of the measure, the first using CALCULATETABLE and the second using FILTER 

(highlighted) where we will then have a second inner FILTER function:

Current No. of Sales CalculateTable =

COUNTROWS (

    CALCULATETABLE (

        Winesales,

         FILTER ( ALL ( DateTable ), DateTable[DATEKEY] < MIN ( 

DateTable[DATEKEY] ) )

    )

)

Current No. of Sales Filter =

COUNTROWS (

    FILTER (

        Winesales,

         FILTER ( ALL ( DateTable ), DateTable[DATEKEY] < MIN ( 

DateTable[DATEKEY] ) )

    )

)
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The measure using CALCULATETABLE would be the correct measure because if you 

attempt to use the measure using FILTER, you get an error, as shown in Figure 19-3.

Figure 19-3. Using FILTER to filter the DateTable returns an error

If we consider that these functions are interchangeable, why does 

CALCULATETABLE work, but FILTER does not? To understand the error when using 

FILTER, we must look more closely at what the inner FILTER expression is generating 

in memory.

 1. The inner FILTER iterates over the DateTable to find all dates up to 

the end of the prior month.

 2. The inner FILTER creates a new virtual DateTable containing just 

these dates.

 3. The outer FILTER then uses the virtual DateTable to filter the rows 

of the Winesales table, iterating each row in the Winesales table 

accordingly.

What is the criterion by which each row in the Winesales table will be filtered in 

step 3? You can’t filter a row by values in an entire table, and so we get this error:

“The expression refers to multiple columns. Multiple columns cannot be converted to a 

scalar value.”

Chapter 19  the CaLCULatetaBLe FUnCtion



348

The table generated by FILTER is the “multiple columns” alluded to in the error 

message, and it tells us that if using FILTER, we can only return scalar values for the 

criterion to filter rows. It’s not possible to use a table expression in the filter expression of 

FILTER, only predicates.

How does the CALCULATETABLE measure differ? In the correct measure:

 1. The inner FILTER iterates over the DateTable to find all dates up to 

the end of the prior month.

 2. The inner FILTER then generates a virtual DateTable containing 

just these dates.

 3. CALCULATETABLE generates a virtual Winesales table that can 

be filtered by the virtual DateTable generated by FILTER. This is 

simply a table filter and therefore is used in the same way as any 

table filter that would normally be placed inside CALCULATE.

In other words, the virtual table generated by FILTER provides the new filter context 

for CALCULATETABLE by which the virtual Winesales table can be filtered. The rows of 

the virtual Winesales table can then be counted.

At this stage of exploring CALCULATETABLE, hopefully, you have worked out 

that if you want to calculate the “Current No. of Sales”, the following measure, using 

CALCULATE, would be much simpler to write and not return an error:

Current No. of Sales =

CALCULATE (

    COUNTROWS ( Winesales ),

    FILTER ( ALL ( DateTable ), DateTable[DATEKEY]

    < MIN ( DateTable[DATEKEY] ) ) )

However, we are exploring the difference between CALCULATETABLE and FILTER, 

and this measure does not illustrate this. But more than this, make a mental note of the 

expression using CALCULATETABLE as it will be a “building block” in more complex 

expressions that follow later in this chapter. Here is the expression again that calculates 

how many sales in each region there have been up to the end of the prior month:

Current No. of Sales CalculateTable =

COUNTROWS (

    CALCULATETABLE (
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        Winesales,

         FILTER ( ALL ( DateTable ), DateTable[DATEKEY] < MIN ( 

DateTable[DATEKEY] ) )

    )

)

Specifically, we will be using this expression as a constituent part of the calculations 

for “New Regions” and “Returning Regions” later.

We’ve established that CALCULATETABLE will modify the filter context when 

generating a virtual table, but we haven’t yet found a useful application for this function. 

Where CALCULATETABLE really comes into its own is when you reference an expanded 

table in this function’s filter argument so that it can then be used as a table filter.

 CALCULATETABLE and Table Expansion
Just as with CALCULATE, you can use expanded tables as filter expressions to modify the 

filter context inside CALCULATETABLE. So, for instance, the following table expression

=CALCULATETABLE ( Regions, Winesales )

will return a virtual Regions table containing only the rows of this table that are in the 

current filter in the expanded Winesales table. If we count the rows of the Regions table 

generated by CALCULATETABLE, this would be an alternative way of finding how many 

distinct regions we have sales within the current filter context. So these two measures, 

both using the expanded Winesales table, return the same values:

Distinct Regions #1 =

CALCULATE (

    COUNTROWS ( Regions ), Winesales )

Distinct Regions #2=

 COUNTROWS (

    CALCULATETABLE ( Regions, Winesales )

By understanding that a table filter inside CALCULATETABLE will use an expanded table 

where applicable, we can now use this knowledge to resolve more challenging calculations. 

One of these more challenging calculations is finding “new” and/or “returning” entities, such 

as new and returning customers or new and returning sales regions.
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 Calculating “New” Entities
Typically, this would involve discovering how many new customers or new sales regions 

there are within a specific month, quarter, or year, perhaps further refined by considering 

only sales for a specific salesperson.

For example, you have been asked to show in how many new regions your 

salespeople have made sales in any given month. You do this by using the following 

“New Regions” measure that uses CALCULATETABLE:

New Regions =

VAR CurrentRegions =

    CALCULATETABLE ( Regions, Winesales )

VAR PreviousRegions =

    CALCULATETABLE (

        Regions,

        CALCULATETABLE ( Winesales,

      FILTER ( ALL ( DateTable ), DateTable[DATEKEY]

    < MIN ( DateTable[DATEKEY] ) ) ) )

RETURN

    COUNTROWS ( EXCEPT ( CurrentRegions, PreviousRegions ) )

You can see the result of this measure in the Table visual in Figure 19-4.

Note You could substitute “Customers” for “regions” if you want to find new 
customers.
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Figure 19-4. Calculating the number of new regions for each salesperson in 
each month

We can appreciate that the “New Regions” measure is quite a challenge to 

understand, so let’s separate the three component expressions within the measure as 

follows:

 1. The “CurrentRegions” variable

 2. The “PreviousRegions variable

 3. The Return statement

By taking the measure apart, piece by piece like this, we can now explain each 

component.

 1. The “CurrentRegions” variable

This variable uses this expression:

CALCULATETABLE ( Regions, Winesales )

Here, CALCULATETABLE uses the expanded Winesales table as 

the filter for Regions, therefore generating a Regions table that 

contains only the regions in which the salesperson (in the current 
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filter context) has made sales in the current month (the month in 

the current filter context). Let’s take the evaluation for salesperson 

“Abel” in “February 2017”, which returns 2, as our example; see 

Figure 19-5.

Figure 19-5. The evaluation of the “CurrentRegions” variable for “Abel” in 
“February 2017”. 1. The expanded Winesales table contains columns from the 
Regions table. 2. The Winesales table is filtered for “Abel”. 3. The Winesales table 
is filtered for “February 2017”. 4. The expanded Winesales table is used to filter 
the Regions table that now only contains regions where “Abel” has made sales in 
“February 2017.” 5. CALCULATETABLE generates a virtual table from the filtered 
Regions table
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Let’s now move on to look at the second component.

 2. The “PreviousRegions” variable

This variable uses this expression:

CALCULATETABLE ( Regions,

        CALCULATETABLE ( Winesales,

                FILTER ( ALL ( DateTable ), DateTable[DATEKEY]

                        < MIN ( DateTable[DATEKEY] ) ) ) )

Remember that we used the nested CALCULATETABLE 

expression (highlighted) when we calculated the “Current No. of 

Sales” measure (see Figure 19-2).

Here, CALCULATETABLE also uses the expanded Winesales table 

as the filter for Regions, but this time the expanded Winesales 

table has been filtered (using FILTER) to contain only sales up to 

the last date of the prior month. This filter is applied on top of the 

filters from the SalesPeople table. CALCULATETABLE uses the 

filtered expanded Winesales table to generate a Regions table that 

contains the regions in which the salesperson has made sales up 

to the end of the prior month; see Figure 19-6.
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Figure 19-6. The evaluation of the “PreviousRegions” variable for “Abel” in 
“February 2017”. 1. The expanded Winesales table contains columns from the 
Regions table. 2. The Winesales table is filtered for “Abel”. 3. FILTER inside 
CALCULATETABLE generates a filtered DateTable containing dates up to and 
including “31 January 2017”. 4. The DateTable table generated by FILTER is used 
to filter the expanded Winesales table. 5. The expanded Winesales table is used to 
filter the Regions table that now only contains regions where “Abel” has made sales 
up to “31 January 2017”. 6. CALCULATETABLE generates a virtual table from the 
filtered Regions table
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So the variables have generated two in-memory tables using 

CALCULATETABLE as follows: 

CurrentRegions – Holds the regions in which the salesperson has 

made sales in the month in the current filter context

PreviousRegions – Holds the regions in which the salesperson 

has made sales up to the last date of the prior month in the current 

filter context

 3. The RETURN statement

The RETURN statement uses the EXCEPT function to return a 

table that contains only the rows of the table in the first argument 

that are not in the table of the second argument; see Figure 19-7.

Figure 19-7. The EXCEPT function returns all the rows in the first table that are 
not in the second table

COUNTROWS then counts the rows in the virtual table generated by EXCEPT and 

returns 2 rows for “Abel” in “February 2017”.
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 Calculating “Returning” Entities
To find “Returning Regions”, which is the regions where salespeople have previously 

made sales in any month, we can use the function INTERSECT in place of EXCEPT as 

follows:

Returning Regions =

VAR CurrentRegions =

    CALCULATETABLE ( Regions, Winesales )

VAR PreviousRegions =

    CALCULATETABLE (

        Regions,

        CALCULATETABLE ( Winesales,

      FILTER ( ALL ( DateTable ), DateTable[DATEKEY]

    < MIN ( DateTable[DATEKEY] ) ) ) )

RETURN

    COUNTROWS ( INTERSECT ( CurrentRegions, PreviousRegions ) )

The table generated by INTERSECT contains all the rows in the first table that are 

also in the second table.

You can see the output of the two measures in Figure 19-8. Note how the Total row 

has been removed from the Table visual. The Total values calculated (or the absence 

of a value) are correct, but ambiguous. Remember that on the evaluation of the Total 

row, filters on YEAR, MONTH, and SALESPERSON will have been removed so the “New 

Regions” measure, for example, would calculate how many new regions there were for all 

salespeople in all months of all years, which is the same as the total number of regions.
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Figure 19-8. The “New Regions” and “Returning Regions” measures in a Table 
visual. Note the absence of the Total row

What lies at the root of these expressions is using CALCULATETABLE to create two 

sets of data for comparisons. You can then use EXCEPT and INTERSECT to find either 

values that are the same or values that are different respectively; see Figure 19-9.
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Figure 19-9. You can use the INTERSECT and EXCEPT functions to return sets 
of values

The benefit of understanding these expressions using CALCULATETABLE is that 

they can be repurposed for many different scenarios. For example, rather than finding 

new regions in the current month for each salesperson, you could analyze the number of 

new customers there are for each wine compared to the previous month, as follows:

New Customers from Previous Month =

VAR CurrentCustomers =

    CALCULATETABLE ( Customers, Winesales )

VAR PreviousMthsCustomers =

    CALCULATETABLE (

        Customers,

        CALCULATETABLE ( Winesales,

      PREVIOUSMONTH(DateTable[DATEKEY])) )

RETURN

  COUNTROWS ( EXCEPT ( CurrentCustomers, PreviousMthsCustomers ) )

This measure tells us that for “Bordeaux” wine, in “December 2021”, there were 

4 new customers compared to the customers in “November 2021”; see Figure 19-10. 

Again, note the evaluation of the Total row, which, although not summing the values for 

each wine, is correct because it tells us that there were 13 new customers for all wines in 

“December 2021” compared to the previous month. Renaming the Total may make this 

value less ambiguous.
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Figure 19-10. The evaluation of the “New Customers from Previous Month” 
measure, repurposing the “New Regions” measure

I think you’ll agree that the DAX expressions you’ve authored in this chapter using 

CALCULATETABLE and expanded tables bear no comparison in their complexity to the 

simple measures using SUM and AVERAGE with which you started out. Throughout this 

book, we’ve paid particular attention to how the DAX expressions work, understanding 

the detail beneath and getting to grips with the difficult concepts that underpin the DAX 

language.

Now all that remains is for you to put your newfound knowledge to good use. Spend 

your day finding data to analyze using DAX. Don’t give up if at first things don’t go 

your way. Persevere and keep with it. There is no silver bullet; everyone who has ever 

mastered DAX has worked hard to get where they are.

But nothing replaces that glowing feeling of finding a solution to a calculation that 

you initially thought was impossible to solve.

Happy DAXing!
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